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1. INTRODUCTION

The Morse theory of critical points of a real valued function f defined on a
finite dimensional manifold M without boundary was generalized by Palais
and Smale to the case where M is a Hilbert manifold without boundary (8,
10]. In particular if all critical points are nondegenerate (and therefore
isolated) the well known Morse inequalities between the Betti number R, of M
and the Morse numbers M, were generalized in an appropriate form (see
[8, p. 338, Theorem 7]; for the definition of M, see Eq. (3.10) of the present
paper; see also Remark at the end of Section 3).

On the other hand the Morse theory for real valued functions f defined in
the closure ¥ of a bounded open set ¥ in a finite dimensional vector space E
was generalized to the case where E is a Hilbert space. The case where f
satisfies a ‘“‘regular boundary condition” (stating essentially that at every
point of the boundary V of V the gradient of f is exteriorly directed, see
Assumption 2.4) was treated in [14], and the case of ‘“‘general boundary
conditions” (where f is allowed to have the direction of the interior normal at
a finite number of points of ) was treated in [13]. In either case the statement
of the boundary condition required the existence of a unique exterior unit
normal, and it was this requirement which motivated the assumption that 7
be a Fredholm manifolds. In the case of the regular boundary condition
sufficient conditions for the validity of the Morse relations were given, (see
[14, Theorem 8] where f is supposed to be bounded).

The present paper aims at a synthesis of the investigations mentioned in
the preceding paragraph with those referred to in the first paragraph by
treating the case where the domain of f is the closure ¥ of an open bounded
connected subset V' of a Hilbert-Fredholm-Riemannian manifold M and
where a regular boundary condition is satisfied. {Thus critical points on the
boundary V of ¥ are excluded, and so are corners on V. Such points are
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admitted in the investigations of D. Braess concerning the finite dimensional
case (see [1]).

Section 2 below is mainly concerned with the geometric background.
Under the assumption that the Hilbert manifold M is Fredholm the notion
of a hyper-submanifold N of M is introduced in analogy to the notion of an
(n — 1)-dimensional submanifold of an #-dimensional manifold (Definition
2.2). Tt is supposed that the boundary ¥ of the open subset V of M is a
hyper-submanifold of M and that M is Riemannian. Then a unique exterior
unit normal to ¥ can be defined (Definition 2.3), and the regular boundary
condition (Assumption 2.4) can be stated. This assumption together with the
other basic assumptions of this paper (Assumptions 2.1-2.3) allow us to show
that a “gradient line”” through a point of ¥ does not intersect the boundary 7
if followed in the sense of decreasing f (Theorem 2.2).

Section 3 deals with the Morse theory. First a function f defined on a
topological space S is considered and under rather general assumptions
(Assumption 3.1) critical groups C,(c) are attached to a critical value ¢ of f.
Sufficient conditions for the validity of the Morse relations (3.11) and (3.12)
(which latter are written in terms of the ranks of the groups Cy(c)) are given
(Theorem 3.1 whose proof is essentially the same as the one given by Pitcher
[11] in the finite dimensional case). It is then shown that these suflicient
conditions are satisfied if S = V and if Assumption 3.2 is added to Assump-
tions 2.1-2.4 (Theorem 3.2).

So far only critical levels were considered. The consideration of critical
points begins with Definition 3.4. Critical groups are attached to critical
points and a relation is established between the group C(c) and the groups
of the critical points at level ¢ provided there are only a finite number of
critical points at that level (Theorem 3.3). This finiteness condition is (on
account of Lemma 2.8) certainly satisfied if there are althogether only iso-
lated (not necessarily nondegenerate) critical points. Thus in this case all
groups C,(c) are finitely generated and therefore the Morse relations (3.12)
hold. For the special case that all critical points are non-degenerate see the
Remark following Theorem 3.4.

In Section 4 it is shown that for functions which are bounded from below
the main facts of the Lusternik-Schnirelman theory hold under Assumptions
2.1-2.4. The proof consists in verifying that under these assumptions a set
of conditions is satisfied which were proved to be sufficient by F. Browder
[2, Theorems 2 and 3]. A different proof for assertion (ii) of Theorem 4.1
can be given by generalizing a method employed by Seifert and Threlfall
[16, p. 91] in the case of a finite dimensional manifold. This proof requires
more assumptions on f but it is more constructive in that it constructs k
closed sets covering V if there are % critical points by extending the “cylin-
drical neighborhood” of each critical point. (For the definition of a cylindrical
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neighborhood see [16, Section 9] in the finite dimensional case, and [14,
Section 5] in the Hilbert space case.) Details of this proof will be given in
another paper [15a].

For a short survey of the history of the Lusternik—Schnirelman theory
we refer the reader to [2, pp. 5 and 6].

