© 2008 Published by Elsevier Inc.

(1)

J. Matn. Anai. Appl. 353 (2009) 256-259

Contents lists available at ScienceDirect

Journal of Mathematical Analysis and Applications

www.elsevier.com/locate/jmaa

Convexity with respect to Hölder mean involving zero-balanced hypergeometric functions $\stackrel{\scriptscriptstyle \diamond}{\scriptscriptstyle \sim}$

Xiaohui Zhang*, Gendi Wang, Yuming Chu

Department of Mathematics, Huzhou Teachers College, Huzhou 313000, Zhejiang, China

ARTICLE INFO

ABSTRACT

respect to Hölder mean.

Article history: Received 30 May 2008 Available online 28 November 2008 Submitted by H.M. Srivastava

Keywords: Convexity Hypergeometric function Hölder means

1. Introduction

Let $I \subseteq \mathbb{R}$ be a nondegenerate interval and $M: I^2 \to I$ be a continuous function. We say that M is a *mean* on I if it satisfies the following condition $\min\{r, s\} \leq M(r, s) \leq \max\{r, s\}$ for all $r, s \in I, r \neq s$.

In this note we investigate the convexity of zero-balanced hypergeometric functions with

Let $\varphi: I \to \mathbb{R}$ be a strictly monotonic continuous function. The function $M_{\varphi}: I^2 \to I$, defined by

$$M_{\varphi}(r,s) := \varphi^{-1} \big(A \big(\varphi(r), \varphi(s) \big) \big)$$

is called the *quasi-arithmetic mean* associated to φ , while the function φ is called *generating function* of the quasi-arithmetic mean M_{φ} , where A(r, s) := (r + s)/2 is the arithmetic mean. For more details about quasi-arithmetic mean readers are referred to the works of J. Aczél [1], Z. Daróczy [9] and J. Matkowski [10]. For any two quasi-arithmetic means M_{φ} , M_{ψ} associated to φ , ψ defined on intervals *I*, *J*, respectively, a function $f : I \to J$ is called $M_{\varphi,\psi}$ -convex if it satisfies

$$f(M_{\varphi}^{(\lambda)}(r,s)) \leq M_{\psi}^{(\lambda)}(f(r),f(s))$$

for all $r, s \in I$ and $\lambda \in [0, 1]$, and strictly $M_{\varphi, \psi}$ -convex if the inequality is strict except for r = s or $\lambda = 0, 1$, where

$$M_{\varphi}^{(\lambda)}(r,s) := \varphi^{-1} \big((1-\lambda)\varphi(r) + \lambda\varphi(s) \big)$$

is the weighted version of M_{φ} . It can be easily proved (see D. Borwein, J. Borwein, G. Fee and R. Girgensohn [7]) that if ψ is strictly increasing then f is (strictly) $M_{\varphi,\psi}$ -convex if and only if $\psi \circ f \circ \varphi^{-1}$ is (strictly) convex in the usual sense on $\varphi(I)$, and if ψ is strictly decreasing then f is (strictly) $M_{\varphi,\psi}$ -convex if and only if $\psi \circ f \circ \varphi^{-1}$ is (strictly) concave in the usual sense on $\varphi(I)$. For more details about $M_{\varphi,\psi}$ -convex readers are referred to the works of D. Borwein, J. Borwein, G. Fee

* Corresponding author.

^{*} The research in partly supported by the Natural Science Foundation of Zhejiang Province (No. Y7080106) and the Natural Science Foundation of Huzhou City (No. 2007YZ07).

E-mail address: xhzhang@hutc.zj.cn (X.H. Zhang).

