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Evolutionary conserved motifs constrain the RNA structure organization
of picornavirus IRES
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a b s t r a c t

Picornavirus RNAs initiate translation using a 50 end-independent mechanism based on internal
ribosome entry site (IRES) elements. Despite performing similar functions, IRES elements present
in genetically distant RNAs differ in primary sequence, RNA secondary structure and trans-acting
factors requirement. The lack of conserved features amongst IRESs represents obstacles for the
understanding of the internal initiation process. RNA structure is tightly linked to picornavirus IRES
activity, consistent with the conservation of RNA motifs. This study extends the functional relevance
of evolutionary conserved motifs of foot-and-mouth disease virus (FMDV) IRES. SHAPE structural
analysis of mutant IRESs revealed local changes in RNA flexibility indicating the existence of an
interactive structure constrained by lateral bulges that maintain the RNA conformation necessary
for IRES-mediated translation.
� 2013 Federation of European Biochemical Societies. Published by Elsevier B.V. All rights reserved.
1. Introduction

Translation initiation is a key step in gene expression control.
Most eukaryotic mRNAs initiate translation via a 50-dependent
mechanism, which relies on the recognition of the m7GpppN resi-
due (known as cap), located at the 50 end of cellular mRNAs, by
translation initiation factors (eIFs) [1]. In contrast to this manner
to initiate protein synthesis, internal ribosome entry site (IRES) ele-
ments drive translation initiation using a 50-independent mecha-
nism in various RNA viruses. Furthermore, a subset of cellular
mRNAs also can overcome the inhibition of cap-dependent transla-
tion induced by stress conditions (virus infectious, apoptosis, oxi-
dative stress, dysregulated proliferation, amongst others) [2,3].
However, because IRESs differ in nucleotide sequence, RNA second-
ary structure and trans-acting factors requirement [4–6], decipher-
ing the role of evolutionary conserved motifs is critical to
understand internal initiation mechanisms.

Functional and structural analysis of viral IRESs has shown that
RNA structure plays a fundamental role for IRES-dependent trans-
lation initiation [7–11]. Consistent with this, compensatory substi-
tutions tend to conserve RNA structure during RNA virus evolution
[12,13]. Foot-and-mouth disease virus (FMDV) is a member of the
Picornaviridae family characterized by a high genetic variability all
along the genome [14,15], including the IRES region [16]. This fea-
ture provides information concerning the tolerance to accept
nucleotide substitutions compatible with active RNA [12]. The IRES
element of FMDV is located within the long 50 untranslated region
(UTR) (Fig. 1A) upstream of two functional initiator codons [17],
both of which are preserved during evolution. The IRES region is
organized in structural domains, termed 2 to 5 (or H to L) in 50 to
30 direction [18], which are conserved among related viruses
[19]. Domains 2, 4, and 5 determine the interaction with eIF4G,
eIF4B, eIF3, which are required for initiation of translation in
addition to various RNA-binding proteins, also known as IRES-
transacting factors (ITAFs) [20–29]. However, the central domain
(termed domain 3210 nts in length) has been found to interact
with a low number of host factors in comparison to the short do-
main 5 [30]. This feature is compatible with a large proportion of
its bases being hidden within a compact three-dimensional RNA
structure. Importantly, the local RNA structure of domain 3 plays
a critical role during IRES-dependent translation [7,31]. Moreover,
transcripts lacking domain 3 do not promote internal initiation
[18]. Despite all these studies, the precise role of domain 3 in
IRES-dependent translation is unclear. We have proposed that
the basal region of this domain could act as a hub supporting the
apical region and keeping it accessible to the ribosomal machinery
[12]. In this model, disrupting the RNA structure of the basal and
middle region of domain 3 would lead to inactive IRESs.
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Fig. 1. Mutational analysis of stem-loop I of the IRES element. (A) Schematic representation of the FMDV genome. Grey hairpins depict structural elements located at the 50