We conclude this introduction by listing a few notations used in the sequel:
If F is a real valued function with domain S and a areal number then

{f=a} ={xeS|f(x) =a}
fo={xeS|f(x)<a}, and faz{xeS]f(x)ga}.

In general an upper bar denotes closure. The distance of the elements x and y
in a metric space will be denoted by || x, y || while B(x, a) denotes the open
ball with center x and radius a. If b > a the [a, b] denotes the closed interval
with endpoints @ and b while the point set [a, b] — {b} is denoted by [a, b).
The symbol ‘“‘a” between two groups denotes isomorphism. The zero
element of a vectorspace will be denoted by 6.

2. THE GEOMETRICAL BACKGROUND

Let M be a connected C” manifold without boundary modelled on a fixed
Hilbert space E(r is a positive integer). For the definition of such a manifold
as well as for the definition and properties of charts and of an atlas for M
we refer the reader to [7] or [8]. Here we recall that a chart for M at a point
x,€ M is a pair (U, $) where U is an open neighborhood of x, and ¢ is a
bijection of U onto an open subset of E, and that an-atlas 4 for M is a col-
lection of charts such that the neighborhoods U cover M, with the additional
property: if (U, $) and (W, i) are two charts in 4 for which the intersection
U N W is not empty then the map

YpL: (U N W)—>y(UN W) 2.1)

is a Cr isomorphism, i.e., a one to one map onto admitting continuous
(Fréchet) differentials up to and including order 7.

Since 7 > 1 it follows that the differential diip—Y(u, , u) of the map (2.1)
at a point #, € $(U) with “increment” u € E is (as function of ) a (bounded)
linear one to one map of E onto E.

DerINITION 2.1. M is called a Fredholm manifold if there exists an atlas
A for M such that for any two charts (U, 4) and (W, ¢) in 4

., u) = u + C(u), 22)
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where C is completely continuous. (See [4].) Concerning the question when
a given manifold can be “reduced” to a Fredholm manifold we refer the
reader to [4, p. 75] and [3, p. 768]. From the statements made there it follows,
e.g., that every paracompact manifold modelled on a separable Hilbert space
can be so reduced.

Out next goal is to give a definition of a hypersubmanifold of a Fredholm
manifold M. From the definition of a submanifold NV of M as given in {7,
Chapter 11, Section 2], and adopted in the present paper, the following fact
follows directly; if ¥ € N then there exists a chart (U, ¢) for M at y with the
property: there exists a direct decomposition

E =E' + E?, (2.3)

of E into two closed (linear) subspaces, and two sets V'* and V"2 which are open
subsets of E* and E? resp. such that

$U) =V x V3, (2.4)
and
HU N N)=V2CE (2.5)

A chart (W, ¢) for N at y is obtained by setting
W=UNN, ¢$=dly (2.6)

and the charts so obtained form an atlas for N.
We now would like to give the following

DeFINITION 2.2, The submanifold N of the Fredholm manifold M is
said to be hypersubmanifold of M at the point y € N if the space E! in the
decomposition (2.3) is one dimensional. N is called a hypersubmanifold of M
if it is a hypersubmanifold at everyone of its points.

However to make this definition legitimate we obviously have to prove the
following.

Lemma 2.1. Let (W, ) be a chart for N at y as in (2.6), and let (W, ) be
another chart for N at y obtained from a chart (U, ) for M at y for which there
exist a direct decomposition

E=F 1 E2, (2.3)
and sets V' which are open subsets of Bt (i = 1, 2) such that §(0) = V1 x V2

and §(0 N N) = V2C B2 It is asserted: if E' is one dimensional then EV is
onedimensional.
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The proof is based on the following.

Lemma 2.2. If E? is hyperspace in E (i.e., a closed knear subspace of
codimension 1) then the image of E? under a nonsingular linear map E — E of
the form u ++ C(u) with a completely continuous C s also a hyperspace in E.

This lemma was proved in [13, Lemma 3.2].

Proof of Lemma 2.1. We consider maps ¢¢1: (U N 0)—F(U N U),
LYW N W)—>HW N W), and, at a point u, ey(WN W), their
differentials

Lw) = dd¢~Yw ,w),  Uu) = &g~y , ).

Then /() is a linear map of E? onto £?, while L(x) maps E onto E. Now it is
easily verified that Jiy~1 is a restriction of §¢-1 from (U N U), to (W N ).
It is not hard to see (using the definition of a Fréchet differential) that this
fact implies that I(x) is the restriction of L{u) from E to EZ% Therefore
L(E?) = I(E?) = E2. Application of Lemma 2.2 now finishes the proof of
Lemma 2.1.