⁰⁰²²⁻²⁴⁷X/\$ – see front matter @ 2008 Published by Elsevier Inc. doi:10.1016/j.jmaa.2008.11.068

and R. Girgensohn [7], J. Matkowski and J. Rätz [11,12]. Of special interest are the *Hölder means* associated to the function $\varphi_p: (0, \infty) \to \mathbb{R}$, defined by

$$\varphi_p(r) := \begin{cases} r^p, & \text{if } p \neq 0, \\ \log r, & \text{if } p = 0, \end{cases}$$

thus

$$M_{\varphi_p}(r,s)=H_p(r,s)=\begin{cases} [A(r^p,s^p)]^{1/p}, & \text{if } p\neq 0,\\ G(r,s):=\sqrt{rs}, & \text{if } p=0. \end{cases}$$

For p = 1, we get the arithmetic mean $A = H_1$, for p = 0 the geometric mean $G = H_0$, and for p = -1 the harmonic mean $H = H_{-1}$.

For real numbers *a*, *b*, and *c* with $c \neq 0, -1, -2, ...$, the Gaussian hypergeometric function is defined by

$$F(a,b;c;r) = \sum_{n=0}^{\infty} \frac{(a,n)(b,n)}{(c,n)} \frac{r^n}{n!}, \quad r \in (-1,1).$$
(2)

Here (a, 0) = 1 for $a \neq 0$, and (a, n) is the shifted factorial function $(a, n) = a(a + 1)(a + 2) \cdots (a + n - 1)$ for $n \ge 1$. The zero-balanced Gaussian hypergeometric function is defined by F(r) := F(a, b; a + b; r) for all a, b > 0 (see G.D. Anderson, R.W. Barnard, K.C. Richards, M.K. Vamanamurthy and M. Vuorinen [2]).

Recently many authors proved that the zero-balanced Gaussian hypergeometric function is *MN*-convex when *M*, *N* are the arithmetic, geometric, or harmonic means (for details see the works of R. Balasubramanian, S. Ponnusamy and M. Vuorinen [4], G.D. Anderson, M.K. Vamanamurthy and M. Vuorinen [3], Á. Baricz [5] and Y.M. Chu, G.D. Wang, X.H. Zhang and S.L. Qiu [8]). Very recently Á. Baricz [6] generalized these results to the H_p -convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means for $p \in [0, 1]$.

In this note the authors will mainly investigate the $H_{p,q}$ -convexity of the zero-balanced Gaussian hypergeometric function for some p and q.

2. Main results

Theorem 1. For all a, b > 0, $p \in (-\infty, 1]$ and $q \in [0, +\infty)$ the hypergeometric function $r \mapsto F(r) := F(a, b; a + b; r)$ defined by (2) is $H_{p,q}$ -convex on (0, 1) with respect to the Hölder means H_p and H_q .

Proof. In order to establish the $H_{p,q}$ -convexity of F we need to show that the function $\varphi_q \circ F \circ \varphi_p^{-1}$ is convex in the usual sense on $\varphi_p((0, 1))$. Let us denote

$$f(r) := \varphi_q \circ F \circ \varphi_n^{-1}(r).$$

The proof is divided into the following four cases.

Case 1. p = q = 0. The theorem is proved in Theorem 2.1 of [6].

Case 2. p = 0 and q > 0. So $f(r) = F(e^r)^q$ for $r \in (-\infty, 0)$. A simple computation shows that

$$f'(r) = qF(e^r)^{q-1}F'(e^r)e^r = qf(r)\frac{d\log F(e^r)}{de^r}e^r \ge 0.$$
(3)

By Lemma 2.1 in [4] due to R. Balasubramanian, S. Ponnusamy and M. Vuorinen, the function F is log-convex on (0, 1), and consequently $r \mapsto (d \log F(e^r))/(de^r)$ is increasing on $(-\infty, 0)$. From (3), we obtain that f is increasing, therefore f' is increasing too as a product of three strictly positive and increasing functions.

Case 3. $p \neq 0$ and q = 0. So $f(r) = \log F(r^{1/p})$ for $r \in (0, 1)$ if $0 and <math>r \in (1, +\infty)$ if p < 0. Similar to Case 2 we have

$$f'(r) = \frac{1}{p} \frac{d\log F(r^{1/p})}{d(r^{1/p})} r^{1/p-1}.$$

Therefore f' is increasing as a product of two strictly positive and increasing functions if 0 and a product of a negative number and two strictly positive and decreasing functions if <math>p < 0.