and 30 ends of the viral RNA. The IRES element and its subdivision in domains are depicted in black; some of the IRES-interacting factors referred to in the text are indicated.
For consistency, numbering of the nts conforming the IRES element (1–462) and domain 3 (85–300) are used as in previous works [16]. (B) Secondary structure of domain 3 of
the FMDV IRES based on RNA probing data [18]. Nucleotide positions are denoted by dots 10 nt apart. The most relevant motifs referred to in the text are indicated,
nucleotides substituted in SL-I are underlined and shaded in grey (C) SL-I nucleotide substitutions (underlined italic letters) present in M1, M2 and M3 mutants are depicted
below the corresponding wild type IRES sequence (nt 135–151). (D) Relative IRES activity, determined as the ratio of luciferase to CAT in BHK-21 cells transfected with
plasmids of the form CAT-IRES-luciferase made relative to the activity obtained with the wt IRES. Values correspond to the mean of three independent assays. Error bars, S.D.
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RNA structure analysis by chemical and enzymatic probing re-
vealed that domain 3 is organized as a cruciform structure [18]
including some non-canonical base pairs in the middle region. Ear-
lier studies have shown that conserved motifs in domain 3 play a
crucial role in IRES-dependent translation not only in FMDV but
also in other type II IRESs found in picornavirus genomes [32–
36]. However, while mutations in the conserved GNRA motif or
the helical region at the base of domain 3 abrogated IRES activity
[32,37], other conserved motifs (such as the C-rich bulge) were tol-
erant – or not – to nucleotide substitutions depending on the par-
ticular substituted nts [31,38]. Thus, the contribution of specific nts
to IRES function depends on the structural motif where these nts
are located.

Deciphering the structural organization of long IRESs is essen-
tial to understanding the mechanism of internal initiation. It is
noteworthy that picornavirus IRESs are longer than other viral IR-
ESs [12,39,40]. Their length and flexibility is well suited to struc-
tural analysis by selective 2 0 -hydroxyl acylation analyzed by
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primer extension (SHAPE), a technique that has the advantage of
allowing the analysis of local RNA flexibility of long RNA molecules
[41] shedding light on the RNA organization of the entire regula-
tory element. SHAPE probing analysis of the FMDV IRES element
confirmed its modular organization in structural domains [9]. Fur-
thermore, RNA probing in conjunction with SHAPE reactivity and
covariation data [16,18] led us to propose a model of RNA structure
for domain 3 that contains internal bulges (Fig. 1B), adopting an
RNA structure partially divergent from the one predicted by con-
ventional RNA folding models. To validate the existence of some
of these structural elements, we sought to investigate the impact
on IRES function of a conserved RNA structural motif encompass-
ing nt 140–150 proposed to fold as an internal bulge held by three
base pairs (stem-loop I, SL-I). Mutational analysis was first carried
out to investigate the biological relevance of SL-I for IRES activity.
Subsequently, SHAPE reactivity analysis revealed the involvement
of SL-I in maintaining the local RNA structure of domain 3. The
structural changes observed in mutants analyzed in this study sup-
ported the existence of an evolutionary conserved RNA structure
within domain 3 that performs an essential function during inter-
nal initiation.

2. Materials and methods

2.1. Constructs

The construct expressing the IRES RNA was previously de-
scribed [42]. For consistency, numbering of the nts conforming
the IRES element (1–462) and domain 3 (85–300) are used as in
previous works [16]. SL-I mutations were generated by overlap-
ping PCR using oligonucleotides NcoIsense (GGCCAATATGGA-
CAACTTC) or pBICsense (CGATGAGTGGCAGGGCGGGGC) for M1 or
M2 IRES mutants, respectively, and the antisense primer carrying
the mutation (M1 antisense – GCTACCTAGCAACAGTGC; M2 anti-
sense – GCTTTGAAGCAACAGTGC). The resulting products were
Fig. 2. Impact of sequence composition of SL-I on SHAPE reactivity. SHAPE reactivity o
position correspond to the mean reactivity of three independent assays. RNAs, treated w
50-end labeled primers. The intensity of each RT-stop band was normalized to the tota
intensity (set to 100%). Then, the background values of the untreated RNA (NMIA�) w
(NMIA+). Nucleotide positions are indicated on the x-axis. The SHAPE reactivity obtaine
used in second PCR with pBIC antisense (GGCCTTTCTTTAT
GTTTTTGGCG), as described [43]. M3 construct was generated by
Quick-change method using oligos M3s (GTTGCTAGGTAGCGCTGC
ATGACGGCCGTG) and M3as (CACGGCCGTCATGCAGCGCTA
CCTAGCAAC).