Later on we will deal with real valued functions defined on the closure ¥V
of an open bounded subset ¥ of M. From now on we will assume that M is a
Fredholm manifold and that the boundary ¥ of V is a hypersubmanifold
of M (cf. Assumption 2.1 below).

The following lemma is a consequence of this assumption.

Lemma 2.3. Let (U, $) be a chart for M at a point y of V with ¢(y) = 6,
and let E* and E? be as in (2.3) with N = V. Then there exist a unit vector
el € E! and a positive number {, of the following property: if 0 < { < {y and if
the sets Bt and B~ are defined by

Bt ={ue B, )| {u, ) >0}, B, ={uec B(6,0)|<u, &> <0}, (2.7)

then (i) the sets $~Y(B+) and $~Y(B,™) are contained in U, and (ii) the poinis of
&~YB.t) are exterior to V while (B, ) C V.

Proof. Assertion (i) follows trivially from the fact that ¢(U) is open. Let
us then prove the first part of assertion (ii) with a positive { << {, where {,
satisfies (i). ¢~4(B(8, {)) is a neighborhood of the boundary point y of ¥ and
therefore contains a point y, exterior to V. Let #, =¢(y,). Then
uyep(U) =V, x V,CE, and if & is one of the two unit vectors which
span E' we have by (2.3) the representation

up =he + e,k =<lu,,d>, eeV?CEL (2.8)
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Here £, 5 0 since otherwise

Yo =7Hug) = ¢ CHHVHCY,

in contradiction to the fact the y, is an exterior point. We now define ¢! by
setting ! == g if £, is positive, and e = —e&l if #, is negative. Then (uge!> > 0.

With ¢! thus defined we will prove that (¢—(x;) is exterior to V for %, in the
set B,* given by (2.7). Indeed u, = (1 — o) 4y + oty € B for 0 Ca <1
since Bt is convex. In particular #, has no point in common with E2. From
this it follows that ¢—(u,) is a continuous curve not intersecting . Since
éYuy) = ¥, is an exterior point so is $~1(x,;). This finishes the proof of the
first part of assertion (ii), and the second part is proved correspondingly.

CoRrOLLARY TO LEMMA 2.3. Every point x, in V has a neighborhood (with
respect to V') which is contractible to x, on V. (This corollary will be used in
Section 4).

Proof. Consider first a point x, =y € V. Then in the notation of the
preceding lemma it follows from that lemma that for { small enough the set
$~Y(By) is a neighborhood of x, with respect to ¥. This neighborhood satisfies
the requirement of the corollary since By is contractible on itself to x, . The
proof is still simpler if x, e V.

We now recall certain facts concerning tangent spaces to M and N. Our
goal is to arrive at a definition of exterior normals at points of V.

Let (U; , ¢,) be the charts at a point of M indexed by an index set I, and let
u; denote points in E. It can be verified that an equality of the form

uy = debyy (g , u5), uy = (%), xe U;n Uy, (2.9)

represents an equivalence relation. If (2.9) holds we say that the triples
(U;,¢;,u) and (Uy, ¢y, ) are equivalent or simply that »; and u, are
equivalent (with respect to the above charts), in symbols: u; ~ u, .

The tangentspace to M at x, denoted by M, , is then defined as the set of
equivalence classes under the relation (2.9). A point ¢ of M, is a collection
{1;};¢; of equivalent points. With a natural definition of addition and multi-
plication by a scalar, M, becomes a linear space.

We recall the definition of the differential of a map F of M into another
manifold M* modelled on a Hilbert space E*. Let (U, ¢) be a chart at x, € M,
and let (U*, ¢*) be a chart at y, = F(x,). Let F,., be the map of ¢(U) on
*(U*) defined by Fy., =¢*Fp~1. Then dF,.,(u,, u) is well defined if
uye$(U) and u € E. If (U, $) is another chart of x, it can be shown that

F 4523 ©) = dF . (4, , w), (2.10)
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if
v =¢*¢Nuy) andif o~u (2.11)
If (U*, §*) is another chart at y, it can be shown that
dFyy(uy , u) ~ dF gey; u). (2.12)

It follows from (2.10) and (2.11) and the definition of a tangent space that
dF4u4(uy , w) induces a linear mapping t* = dF(x,; t), called the differential
of F at x,, of Mm0 into M;'; .

Lemma 2.4 below follows immediately from the above definitions applied
to the map F =¢~1 of ¢(U) onto U C M, from (2.11) and from the non-
singularity of d¢.

LemMa 2.4, u—t =ddWuy, u) is a map of E onto M,,o . Moreover
ddYWuy; u) = dd*—Y(vew) if and only if (2.11) holds.

