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In this note we consider some asymptotic properties of empirical mean direction
on spheres. We do not require any symmetry for the underlying density. Thus our
results provide the framework for an asymptotic inference regarding mean direction
under very weak model assumptions. Mean direction is a specialization of the more
general concept of mean location applicable to arbitrary (compact) submanifolds of
Euclidean space, to which the methods of this paper could be applied. � 1996

Academic Press, Inc.

1. INTRODUCTION

In this paper we derive some asymptotic results for the empirical mean
direction on spheres in an intrinsic manner that allow for generalization to
more complicated manifolds. Moreover, we do not impose any symmetry
condition on the underlying density. Thus our results provide the essential
ingredients for estimating, hypothesis testing, and constructing confidence
intervals without any symmetry restriction.
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The concept of mean direction has been studied before (Mardia, 1975;
Watson, 1983). Consider the unit sphere Sk&1 in Rk, and let X be a random
unit vector in Rk. Let EX be the ordinary population mean or expectation
vector; then we have the mean direction of X,

+=
EX

&EX&
, (1)

provided that EX{0. Let be given n independent copies X1 , ..., Xn of X.
Let X� n=(1�n)(X1+ } } } +Xn) be the ordinary sample mean vector; then we
have

Sn=
X� n

&X� n&
, (2)

provided that X� n {0, so that indeed Sn is the sample mean direction.
We study the asymptotic behavior of the empirical mean direction under

much weaker conditions than, e.g., those in Watson (1983). In particular,
the assumption of rotational symmetry (around some axis) for the underly-
ing density simplifies the mathematics considerably, but may often be quite
unrealistic. In Watson (1983) this assumption leads to a limiting multi-
variate normal distribution with equal variances in all tangential directions.
Without this symmetry assumption the variances may depend on the
tangential direction.

From an intrinsic point of view it seems natural to define a limiting dis-
tribution for the empirical mean direction in the tangent space to the
sphere at the point corresponding to the population mean direction.
Approximations to the probabilities of actual interest, viz. the probability
of finding the empirical mean direction in shrinking subsets of the sphere
concentrated around the true mean direction, can be obtained from the
limiting distribution on the tangent space via the exponential mapping (or
even inverse projection for spheres). In a nonasymptotic setting the use of
the exponential mapping to construct distributions on manifolds from
given distributions on a tangent space was suggested in Jupp et al. (1989).

In Section 2 it will be shown that Sn is an asymptotically unbiased
estimator with order of bias O(n&1). Moreover, we will give an exact formula
for the lowest order term of the bias and we will show the decomposition
into a tangential component and an orthogonal component. A geometric
interpretation of these components is given. The bias remainder term turns
out to be of order O(n&3�2).

In Section 3 we show that - n(Sn&+) has a normal limiting distribution
N(0, 73� ) with degenerate covariance matrix 73� . Indeed, this degeneracy is
such that the limiting distribution is supported by the tangent space to the
sphere at the point +.
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Next we write

Sn&+=Tn+Nn , (3)

where Nn is the orthogonal component, i.e., Nn is a scalar multiple of +,
and Tn is the tangential component so that +TTn=0. Theorem 2 entails
that - n Tn asymptotically has the N(0, 73� )-distribution. In Section 4 we
further investigate the orthogonal part and show that &2nNn has a /2-type
distribution in the limit which is the distribution of the sum of the squares
of (k&1) independent zero mean normal variables with possibly different
variances. As an illustration of the main results the case of a Fisher�
von Mises distribution is considered in Section 5.

Mean direction as a point on the sphere around which the density is
imagined to be concentrated is generalized to the concept of mean location
on manifolds (see Hendriks, 1991, and Hendriks et al., 1992). Let us note
that our approach can be extended to the study of sample mean location
on compact submanifolds of Rk (see Hendriks et al., 1996).

In this paper the transpose of a matrix or vector B will be denoted by
BT. The indicator function of a set A will be denoted by 1A . The statement
Yn=OL1

(n p) about a sequence of vector-valued random variables Yn is
taken to mean that E(&Yn&)=O(n p). This property implies that
Yn=(O P (n p), that is, P[&Yn&>=]=O(n p) for all =>0.