2.2. IRES activity assays

Relative IRES activity was quantified as the expression of lucif-
erase normalized to that of chloramphenicol acetyltransferase
(CAT) from bicistronic mRNAs as described [44] in transfected
BHK-21 monolayers. Experiments were performed on triplicate
wells and each experiment was repeated at least three times.

2.3. RNA synthesis and SHAPE analysis

Plasmids were linearized to generate monocistronic RNAs car-
rying the full-length IRES using BbuI. Transcription was performed
for 1 h at 37 �C using 1000–3000 U of T7 RNA polymerase in the
presence of 10–15 lg of linearized DNA template, 40 mM Tris–
HCl, 50 mM DTT, 0.5 mM rNTPs, as described [9]. Then, RNA
(0.5 pmol) was treated with N-methylisatoic anhydride (NMIA)
as described [9]. Equal amounts of NMIA-treated and untreated
RNAs (10 ll) were incubated with 0.5 ll of the appropriate anti-
sense 50 end 32P-labeled primer (50CTACGAAGCAACAGTG,
50CCCGGGTGTGGGTACC, 50GGAATGGGATCCTCGAGCTCAGGGTC,
50GGCCTTTCTTTATGTTTTTGGCG, or 50CTACGATCCAACAGTG for
M1 RNA). Primer extension was conducted in a final volume of
15 ll containing reverse transcriptase (RT) buffer (50 mM Tris
HCl pH 8.3, 3 mM MgCl2, 75 mM KCl, 8 mM DTT), and 1 mM of each
dNTP. The mix was heated at 52 �C for 1 min, prior to addition of
100 U of Superscript III RT (Invitrogen) and incubation at 52 �C
for 30 min. cDNA products were fractionated in 6% acrylamide,
7 M urea gels, in parallel to a sequence obtained with the same
primer.
f domain 3 IRES mutants. Values of SHAPE reactivity at each individual nucleotide
ith NMIA or untreated, were subjected to primer extension analysis conducted with
l intensity of the gel lane, made relative to the corresponding full-length product
ere subtracted from the respective RT-stop intensity yielded by the treated RNA

d in three independent assays is depicted using color-coded bars.



Fig. 3. Modification of the secondary structure of SL-I mutant RNAs. (A) SHAPE difference plots of mutants M1 and M2, relative to the wt RNA. Nucleotides with absolute
changes in SHAPE reactivity greater than 50% are depicted in black, while those between 0% and 50% are marked in dark grey. (B) Secondary structure of the apical region of
wild type (WT) RNA. Nucleotides are colored as in Fig. 2 to reflect the SHAPE reactivity. For completeness, accessibility or protection to dimethyl sulfate (DMS) and
ribonucleases T1 or T2 referred to in the text [31] has been added to the WT RNA. Italic underlined letters depict nucleotide substitutions in M1 and M2 mutants. SHAPE
reactivity enhancement or moderate increase is depicted by a black or grey dot-line, respectively. Secondary structure of the apical region of M1 (C) and M2 (D) mutant RNAs
deduced from SHAPE reactivity. Symbols are used as in Fig. 3B.
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For SHAPE data processing, results from three independent as-
says were used to calculate the mean SHAPE reactivity. For this
analysis, the intensity of each RT-stop band was normalized to
the total intensity of the gel lane, made relative to the correspond-
ing full-length product intensity (set to 100%). Then, the back-
ground values of the untreated RNA (NMIA�) were subtracted
from the respective RT-stop intensity yielded by the treated RNA
(NMIA+). To obtain SHAPE differences, the SHAPE reactivity values
obtained in the wild type RNA were subtracted from the reactivity
values obtained with the mutant RNAs.

3. Results and discussion

Previous analysis of FMDV RNA genetic variability readily indi-
cated an extensive degree of sequence heterogeneity across the IRES
element [16]. However, while some regions accumulated a large
number of substitutions, others were intolerant to nucleotide
changes. We reasoned that the invariant regions could have been
subjected to selection pressure to keep their primary sequence
due to their involvement in RNA–protein interactions or in main-
taining the correct three-dimensional RNA structure. In particular,
domain 3 contains three conserved regions encompassing nts
140–150 (the stem-loop I, SL-I), 195–205 (the apical stem-loop),
and 229–243 (the C-rich bulge) (Fig. 1B). The latter is a candidate
to interact with poly(rC)-binding protein 2 (PCBP2) and ErbB3 bind-
ing-protein 1 (Ebp 1, also known as ITAF45 and PA2G4) [30,45,46].
Proteins recognizing other regions of this domain have not been
identified yet. Notwithstanding, the sequence of these three motifs
are conserved in other type II IRESs [46]. These data, aided by the
covariation analysis of the FMDV IRES element [16], led us to focus
our attention on the conserved SL-I as a candidate region contribut-
ing to RNA folding, thus impacting on IRES function.