We now assume that M is a Riemannian manifold. Then for each x € M
the tangent space M, is a Hilbert space with a scalar product <s, ), . If then
(U, $) is a chart at ¥, and u, = ¢(x,) it follows from Lemma 2.4 that

<8, By = <A (ug; 1), A3 0)D, - (2.12)

with #, v uniquely determined by s, £. The right member is a positive definite
symmetric form on E and defines therefore a scalar product {u, 2> ¢ on E
depending on ¢. For ¢ = ¢; we write {(u, v), for {u, v> ¢ if (U;, ¢;)se; is the
family of charts at x, indexed by the set I. Let # = u; , v = v, be the couple
satisfying (2.12) for given s, £. Then by (2.12)

$8 Oy = Uy, v by =<8y, 035 . (2.13)
Let now x, be a point of ¥. Then by (2.5) and Definition 2.2
${UNN)=VECE}

where E# is a hyperspace in E. Thus E = E} 4 E2 for any space E}
spanned by an element ¢! of £ not in E2 We choose ¢ as a unit vector
orthogonal to E2 in the metric given by the scalar product {,); defined in
(2.13). We make the choice of ¢;! unique by the additional requirement that
#7(Let) is exterior to V for small enough positive {. (This choice is possible
by Lemma 2.3.)

DerNiTION 2.3. The element n(x,) = {n;};,; of M, where

n; = dg;7($4(x0); &)

is called the exterior normal to ¥V at x, .
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The following theorem shows that a number of properties intuitively
expected of an exterior normal actually hold for 7(x,).

TreorEM 2.1. (i) M, is spanned by n(x,) and Vw ; (i1) n(x,) is orthogonal
to V”c ; (iil) for positive { small enough ¢35 (Le) is a pomt of M which is exterior
to V while for all real L, dg7"(¢(xy); Le;t) is the point {n(x,) of M., .

For the proof we need the following

Lemma 2.5. Let O be an open subset of E, and let E* be a closed linear sub-
space of E. Let F be a C* map 0—E, and let F? be the restriction of
F to 02 =0 N E2, Finally let u, be an element of 02. Then the restriction to E*
of the linear map E — E given by u — dF (u, , u) is the map E? — E? given by
u — dF¥u, , u).

The proof consists in a routine argument based on the definition of a
differential. We therefore omit it and proceed to the proof of Theorem 2.1.

Proof of Theorem 2.1. (i) Let (U, ¢;);e; be the charts for M at x,
indexed by I. Then a point of M,_is a set of points «; of E which are equi-
valent under the relation

g, = dpp ($(x0); ). (2.14)

If (W}, 4;) is the chart for V at x, defined as in (2.6) (with N = V'), then a
point of 17% is a set of points v; which are equivalent under the equivalence
relation

Ve = Al ((%0); ©5)- (2.15)

We note that the “‘target space” for all ¢, is E, while the target space for
; is E2 since ¢ (W,) =¢{U;,nV)C VECE2

Now g5 is the restriction of F = ¢¢;* from 0 = ¢,(U;) to ¢,(u; N V).
It therefore follows from Lemma 2.5 that dib7 " (u; ©) is the restriction of
dé$7 " (uy; ) from E to E2. Consequently, if (2.15) holds then (2.14) holds
with u; = v;, #, = v;, and we thus see that a point of V,c is also a point of
M, , in other words V, C M, 2y *

Let now t = {#;};e; be an arbitrary point of M, . But u; = de/ + u?
with A real and %2 e E2. Thus ¢ = e} + {u,z} Thxs proves assertion (i)
of our theorem since {e,'} = n(x,) and {¥} e V, 2y -

Proof of (ii). Let ¢ be an arbitrary element of ly/mo . By Lemma 2.4 (with ¢
replaced by ¢; and E by E?) and again by Lemma 2.5 ¢ is of the form

t = dg7(P(x0); v;) = dd7($s(%0); v1), v € Ef
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Therefore by Definition 2.3 and by (2.13)
b 1(%0)>a, = <Ay (bi(%0); 05), b7 (bi(%0); & a,

= v, &1; .

But the scalar product at the right is zero since v; € E;2, and since ¢;! was
chosen to be orthogonal to E;2. This proves assertion (ii).

Finally the two assertions of (iii) follow immediately from Definition 2.3
and the paragraph preceding it.

We now recall the definition of the gradient of a C* map f: M, — R, the
reals. Since R may be identified with its tangent space the differential df (x,; ¢)
is a real valued continuous linear functional on the Hilbert space M, .
Therefore there exists a unique element g(x,) € M, such that

df (%03 1) = {g(%o), L, -

£(xp) is called the gradient of f at x,. (In symbols Vf, or grad f). If f is
Ct+1 (k > 1, then g is C*. (For a proof see [8, p. 313].)