2. ASYMPTOTIC BEHAVIOR OF THE EXPECTATION
VALUE OF THE SAMPLE MEAN LOCATION

Let X be the random variable X introduced in Section 1. Let EX=a # Rk

and 73 be the covariance matrix of X; Here X is considered as a random
element of the vector space Rk, rather than Sk&1. Consider the mapping
8 : Rk � Sk&1 defined by 8(u)=u�&u& if u{0, and 8(0)= p for some
p # Sk&1, say p=(1, 0, ..., 0); then the mean direction +=8(a) and the
sample mean direction Sn=8(X� n).

Theorem 1. Suppose that a{0; then for n � �,

E(Sn)=+&
&
n

+
{
n

+O(n&3�2),

where

&=
1
2

1
&a&2 (Tr 73 &+T73 +) +,

{=&
1

&a&2 (73 +&(+T73 +) +).
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Thus &&�n and {�n give the behavior up to order n&1 of the orthogonal and
tangential component of the bias term of Sn as an estimator of the mean
location.

Corollary 1.

&E(Sn)&2=1&
2
n

+T&+O(n&3�2)=1&
1

n &a&2 (Tr 73 &+T73 +)+O(n&3�2).

Corollary 2. The mean squared error of the estimator Sn of + equals

E(&Sn&+&2)=
2
n

+T&+O(n&3�2)=
1

n &a&2 (Tr 73 &+T73 +)+O(n&3�2).

Proof of Theorem 1. Let Zn=- n(X� n&a). Let Rn be defined by the
following equation, as the remainder term of the Taylor series expansion of
8 at a of order 2,

Sn=8(X� n)=8(a)+
1

- n
8$a(Zn)+

1
2n

8"a(Zn , Zn)+Rn . (4)

Denote

8 (l )
a (v1 , ..., vl)=Dvl } } } Dv1

8(x) |x=a ,

for v1 , ..., vl # Rk. 8$a=8 (1)
a is the Jacobian matrix of 8 at a and 8"a=8 (2)

a

is the vector of Hessian matrices of the coordinates of the vector valued
map 8 at a.

Since &X&=1, all moments of X are finite. From the well known
inequality due to Dharmadhikari and Jogdeo (1969) (see also Petrov,
1975, p. 60) it follows that for p�2, E( |Zni |

p)�CpE( |(X ) i&ai |
p)�2 pCp

and a fortiori that each moment of Zn is finite and has a finite upper bound
independent of n. Here Zni and (X ) i denote the i th coordinates of the
vectors Zn and X. Moreover, &8(X� n)&=1, so that all moments of 8(X� n)
are finite. As a consequence, using Eq. (4), each moment of Rn has a finite
upper bound, so that in particular the expectation value of Rn , E(Rn), does
exist, and E(&Rn &2) has a finite upper bound. Let Rni denote the i th coor-
dinate (Rn) i of Rn .

Let A=[u # Rk | &u&a&�=], then Ac=[u # Rk | &u&a&>=]. Note that
for 0<=<&a&, 8 is three times continuously differentiable on A. In the
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Taylor expansion, Eq. (4) for 8(X� n), conditional on the event that X� n # A,
there are numbers 0<%i<1, depending on Zn , such that

Rni=
1
6

1
n3�2 (8i)

(3)
a+%i Zn�- n (Zn , Zn , Zn).

From this it follows that

E(&Rn 1A(X� n)&)�Cn&3�2

for some positive constant C, since for each combination of j, l, m=1, ..., k,

sup
u # A }

�38i

�xj �xl �xm } u }<�

and, according to the Dharmadhikari and Jogdeo inequality, there are
numbers Cjlm>0 such that, for all n,

E( |Znj Znl Znm | )<Cjlm .

On the other hand, for any p�2,

E(1Ac(X� n))�
1

= pn p�2 E(&Zn& p)=O(n&p�2), (5)

because E(&Zn& p) is bounded from above by the Dharmadhikari and
Jogdeo inequality.

As E(&Rn&2) has a finite upper bound,

E(&Rn1Ac(X� n)&)�E(&Rn&2)1�2 P[X� n # Ac]1�2

=O(n&p�4) for any p�2.

We conclude that E(&Rn&)=O(n&3�2), or equivalently Rn=OL1
(n&3�2).

Note that Eq. (5) allows us to handle the remainder term for the Taylor
expansion of any order, as far as we like.