To determine the biological relevance of SL-I for IRES activity we
generated mutants aimed at modifying the sequence of this region
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(Fig. 1C). The M1 mutant carrying a double substitution U140C141
to AG, designed to disrupt the canonical U:A, C:G base pairs present
in the wild type (WT) IRES, led to a severe loss of IRES activity (5%
relative to the wt IRES) (Fig. 1D). In contrast, a double substitution
on the bulge, G142U143 to AA (mutant M2) reduced IRES activity
to 40%. Interestingly, a compensatory mutation in the stem (mutant
M3) led to restoration of IRES activity (94.74%), demonstrating that
formation of two consecutive base pairs between U140–C141 and
G148–A149 is critical for IRES activity. We conclude that conserva-
tion of SL-I is important for IRES activity.

To establish a direct relation between RNA structure and
activity of the defective M1 and M2 IRES mutants carrying muta-
tions in SL-I we performed structural analysis by SHAPE that al-
lows the study of long RNA molecules [41]. For this, cDNA
products derived from the untreated and NMIA-treated RNAs
were resolved in denaturing acrylamide–urea gels in parallel to
a sequence ladder obtained with the same primer [9]. In all cases,
the mean of three independent assays was used to calculate the
values of SHAPE reactivity. The resulting color-coded profiles
(Fig. 2) revealed large variations of SHAPE reactivity in domain
3 of M1 and M2 mutants with respect to the wild type (wt)
RNA. Specifically, M1 mutant showed enhanced SHAPE reactivity
in nts 140–240. Conversely, the enhancement observed in M2
mutant was concentrated in positions 140–150, 170 and 180.
SHAPE reactivity observed in domains 2, 4 or 5 was slightly mod-
ified, with the exception of nt 60 within domain 2 of M1 mutant,
that was protected (Fig. 2). The reasons for this reactivity change
remain unknown as no complementarity between these regions
of M1 mutant that could explain RNA reorganization was ob-
served. In addition, nts 290–330 were slightly protected in M2
RNA.

To precisely determine the variations in SHAPE reactivity, we
plotted the SHAPE differences of the wt RNA with respect to each
IRES mutant against the nucleotide position (Fig. 3A). M1 mutant
RNA showed an increase in SHAPE reactivity in nts 137–146, as
well as nts 228–230 belonging to the C-rich bulge. In addition,
moderate SHAPE reactivity enhancements were observed around
nts 167 and 180 (the hexaloop and the GNRA motif of domain 3,
Fig. 1B), supporting the notion that distant interactions among
internal bulges and loops of the apical region constrain the RNA
structure of domain 3.

The differences in SHAPE reactivity between M1 and wt RNA led
us to suggest interactions between nts located in two lateral bulges
(SL-I and C-rich) of domain 3. Specifically, nts 137–146 were more
reactive to NMIA (Fig. 3A), indicating that the nts inserted by site
directed mutagenesis were unpaired. Besides, nts 228–230 were
also more reactive, suggesting a potential interaction between
two distant regions of the wt domain 3, which were disrupted in
mutant M1. The results derived from SHAPE differences of the
M2 RNA pointed to local changes in RNA structure, affecting
mainly nts 138–146 (Fig. 3A). Contrary to the increase in SHAPE
reactivity of nts belonging to the C-rich bulge observed in M1
RNA, the M2 mutant had similar levels of SHAPE reactivity to the
wt RNA with the exception of nt 233 (Fig. 3A). Thus, while disrup-
tion of the stem led to a distant effect that reached the adjacent C-
rich bulge, changes in the primary sequence of the SL-I loop in-
duced a local RNA reorganization.