The next lemma deals with relations between the gradient on J and the
gradient on the linear space E.

Levma 2.6, Let (U, ¢) be a chart at xye M. We set

h(u) = fo~Yu), y(u) = grad h(u), ucd(U)C E. (2.16)
Let
1y = b(x), t = dopYuy; u). (2.17)
Then,
At 0> = (gl D, 2.18)
glxg) = dpN(ug; Yug),  ¥(ug) = deb(0; g(%o)) (2.19)
Il g(xo)ll3, = Il ¥()I - (2.20)

Proof of (2.18). Using (2.17), the definitions involved and the chain rule

we see that
(o) wy = dh(ug; 1) = dfp~Hug; 1) = df ($7(uo); d~Y(u0; 1))
= df (x; 1) = <8(%o), D -

Proof of (2.19). The two assertions of (2.19) are equivalent. We prove the
first one. From (2.18), the definition of {,», (given in the paragraph following
(2.12)), and from (2.17) we see that

(%), Dy = {¥(to)s 4y = {dp™(uty; ¥(t)), A~ (ttg; ),
= {dHuyp; (1), 1 29 *

Since this equality holds for all ¢ € M, it implies the first part of (2.19).
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Proof of (2.20). By (2.19) and the definition of {,),

I g(xo)”?ao = {g(%o), & (%))m., = d¢-1(“0§ y(4o), d¢_l(uo; Y(40)) 2,
= {y(to), Y(o)Ds = Il Y(4o)il3 -

Lemma 2.7. Let (U, ¢) be a chart for M. Let A be an open interval and let
x be a C* map A—>HU). For o« in A we adopt the usual definition
%' (o) = dx(o; 1). Moreover let

7(a) = $(x(e))- (2.21)
Using the notations of the preceding lemma we assert:
o If
x'(0) = —g(x(a)), (2.22)
then
7' () = ~—y(n(e))- (2.23)
(i) If
&) = —g(x(@))/li g I, (2.24)
then
7'(0) = —y(m() y |7 (2.25)

Proof. From (2.21) and the chain rule we see that
7'(0) = d(w(a); 1) = dep(x(e); x'(c)). (2.26)
Therefore if (2.22) holds then by (2.19) and (2.21)
—7'() = dp(x(ex); g(x(e) = y($(x(e)) = ¥(n)

which proves (2.23).
If (2.24) holds we see from (2.26), (2.19) and (2.20) that

—'(®) = d(x(e); g/l g [ = S/l ¥ .

We now state our basic assumptions:

Let M be a connected Hilbert Riemannian C* manifold (r == 1) without
boundary, let ¥ be an open bounded subset of M, and f a real valued function
defined on the closure ¥ of V.

AssuMPTION 2.1. M is a Fredholm manifold, and the boundary ¥ of I/
is a hyper-submanifold of M (see Definition 2.2).
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AssUMPTION 2.2. (i) fis not constant in any ball; (ii) the gradient g of f
exists and is locally Lipschitz; (iii) if W is a subset of V" on which | f]| is
bounded then || g || is bounded on W.

AssuMPTION 2.3. The Palais—Smale condition is satisfied, i.e., if f is
bounded on a subset .S of ¥ while || g| is not bounded away from zero on S
then g vanishes in some point of closure S of S.

ASSUMPTION 2.4,
(g(x), n(x)>, >0  foreveryxe V. (2.27)
Here n(x) denotes the exterior unit normal to 7 at the point xe V (see

Definition 2.3).

THEOREM 2.2. Let f be a real valued C! function with domain V, and let
Assumptions 2.1-2.4 be satisfied. Let xo€ V, and let x(c) be the gradient line
through x,, i.e., the solution of the differential equation

o' () = —g(x()) (2.28)
satisfying the initial condition
2(0) = x,. (2.29)
Then x(a) € V for all nonnegative o for which () is defined.
Proof. 1If the assertion were not true there would be an o, > 0 such that
o =xm)eV, eV for0<a<o. (2.30)

Let now (U, ¢) be a chart for M at x, (of the type described in (2.3) to (2.6)),
let 7(a) be defined by (2.21), and let

Uy = $(%1) = (x(o)) = (o). (2.31)

Let ¢! be defined as in the paragraph preceding Definition 2.3 (with ¢; = ¢)
and let y be as in Lemma 2.6. We then see from (2.17), (2.18) (with u = ¢%),
from the Definition 2.3 of the exterior normal, and from (2.27) that

), &)y = {g(%y), n(x1)>m1 >0,

and, taking (2.28) and Lemma 2.7 into account, that

{'(oy), €4 < 0. (2.32)
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We will now show that, in contradiction to (2.32),

(o), €))s = 0. (2.33)

and thus finish the proof of the theorem. We see from Lemma 2.3 that for
positive and small enough oy — o,

n(a) = ——-Ae, —I— 62, )\ = A((x) > 0, 62 c E2' (234)

But it follows from (2.30) and (2.31) that (e ) € E2, and therefore from (2.34)
that n(a) — n(ay) = —Ae¢’ + &% with A > 0, and with é2 e E% This proves
that

(@) — o))/ (@ — ), €5 ¢ >0, (2.35)

since ¢’ is orthogonal to E2 (with respect to the scalar product {,>,) and since
o — oy is negative. (2.35) obviously implies (2.33).