Case 4. $p \neq 0$ and q > 0. So $f(r) = F(r^{1/p})^q$ for $r \in (0, 1)$ if $0 and <math>r \in (1, +\infty)$ if p < 0. A simple computation gives that

$$f'(r) = \frac{q}{p} f(r) \frac{d\log F(r^{1/p})}{d(r^{1/p})} r^{1/p-1}.$$
(4)

Clearly, f is increasing if 0 and decreasing if <math>p < 0. Therefore, from (4), f' is increasing as a product of three strictly positive and increasing functions if 0 and a product of a negative number and three strictly positive and decreasing functions if <math>p < 0. \Box

The next theorem is a slight generalization of above theorem. The proof is similar, so we omit the details.

Theorem 2. For all a, b > 0, $q \in [0, +\infty)$ and $p \in (-\infty, m]$, where m = 1, 2, ..., the hypergeometric function $r \mapsto F_m(r) := F(a, b; a + b; r^m)$ is $H_{p,q}$ -convex on (0, 1) with respect to the Hölder means H_p and H_q . In particular, the complete elliptic integral of the first kind, defined by

$$\mathcal{K}(r) := \int_{0}^{\pi/2} \frac{d\theta}{\sqrt{1 - r^2 \sin^2 \theta}} = \frac{\pi}{2} F\left(\frac{1}{2}, \frac{1}{2}; 1; r^2\right),$$

is $H_{p,q}$ -convex on (0, 1) with respect to the Hölder means H_p and H_q where $p \in (-\infty, 2]$ and $q \in [0, +\infty)$. For all $\lambda, r, s \in (0, 1)$, one has

$$\mathcal{K}(\sqrt{(1-\lambda)r^2+\lambda s^2}) \leqslant \mathcal{K}(r)^{1-\lambda}\mathcal{K}(s)^{\lambda}.$$

The following result is similar to Theorem 2.

Theorem 3. If $a, b, p > 0, m = 1, 2, ..., and <math>q \ge p/m$, then $r \mapsto f_m(r) := F(a, b; a + b; r^m) - 1$ is $H_{p,q}$ -convex on (0, 1) with respect to the Hölder means H_p and H_q . In particular for m = 2 the function $f_2(r) := 2\mathcal{K}(r)/\pi - 1$ is $H_{p,p/2}$ -convex on (0, 1) with respect to means H_p and $H_{p/2}$, i.e. for all $\lambda, r, s \in (0, 1)$ and p > 0 one has

$$\frac{2}{\pi}\mathcal{K}\big(\big[(1-\lambda)r^p+\lambda s^p\big]^{1/p}\big)\leqslant 1+\left[(1-\lambda)\bigg(\frac{2}{\pi}\mathcal{K}(r)-1\bigg)^{p/2}+\lambda\bigg(\frac{2}{\pi}\mathcal{K}(s)-1\bigg)^{p/2}\bigg]^{2/p}.$$

Proof. We just need to show that $r \mapsto f_m(r^{1/p})^q$ is convex on (0, 1). Let us denote

$$\gamma(r) := \left[F(r^{m/p}) - 1 \right]^q.$$

A simple computation shows that

$$\gamma'(r) = \frac{mq}{p} \left[\frac{F(x) - 1}{x^{p/(mq)}} \right]^q \frac{xF'(x)}{F(x) - 1}, \quad \text{where } x = r^{m/p}.$$

So we need only to prove that the function

$$x \mapsto \left[\frac{F(x)-1}{x^{p/(mq)}}\right]^q \frac{xF'(x)}{F(x)-1}$$

is strictly increasing. From the proof of Theorem 2.3 in [6] the function $x \mapsto xF'(x)/(F(x)-1)$ is strictly increasing. It is sufficient to show that $x \mapsto (F(x)-1)/(x^{p/(mq)})$ is strictly increasing. By differentiation we have that

$$x^{\frac{p}{mq}+1}\frac{d}{dx}\left(\frac{F(x)-1}{x^{p/(mq)}}\right) = xF'(x) - \frac{p}{mq}\left(F(x)-1\right) = \sum_{n=1}^{+\infty} \left(n - \frac{p}{mq}\right)\frac{(a,n)(b,n)}{(c,n)}\frac{x^n}{n!},$$

which is positive because by assumption $p/(mq) \leq 1 \leq n$. \Box

The following result gives sufficient conditions for a differentiable log-convex function to be convex with respect to Hölder means.