Therefore, SL-I plays a crucial role for IRES activity specifically
requiring the formation of a stem between U140C141 and
G148A149. These results are in agreement with previous chemi-
cal and enzymatic accessibility [31] that revealed a lack of attack
to these nts while nts 229–234 within the C-rich bulge were
accessible to these reagents (Fig. 3B). Interestingly, a feature ob-
served in the IRES mutant M1 studied here is that an increase in
reactivity of nts belonging to SL-I was coupled to an enhance-
ment in reactivity around positions 228–233 (Fig. 3C). This result
suggests a cross talk between the lateral bulges of domain 3.
Although to a lesser extent, this reorganization affected nts lo-
cated in bulges or loops within the most apical region (Fig. 3D),
suggesting that changes in SL-I lead to a loose RNA structure of
domain 3.

Our results reinforce the notion that evolutionary conserved
motifs have preserved the organization of internal bulges within
domain 3 that perform a crucial role in maintaining the correct
RNA conformation of the IRES. Mutational analysis revealed that
changes in IRES activity were accompanied by a structural reor-
ganization. The results of SHAPE reactivity of wild type and mu-
tant IRES RNAs support a direct effect of nts 140–143 in
governing the RNA conformation of the active IRES element.
Thus, domain 3 consists of an RNA structure constrained by dis-
tant interactions, in which two invariant base pairs within SL-I
play a key role in maintaining the correct RNA structure scaffold.
It is worth noting that SL-I as well as the adjacent C-rich bulge
appears to be conserved during field evolution of the highly var-
iable FMDV genome [16] as well as other type II IRES [46]. Taken
together, these results provide further evidence for the crucial
role of RNA structure for IRES activity, and reinforce the idea of
a distribution of functions between the different IRES structural
domains.

Acknowledgments

This work was supported by grant BFU2011-25437 and by an
Institutional grant from Fundación Ramón Areces. We are grateful
to J. Ramajo for technical assistance. L.B. was an Erasmus student
from the University of Surrey (UK).

References

[1] Sonenberg, N. and Hinnebusch, A.G. (2009) Regulation of translation initiation
in eukaryotes: mechanisms and biological targets. Cell 136, 731–745.

[2] Spriggs, K.A., Bushell, M. and Willis, A.E. (2010) Translational regulation of
gene expression during conditions of cell stress. Mol. Cell 40, 228–237.

[3] Martinez-Salas, E., Pacheco, A., Serrano, P. and Fernandez, N. (2008) New
insights into internal ribosome entry site elements relevant for viral gene
expression. J. Gen. Virol. 89, 611–626.

[4] Pacheco, A. and Martinez-Salas, E. (2010) Insights into the biology of IRES
elements through riboproteomic approaches. J. Biomed. Biotechnol. 2010,
458927.

[5] Belsham, G.J. (2009) Divergent picornavirus IRES elements. Virus Res. 139,
183–192.

[6] Lukavsky, P.J. (2009) Structure and function of HCV IRES domains. Virus Res.
139, 166–171.

[7] Fernandez-Miragall, O. and Martinez-Salas, E. (2003) Structural organization
of a viral IRES depends on the integrity of the GNRA motif. RNA 9, 1333–
1344.

[8] Costantino, D.A., Pfingsten, J.S., Rambo, R.P. and Kieft, J.S. (2008) TRNA–mRNA
mimicry drives translation initiation from a viral IRES. Nat. Struct. Mol. Biol.
15, 57–64.

[9] Fernandez, N., Garcia-Sacristan, A., Ramajo, J., Briones, C. and Martinez-Salas,
E. (2011) Structural analysis provides insights into the modular organization
of picornavirus IRES. Virology 409, 251–261.

[10] Lukavsky, P.J., Otto, G.A., Lancaster, A.M., Sarnow, P. and Puglisi, J.D. (2000)
Structures of two RNA domains essential for hepatitis C virus internal
ribosome entry site function. Nat. Struct. Biol. 7, 1105–1110.

[11] Berry, K.E., Waghray, S., Mortimer, S.A., Bai, Y. and Doudna, J.A. (2011) Crystal
structure of the HCV IRES central domain reveals strategy for start-codon
positioning. Structure 19, 1456–1466.

[12] Martinez-Salas, E. (2008) The impact of RNA structure on picornavirus IRES
activity. Trends Microbiol. 16, 230–237.

[13] Nakashima, N. and Uchiumi, T. (2009) Functional analysis of structural motifs
in dicistroviruses. Virus Res. 139, 137–147.