DErrINITION 2.4. A point y, € V is stationary for f if g(x,) = 0. A number ¢
is called a stationary value {or level) for fif f(y) = c for at least one stationary
point y. The set of stationary points will be denoted by I'" and the set of
stationary levels by 4.

LemmMA 2.8. Let the set W be as in Assumption 2.2(iii) and assume it to be
open. Then the set I' N W is compact.

Since f is bounded on I' N W the proof given for assertion (i) of Lemma
2.3 in [14] applies.

LemMa 2.9. The set A is closed.
Proof. Letc;, c,,... be a convergent sequence of stationary levels, and let
Co = 1,‘_{2 . (2.36)
We have to prove that
¢y € A. (2.37)

Let v, be a stationary point at level ¢; . Then on account of (2.36), f is bounded
on the set {y,}. Since y; is an element of the open set V' we can choose positive
; such that | f(x) — f(y,)l < |1 for xe B(y;, {;) CV. Then obviously f
is bounded on the open set W = {J; B(y; , {;). Consequently, by Lemma 2.8,
there exists a subsequence {y, } of the sequence {y;} which converges to a
point y, € I'. Then we see from (2.36) that

flve) = kg_}f(ym) = 111}2 Cn;, =©Cp

This proves (2.37).
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Lemma 2.10. If the closed interval [a, b] contains no critical levels then
there exists a positive m such that

lg(x)]| >m  for x efa, b]. (2.38)

Proof. The lemma is an immediate consequence of Assumption 2.3
since f is bounded in the closed set f—a, 8].

Lemma 2.11. Let a, b and m be as in the preceding lemma. Let x(a, xy) be
the gradient line through x,, (as defined in the Theorem 2.2). Then

x(a, %) Ef, if w€fy and o= T =(b— a/m?).

Proof. If this were not true then f(7, x,) > a for some x, € f~[a, b], and
for such x, we would see from (2.38) that

a<f)+ [ D=1+ [ (o) Gy
T
— f(wo) — f lg)|E dt < b — m?T = a.

LemMmA 2.12. Let I'(c) denote the set of stationary points at level ¢ (which
may be the empty set). Let W be an open netghborhood of I'(c). Then there exist
real numbers a, b and T with a << ¢ << b and T > 0 such that

#(T,x)efe W forxgef,. (2.39)

Remark. We note that the existence of deformations having the property
asserted for x(a, %) in the lemma was proved by Palais [9a] and Browder [2]
for Banach manifolds (without boundary) by the use of ‘“‘pseudo gradients.”
The proof below is given for completeness sake. It is divided into four steps.

Step 1. Itis asserted that there exist a, , b, with @, < ¢ < b, such that
I =Injf"Ya,,b)CW. (2.40)

We will show that there exists a d > 0 such that (2.40) is true with g, = ¢ — 4,
by=c+dif0<d<d

If this were not true there would exist sequence of positive numbers d,
converging to zero, and a sequencc of points y, with the properties

vefia—d,,c+ dj, el — W. (2.41)

Since the sequence f(y,) is bounded we may by Lemma 2.8 assume that the
¥, converge. The limit y, is a stationary point which, by (2.41), lies on the
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level ¢. Thus y, € I'(¢c) C W, and therefore y, € W form a certain v on. This
contradicts the second part of (2.41).

Step 2. The set I'® defined by (2.40) is compact, and the set V' — W
is closed. Therefore these two sets which by (2.40) are disjoint have a
positive distance 5d, . Let now y, € I'% and let {(y,) be a number such that

0 < C(YO) < do ’ (2‘42)
[f®) —flyo)l <1 forxe By, {ro)), (2.43)
g(x) satisfies a Lipschitz condition in B(y, , 3{(y,))- (2.44)

(See Assumption 2.2).
Since I'? is compact there exist a finite number of points y° (¢ = 1, 2,..., 5)
in I'® such that the balls B(y?, {(y°)) cover I"®. We set

wi=U) B, jlly7)  forj=1,2,3. (2.45)

Then
PCWrCWCWsCW. (2.46)

We claim: there exists a positive 7" such that
x(oa, %) e W forO0<a << T and xye W2 (2.47)