As E(Zn)=0, it is clear that E(8$a(Zn))=0. In order to finish the proof
one has to calculate E((1�2n) 8"a(Zn , Zn)). Note that for x, y # Rk,

8$x( y)=
1

&x&
( y&(8(x)T y) 8(x))

=
1

&x&
(E&8(x) 8(x)T)( y)

=
1

&x&
tan( y), (6)

145ASYMPTOTICS OF SAMPLE MEAN DIRECTION



File: 683J 162806 . By:CV . Date:04:11:96 . Time:13:29 LOP8M. V8.0. Page 01:01
Codes: 2424 Signs: 1067 . Length: 45 pic 0 pts, 190 mm

where E denotes the identity matrix of rank k, and tan( } ) is the orthogonal
projection onto the tangent space T8(x)S

k&1=[v # Rk | 8(x)T v=0]. Note
that 8$x can be expressed in terms of &x& and 8(x). Now for z # Rk,

8"x( y, z)=
1

&x&2 (&y8(x)T z&z8(x)T y

+38(x) 8(x)T y8(x)T z&8(x) yTz).

In particular, remembering that we are interested in 8"a , and noting that
+=8(a), +TZn=ZT

n +, and ZT
n Zn=Tr ZT

n Zn=Tr ZnZT
n , we have

8"a(Zn , Zn)=
1

&a&2 (&2Zn+TZn+3+(+TZn)(+TZn)&+(ZT
n Zn))

=
1

&a&2 (&2Zn ZT
n ++3+(+TZnZT

n +)&Tr(ZnZT
n ) +).

Note that we have a decomposition in an orthogonal vector and a tangent
vector

ZnZT
n +=+(+TZnZT

n +)+[ZnZT
n +&+(+TZnZT

n +)],

because the inner product +T[Zn ZT
n +&+(+TZnZT

n +)]=+TZnZT
n +&

+T+(+TZnZT
n +)=0 as +T+=1. Therefore

8"a(Zn , Zn)=&
1

&a&2 (Tr(ZnZT
n )&(+TZnZT

n +)) +

&
2

&a&2 (Zn ZT
n +&+(+TZnZT

n +)). (7)

As E(ZnZT
n )=73 we obtain E(8"a(Zn , Zn))=2(&&+{) for & and { as given

in the statement of the theorem. K

Corollary 1 immediately follows from the orthogonality of + and {.
Corollary 2 is a consequence of the fact that

&Sn&+&2=(Sn&+)T (Sn&+)

=S T
n Sn++T+&S T

n +&+TSn

=2&2+TSn ,
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as S T
n Sn=+T+=1 and +TSn=S T

n +. In particular, E(&Sn&+&2)=2&
2+TE(Sn). Thus from the theorem, keeping in mind that +T{=0, it follows
that

E(&Sn&+&2)=2&2+T \+&
&
n

+
{
n++O(n&3�2)

=2
+T&

n
+O(n&3�2). K

Let us return to Eq. (4) and recall that in the proof of Theorem 1 it was
shown that Rn=OL1

(n&3�2). Using Eq. (7) we get

Sn=++
1

- n
8$a(Zn)&

1

2n

1

&a&2
(Tr ZnZT

n &+TZnZT
n +) +

&
1
n

1
&a&2 (Zn ZT

n +&++TZnZT
n +)+OL1

(n&3�2). (8)

Note that the order n&1�2 term is a random vector concentrated on the
tangent space T+Sk&1 to Sk&1 at +. The term of order n&1 is decomposed
into two components, namely into a vector proportional to + and a vector
in T+Sk&1. In the next section we will study the limit distribution of the
vector - n(Sn&+). We will show that its limit distribution is determined by
8$a(Zn). That is why one can expect that the limit distribution will be
degenerate on Rk and will be supported by the tangent plane T+Sk&1. The
normal component, determined by +T

- n(Sn&+), has a limit distribution
concentrated in 0. In Section 4 we will consider the asymptotic behavior of
the orthogonal component in more detail. In particular, it will be shown
that n+T (Sn&+) has a limit distribution, determined by the first term of
order n&1 in the above decomposition.