[14] Domingo, E., Escarmis, C., Martinez, M.A., Martinez-Salas, E. and Mateu, M.G.
(1992) Foot-and-mouth disease virus populations are quasispecies. Curr. Top.
Microbiol. Immunol. 176, 33–47.

[15] Carrillo, C., Tulman, E.R., Delhon, G., Lu, Z., Carreno, A., Vagnozzi, A., Kutish, G.F.
and Rock, D.L. (2005) Comparative genomics of foot-and-mouth disease virus.
J. Virol. 79, 6487–6504.

[16] Fernandez, N., Fernandez-Miragall, O., Ramajo, J., Garcia-Sacristan, A., Bellora,
N., Eyras, E., Briones, C. and Martinez-Salas, E. (2011) Structural basis for the
biological relevance of the invariant apical stem in IRES-mediated translation.
Nucleic Acids Res. 39, 8572–8585.



1358 N. Fernández et al. / FEBS Letters 587 (2013) 1353–1358
[17] Lopez de Quinto, S. and Martinez-Salas, E. (1999) Involvement of the
aphthovirus RNA region located between the two functional AUGs in start
codon selection. Virology 255, 324–336.

[18] Fernandez-Miragall, O., Lopez de Quinto, S. and Martinez-Salas, E. (2009)
Relevance of RNA structure for the activity of picornavirus IRES elements.
Virus Res. 139, 172–182.

[19] Niepmann, M. (2009) Internal translation initiation of picornaviruses and
hepatitis C virus. Biochim. Biophys. Acta 1789, 529–541.

[20] Andreev, D.E., Fernandez-Miragall, O., Ramajo, J., Dmitriev, S.E., Terenin, I.M.,
Martinez-Salas, E. and Shatsky, I.N. (2007) Differential factor requirement to
assemble translation initiation complexes at the alternative start codons of
foot-and-mouth disease virus RNA. RNA 13, 1366–1374.

[21] Lopez de Quinto, S., Lafuente, E. and Martinez-Salas, E. (2001) IRES interaction
with translation initiation factors: functional characterization of novel RNA
contacts with eIF3, eIF4B, and eIF4GII. RNA 7, 1213–1226.

[22] Pacheco, A., Lopez de Quinto, S., Ramajo, J., Fernandez, N. and Martinez-Salas,
E. (2009) A novel role for Gemin5 in mRNA translation. Nucleic Acids Res. 37,
582–590.

[23] Luz, N. and Beck, E. (1991) Interaction of a cellular 57-kilodalton protein with
the internal translation initiation site of foot-and-mouth disease virus. J. Virol.
65, 6486–6494.

[24] Meyer, K., Petersen, A., Niepmann, M. and Beck, E. (1995) Interaction of
eukaryotic initiation factor eIF-4B with a picornavirus internal translation
initiation site. J. Virol. 69, 2819–2824.

[25] Stassinopoulos, I.A. and Belsham, G.J. (2001) A novel protein–RNA binding
assay: functional interactions of the foot-and-mouth disease virus internal
ribosome entry site with cellular proteins. RNA 7, 114–122.

[26] Kolupaeva, V.G., Hellen, C.U. and Shatsky, I.N. (1996) Structural analysis of the
interaction of the pyrimidine tract-binding protein with the internal
ribosomal entry site of encephalomyocarditis virus and foot-and-mouth
disease virus RNAs. RNA 2, 1199–1212.

[27] Kolupaeva, V.G., Pestova, T.V., Hellen, C.U. and Shatsky, I.N. (1998) Translation
eukaryotic initiation factor 4G recognizes a specific structural element within
the internal ribosome entry site of encephalomyocarditis virus RNA. J. Biol.
Chem. 273, 18599–18604.

[28] Clark, A.T., Robertson, M.E., Conn, G.L. and Belsham, G.J. (2003) Conserved
nucleotides within the J domain of the encephalomyocarditis virus internal
ribosome entry site are required for activity and for interaction with eIF4G. J.
Virol. 77, 12441–12449.

[29] Piñeiro, D., Fernandez, N., Ramajo, J. and Martinez-Salas, E. (2013) Gemin5
promotes IRES interaction and translation control through its C-terminal
region. Nucleic Acids Res. 41, 1017–1028.

[30] Pacheco, A., Reigadas, S. and Martinez-Salas, E. (2008) Riboproteomic analysis
of polypeptides interacting with the internal ribosome-entry site element of
foot-and-mouth disease viral RNA. Proteomics 8, 4782–4790.