For the proof we note first that as a consequence of (2.44) g is bounded in
W3, say
Hex) <M  forxye WS (2.48)

Let now x, € W2 Then
o — oIl < 2»°) (2.49)
for at least one o. For such o we have obviously
B(x,, {(y°)) C B(y°, 3L(y*)) CWEC W, (2.50)

It follows from this inclusion in conjunction with (2.44) that g satisfies a
Lipschitz condition in B(x,, {(y?)). Moreover (2.48) is satisfied for
x € B(xg, {(y°)). Therefore the local existence theorem for differential equa-
tions allows us to conclude that x(«, x,) is defined at least for | « | < {(y°)/M,
and that for such «, x(a, x4) € B(x, , {(y°)) C W2 (cf. 2.50)). This shows that
the assertion (2.47) is satisfied with

T= min {(#). (2.51)
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Step 3. We assert the existence of a positive m’ such that
lg(x)| >m,  forxeSt=f"a,,b] — W (2.52)

Indeed f is bounded on the closed set S™. Therefore if the assertion were not
true, Assumption 2.3, (2.40) and the inclusion (2.46) would imply the exist-
ence of a point y€ .8’ N I'CI°C W2 This contradicts the fact that by
definition the intersection S N W2 is empty.

Step 4. Let T and m; be as in (2.51) and (2.52) resp. Let q,, b, be as in
Step 1. Finally let, a, b be a couple of numbers satisfying

a <a<b<b, (2.53)
and
b—a< Tmd (2.54)

With this choice of @, b, and T we will show that (2.39) is satisfied. To this
end we write f; as the union of three sets:

fo=FaV{fMa,lln W} U{fa,b] NV ~ W3} (2.55)

If x, € f, then (2.39) is obviously satisfied since f(x(c, x,)) is non increasing
in a. If x4 is a point in the second summand at the right of (2.55) then, by
(2.53), %y € fay, by] N W2, and our assertion (2.39) is satisfied by (2.47).

Finally let x, be an element of the third summand in (2.55). Suppose first
that

(o, x) CV W2  for0<a<< T (2.56)

We then show that (2.39) holds by proving that
F(T, %)) < a (2.57)

If this inequality were not true we could conclude from the monotonicity of
f(x(a, x,) and from (2.53) that

by = b = f(xy) = fxlo, x9)) = f((T, %)) >a>ay, forO0<<a<<T.

Thus, by (2.56), x(a, %)) € S* (cf. (2.52), and (2.52) holds with x = x(«, x,)
for these «. Then

@ <) =10 + | L ar
= f(%0) — f:ng [dr <b—m?T <a (cf. (2.54)).

This contradiction proves (2.39) if (2.56) is satisfied.
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Suppose now that (2.56) is not true. Then since by assumption
%(0, x5) = %, C V — W2,

there must be an o; such that

¢W2 f0r0<a<0t1,

0<0C1<T) x(a’xO) EW2 fO!.‘Otxal'

(2.58)

Let now x; == x(a, , %) and let ¥(8) = %(B, x,) be the gradient line defined by
dx/dB = —g(%(B)), %(0, x,) = x, . It then follows from (2.47) with x(«, x4)
replaced by #(B, %) that (8, ;) € W for 0 <{ B < T. Therefore x(a, xp) € W
for oy <a<Lay+ T since x(a; + B, %) = %(B, x,). This proves that
#(T, xy) € Wsincea, << T

LemMa 2.13.  If the half open interval [a, c) contains no stationary values
then f, is a deformation retract of f, .

Proof. For xgef, — f, let x(a, x5) be the solution of

% = — (flw) — ) e@l gl (0, %) =z,
and let
8, xg) | = Mo %), forsgefo—fu, S

= %, forxg e f,

It is then easily seen that 8(«, x,) retracts f, onto f, (see, e.g., [14, Lemma 3.4)).
We conclude this section by proving the following theorem needed in
Section 4.

THEOREM 2.3. V is an ANR, i.e. an absolute neighborhood retract in the
class of metrizable spaces.

The proof is based on the following lemma.

LEmMMA 2.14. Let Y be an ANR. Let Y, and Y, be closed subspaces of Y
whose union is Y and whose intersection is an ANR. Then Y, and Y, are ANR’s.

This lemma is proved in [6, Proposition 9.1, p. 47 in conjunction with
Theorems 3.1, p. 83 and 3.2, p. 84]).

To apply this lemma to the proof of Theorem 2.4 we recall that every
metric Banach manifold is an ANR (see [9, Corollary, p. 3]). Thus ¥ =
M and V are ANR. Setting ¥, = V, Y, = M — V we see that the lemma
implies the theorem. '

409/50[1-7
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3. THE Morse THEORY
Let f be a real valued continuous function defined on a topological space S.