Theorem 4. Let $f : I \subseteq [0, \infty) \rightarrow [0, \infty)$ be a differentiable function.

- (1) If the function f is increasing and log-convex, then f is $H_{p,q}$ -convex with respect to Hölder means H_p and H_q for $-\infty and <math>q \ge 0$.
- (2) If the function f is decreasing and log-convex, then f is $H_{p,q}$ -convex with respect to Hölder means H_p and H_q for $p \ge 1$ and $q \ge 0$.

Proof. For part (1), the proof is similar to that of Theorem 1, so we omit the details.

For part (2), let us denote $\gamma(r) := \varphi_q \circ f \circ \varphi_p^{-1}(r)$. For q = 0, $\gamma(r) = \log f(r^{1/p})$. By differentiation, we have that

$$\gamma'(r) = -\frac{1}{p} \left[-\frac{d\log f(r^{1/p})}{d(r^{1/p})} \right] r^{(1/p)-1}$$

which is increasing as a product of a negative number and two strictly positive and decreasing functions. For q > 0, $\gamma(r) = f(r^{1/p})^q$, and

$$\gamma'(r) = -\frac{q}{p} f\left(r^{1/p}\right)^q \left[-\frac{d\log f(r^{1/p})}{d(r^{1/p})}\right] r^{(1/p)-1},$$

which is increasing as a product of a negative number and three strictly positive and decreasing functions. \Box

References

- [1] J. Aczél, Lectures on Functional Equations and Their Applications, Academic Press, New York-London, 1966.
- [2] G.D. Anderson, R.W. Barnard, K.C. Richards, M.K. Vamanamurthy, M. Vuorinen, Inequalities for zero-balanced hypergeometric functions, Trans. Amer. Math. Soc. 347 (1995) 1713–1723.
- [3] G.D. Anderson, M.K. Vamanamurthy, M. Vuorinen, Generalized convexity and inequalities, J. Math. Anal. Appl. 335 (2007) 1294-1308.
- [4] R. Balasubramanian, S. Ponnusamy, M. Vuorinen, Functional inequalities for the quotients of hypergeometric functions, J. Math. Anal. Appl. 218 (1998) 256–268.
- [5] Á. Baricz, Functional inequalities involving special functions II, J. Math. Anal. Appl. 327 (2007) 1202-1213.
- [6] Á. Baricz, Convexity of the zero-balanced Gaussian hypergeometric functions with respect to Hölder means, JIPAM. J. Inequal. Pure Appl. Math. 8 (2007), Art. 40, 9 pp.
- [7] D. Borwein, J. Borwein, G. Fee, R. Girgensohn, Refined convexity and special cases of the Blascke-Santalo inequality, Math. Inequal. Appl. 5 (2002) 631-638.
- [8] Y.M. Chu, G.D. Wang, X.H. Zhang, S.L. Qiu, Generalized convexity and inequalities involving special functions, J. Math. Anal. Appl. 336 (2007) 768-776.
- [9] Z. Daróczy, On a class of means of two variables, Publ. Math. Debrecen 55 (1999) 177-197.
- [10] J. Matkowski, Invariant and complementary quasi-arithmetic means, Aequationes Math. 57 (1999) 87-107.
- [11] J. Matkowski, J. Rätz, Convexity of power functions with respect to symmetric homogeneous means, in: Internat. Ser. Numer. Math., vol. 123, 1997, pp. 231–247.
- [12] J. Matkowski, J. Rätz, Convexity with respect to an arbitrary mean, in: Internat. Ser. Numer. Math., vol. 123, 1997, pp. 249-258.