[31] Fernandez-Miragall, O., Ramos, R., Ramajo, J. and Martinez-Salas, E. (2006)
Evidence of reciprocal tertiary interactions between conserved motifs
involved in organizing RNA structure essential for internal initiation of
translation. RNA 12, 223–234.
[32] Lopez de Quinto, S. and Martinez-Salas, E. (1997) Conserved structural motifs
located in distal loops of aphthovirus internal ribosome entry site domain 3
are required for internal initiation of translation. J. Virol. 71, 4171–4175.

[33] Serrano, P., Ramajo, J. and Martinez-Salas, E. (2009) Rescue of internal
initiation of translation by RNA complementation provides evidence for a
distribution of functions between individual IRES domains. Virology 388, 221–
229.

[34] Kuhn, R., Luz, N. and Beck, E. (1990) Functional analysis of the internal
translation initiation site of foot-and-mouth disease virus. J. Virol. 64, 4625–
4631.

[35] Robertson, M.E., Seamons, R.A. and Belsham, G.J. (1999) A selection system for
functional internal ribosome entry site (IRES) elements: analysis of the
requirement for a conserved GNRA tetraloop in the encephalomyocarditis
virus IRES. RNA 5, 1167–1179.

[36] Witherell, G.W., Schultz-Witherell, C.S. and Wimmer, E. (1995) Cis-acting
elements of the encephalomyocarditis virus internal ribosomal entry site.
Virology 214, 660–663.

[37] Martinez-Salas, E., Regalado, M.P. and Domingo, E. (1996) Identification of an
essential region for internal initiation of translation in the aphthovirus
internal ribosome entry site and implications for viral evolution. J. Virol. 70,
992–998.

[38] Martinez-Salas, E., Lopez de Quinto, S., Ramos, R. and Fernandez-Miragall, O.
(2002) IRES elements: features of the RNA structure contributing to their
activity. Biochimie 84, 755–763.

[39] Filbin, M.E. and Kieft, J.S. (2009) Toward a structural understanding of IRES
RNA function. Curr. Opin. Struct. Biol. 19, 267–276.

[40] Lopez-Lastra, M., Ramdohr, P., Letelier, A., Vallejos, M., Vera-Otarola, J. and
Valiente-Echeverria, F. (2010) Translation initiation of viral mRNAs. Rev. Med.
Virol. 20, 177–195.

[41] Wilkinson, K.A., Gorelick, R.J., Vasa, S.M., Guex, N., Rein, A., Mathews, D.H.,
Giddings, M.C. and Weeks, K.M. (2008) High-throughput SHAPE analysis
reveals structures in HIV-1 genomic RNA strongly conserved across distinct
biological states. PLoS Biol. 6, e96.

[42] Ramos, R. and Martinez-Salas, E. (1999) Long-range RNA interactions between
structural domains of the aphthovirus internal ribosome entry site (IRES). RNA
5, 1374–1383.

[43] Lopez de Quinto, S. and Martinez-Salas, E. (2000) Interaction of the eIF4G
initiation factor with the aphthovirus IRES is essential for internal translation
initiation in vivo. RNA 6, 1380–1392.

[44] Lopez de Quinto, S., Saiz, M., de la Morena, D., Sobrino, F. and Martinez-Salas,
E. (2002) IRES-driven translation is stimulated separately by the FMDV 30-NCR
and poly(A) sequences. Nucleic Acids Res. 30, 4398–4405.

[45] Walter, B.L., Nguyen, J.H., Ehrenfeld, E. and Semler, B.L. (1999) Differential
utilization of poly(rC) binding protein 2 in translation directed by picornavirus
IRES elements. RNA 5, 1570–1585.

[46] Yu, Y., Abaeva, I.S., Marintchev, A., Pestova, T.V. and Hellen, C.U. (2011)
Common conformational changes induced in type 2 picornavirus IRESs by
cognate trans-acting factors. Nucleic Acids Res. 39, 4851–4865.


	Evolutionary conserved motifs constrain the RNA structure organization of picornavirus IRES
	1 Introduction
	2 Materials and methods
	2.1 Constructs
	2.2 IRES activity assays
	2.3 RNA synthesis and SHAPE analysis

	3 Results and discussion
	Acknowledgments
	References