3. ASYMPTOTIC BEHAVIOR OF THE DISTRIBUTION
OF SAMPLE MEAN DIRECTION

This section will be devoted to obtaining the asymptotical distribution of
the random vector - n(Sn&+). Our interest in this problem is twofold.
First, it will be shown that the limit distribution is Gaussian with a
degenerate covariance matrix and is supported by the tangent space
T+Sk&1. Second, we indicate its use for testing the hypothesis H0 that
+=+0 . The critical area of the corresponding test lies in the space T+Sk&1

of dimension (k&1). Note that 73 coincides with the covariance matrix of
Zn and that 73� =8$a73 (8$a)T is the covariance matrix of 8$a(Zn).
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Theorem 2. Suppose a{0 and 73 is nonsingular. For n � �,
- n(Sn&+) converges in distribution to the degenerate normal distribution
N(0, 73� ), with covariance matrix of rank k&1.

Let !=(!1 , ..., !k)T be degenerately normally distributed with mean 0 and
covariance matrix 73� . Then the support of ! belongs to the tangent space
T+Sk&1=[x # Rk | +Tx=0].

Suppose without loss of generality that ak {0. Denote by 73� (k&1) the
upper left submatrix of 73� of dimension k&1 (cf. Anderson, 1966, p. 26)
and +(k&1)=(+1 , ..., +k&1)T. Then 73� (k&1) is nonsingular and !(k&1)=
(!1 , ..., !k&1)T has a nondegenerate normal distribution with zero expecta-
tion vector and covariance matrix 73� (k&1) . The degenerately normally
distributed vector ! can be reconstructed from !(k&1) as

!=\
E

+ } !(k&1),
&

1
+k

(+(k&1))T

where E denotes the identity matrix of rank k&1.
The behavior of the degenerately normal vector ! can be summarized by

the following simple geometric consideration. The support of the distribu-
tion of !=(!1 , ..., !k)T is concentrated in a hyperspace which can be
parametrized by the parameters !(k&1)=(!1 , ..., !k&1)T which are dis-
tributed N(0, 73� (k&1)).

Proof of Theorem 2. From Eq. (8) it follows immediately that

- n(Sn&+)=8$a(Zn)+Gn=
1

&a&
tan(Zn)+Gn ,

where E(&Gn&)=O(n&1�2) so that Gn=O P (n&1�2). From the well known
convergence theorem (Crame� r, 1961, p. 254) the limit distribution of
- n(Sn&+) and that of 8$a(Zn) are the same. Note that because 8$a is a
degenerate matrix there is some peculiarity in applying the multivariate
version of the Central Limit Theorem, where nondegeneracy of the first
derivative matrix seems to be meant formally (see, for example, Rao (1973,
6a.2ii., 6a2.6, 6a.2iii, and 6a2.10). However, the characteristic function of
the vector 8$aZn at the point t converges pointwise to the characteristic
function of the vector Zn at the point (8$a)Tt. This means that
8$a Zn w�D N(0, 8$a 73 8a$

T). The covariance matrix 73� =8$a 73 (8$a)T has rank
k&1 and the normal distribution N(0, 73� ) as a matter of fact is a
degenerate normal distribution (see Anderson, 1966, p. 25 ff) with support
on T+Sk&1. K
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Denote by V=(1�n) �n
i=1 (Xi&X� n)(Xi&X� n)T the sample covariance

matrix, and set V� =8$aV(8$a)T. Let W� be the positive semidefinite sym-
metric square root of V� , so that V� =W� } W� (see Lancaster, 1969,
Theorem 2.14.2). As V � 73 almost surely as n � �, the linear transforma-
tion of Rk determined by V is nonsingular for large n with probability 1,
so that V� and W� may be supposed to have their range equal to the range
of 8$a , that is, equal to T+Sk&1. Let W� + denote the Moore inverse of W�
(see Rao, 1973, 1b.5 (viii)). Then it is known that W� W� +=tan , where
tan =E&++T is the orthogonal projection from Rk onto T+Sk&1. Note
that W� + is symmetric. Moreover, (W� +)2 is the Moore inverse V� + of V� .
For testing the hypothesis H0 : +=+0 the following Corollary to Theorem 2
and Crame� r's convergence theorem is useful,

- n W� +(Xn&+) w�D N(0, tan ),

where N(0, tan ) is the degenerate normal distribution with support on
T+Sk&1 and covariance matrix equal to the Euclidean inner product on
T+Sk&1. As a consequence

n(Sn&+)T V� +(Sn&+) w�D /2
k&1, n � �.

4. ASYMPTOTIC BEHAVIOR OF THE ORTHOGONAL
COMPONENT OF THE n&1 ORDER TERM

Let us recall Eq. (8) and give a simple geometric interpretation. It can be
seen that Sn&+ decomposes into a tangent component Tn consisting of 2
terms, (1�- n) 8$a(Zn), of order n&1�2 and a term T 1

n of order n&1 and an
orthogonal component Nn of order n&1. By multiplying Sn&+ to the left
by +T one gets the length of the orthogonal component Nn :

+T (Sn&+)=&&Nn&=&
1

2n
1

&a&2 (Tr ZnZT
n &+TZnZT

n +)+OL1
(n&3�2).

Note that the minus sign is appropriate since the angle between + and
Sn&+ is obtuse.

Recall that 8$a(Zn)=(1�&a&)(Zn&++TZn) from which it follows that

(8$aZn)T (8$aZn)=&8$a Zn &2=
1

&a&2 (&Zn &2&(+TZn)2)

=
1

&a&2 (Tr ZnZT
n &+TZnZT

n +).
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So we get

Kn=&Zn+T (Sn&+)=&8$aZn&2+OL1
(n&1�2) (9)

and

Theorem 3. Suppose a{0 and 73 is nonsingular. Then the random
variable Kn=&2n+T (Sn&+) asymptotically has the same distribution as a
weighted sum of (k&1)-independent /2

1 -distributed random variables with
weights equal to the nonzero eigenvalues (repeated according to their multi-
plicity) of 73� .

Remark 1. If the nonzero eigenvalues of the matrix 73� are all equal
to *, then

Kn

*
w�D /2

k&1.

As a special case (cf. Watson, 1983, formula (4.2.9)), let G=O(k) be the
group of orthogonal matrices and G+=[g # G | g+=+] be the isotropy
group of +. Suppose that for all g # G+ , X and gX have the same distribu-
tion on Sk&1. Then 73� =*(E&++T) with *=(1�(k&1)) Tr 73� .

Remark 2. If k=2, the nontrivial eigenvalue of 73� is Tr 73� and

Kn

Tr 73�
w�D /2

1 .

5. APPLICATION TO FISHER�VON MISES DISTRIBUTIONS

In this section we will illustrate the previous results with a von Mises dis-
tribution P on the circle of radius 1 and center 0. The density function with
respect to the Lebesgue measure is as follows (see Mardia, 1975, p. 57):

g(x ; +, })=
1

2?I0(})
exp(}+Tx).

Choose a unit vector # such that +T#=0. According to Mardia (1975,
p. 62), the mean is a=A(}) +, where A(})=I1(})�I0(}), therefore the
mean location is +. The variance matrix is given in Mardia (1975, p. 108,
formulas (4.8.1�4.8.3)),

73 = 1
2 \1+:2&2:2

;2&2:;
;2&2:;

1&:2&2;2+ .
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Using Mardia (1975, p. 62, formulas (3.4.43) and (3.4.51)), it follows that
in the case +=(1, 0) we have ;=;2=0 and

73 =\1&
A(})

}
&A(})2+ ++T+

A(})
}

##T.

The generality of the last formula for 73 follows using the action of the
orthogonal group O(2). Note that 8$a=(1�A(}))(E&++T), so that

73� =
1

A(})2

A(})
}

##T=
1

}A(})
##T.

Now we conclude that

- n(Sn&+) w�D N \0,
1

}A(})
##T+ ,

so that we get for example the limit

#T
- n(Sn&+) w�D N \0,

1
}A(})+ .

In applying Theorem 1 we note that the tangential component {=0 and
that

E(Sn)=+&
1
n

1
2

1
&a&2 \1&A(})2&1+

A(})
}

+A(})2+ ++O(n&3�2)

=+&
1
n

1
2

1
}A(})

++O(n&3�2),

E(&Sn&+&2)=
1
n

1
}A(})

+O(n&3�2),

&E(Sn)&2=1&
1
n

1
}A(})

+O(n&3�2).

Theorem 3 yields the following:

Kn=&2+Tn(Sn&+) w�D
1

}A(})
/2

1 .
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