DrrFiNiTION 3.1. A real number c is called a critical value (or level) for f
if for no two numbers a, b with @ < ¢ < b the set f; can be deformed into the
set f, . The set of critical values will be denoted by 4, .

AssumpTION 3.1. () A finite interval contains at most a finite number
of cirtical values. (8) If the half open interval [a, b) contains no critical values
then f, can be deformed into £, .

For reference sake we state the following obvious consequence of Assump-
tion 3.1 as a lemma;

LemMa 3.1, If the closed interval [a, b] contains no critical values then f,
can be deformed into [, .

If BD A is a couple of subsets of S, and ¢ a nonnegative integer then
H (B, A) will denote the gth singular homology group of the couple (B, A4).
The coefficient group will always be supported to be a principal ideal ring.

LemMa 3.2. If [a, b] contains no critical values then

H{f, J)=0 forallg. (3.1)

This is an immediate consequence of Lemma 3.1 and well known properties
of the homology groups.

Lemma 3.3, If for all intervals [a, b] containing the real number r the homo-
logy group H(f, , f.) is different from zero for some q then r is a critical value.

Proof. If r is not critical then by Assumption 3.1(«) there exists an inter-
val [a, b] containing r and no critical values. For such interval (3.1) holds by
Lemma 3.2 for all ¢. This obviously proves the lemma.

LemmMA 3.4. Let ¢ be a critical value. Then H( f, , f,) does not change as
long as c is the only critical value in [a, b].
Proof. We have to show that

Hy(fo» fa) = HJs o), (-2)

if the intervals [a, b] and [, B] both satisfy the condition of the lemma. It is
easy to see that we may assume b > 8 > ¢ > a > a. We will first show that

Ha(fb ’fa) i Hq(fb ’fa)- (3-3)
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Now the interval [a, o] contains no critical value. This fact implies by Lemma
3.2 that

Ha(fa ’fa) = 0. (34)

It also implies that f, is empty if f, is empty since, by Lemma 3.1, f, can be
deformed into f, . Therefore in this special case the assertion (3.3) reduces to
H(f,) ~ H{f;). But if f, is not empty then it is well known that (3.4)
implies (3.3) (see [5, 1.8.1]).

This proves (3.3), and the isomorphism

Ha(fb ’fa) A Ha(fﬂ ’fa)’ (35)

is proved in a similar way. But (3.3) and (3.5) imply (3.2).
Lemma 3.4 allows us to make the following definition.

DermvaTion 3.2. The gth critical group C,(c) at the critical level ¢ of f
is defined by Cy(c) = H,( [, ,f,) where a << ¢ < b and where ¢ is the only
critical level in [a, b].

Since the coefficient group G of the homology theory is supposed to be a
principal ideal ring. The classical decomposition theorems hold if G is
finitely generated. If G is not necessarily finitely generated we have the
following definition.

DreriniTioN 3.3, Let T be the torsion submodule of G. Then the rank
{(G) of G is defined as follows: if the quotient module G/T is not finitely
generated then {(g) = oo; if G/T is finitely generated then {(G) = {(G/T),
i.e., the number of elements in a base of the (free) group G/T.

Lemma 3.5. If {(G) is finite then we have the direct decomposition
G=F-+T, (3.6)
where T is as above and where F is a free module. Moreover
UG) = YF). 3-7)

The proof follows easily from a well-known lemma (see, e.g., [5, p. 133,
Lemma 6.3]).

We now introduce notations which will be used in Theorem 3.1 below.
Let a << b be two number which are not critical values and let ¢; << ¢, << =+ €y
be the critical values in [a, 5]. Moreover let a,, 4, ..., ay be numbers such
that

a<Lay<ep <y < ayy <6 <a,<'ayg<cy<ay<b (3.8)
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In addition we set

A:fa7 B:fb’ Aa =faa1

3.9
Co = Cofea) = Hf Ay , Aoy, (39)

N

Mq"‘ = C(an), Mq = Z Maa’

a=1

Rya, b) =[(H/B, 4)), «=12,.,N. (3.10)
THEOREM 3.1. For the validity of the inequality

Ma(a» b) = Rq(ﬂ, b), (311)

each of the following three conditions is sufficient

(i) UHLA,, 4y) < 0, a =1,2,.,N.
(ii) the critical groups C* are finitely generated,
(iii) the coefficient group G is a field.
Moreover if (i') is condition (i) with the additional proviso that
(iv) Mp={C <, a=1.,N

then each of the conditions (i) and (ii) is sufficient for the validity of the inequality

> (—1)4 Mfa,B) > ¥, (—1* R(a, ) (3.12)

B=0

Remark. If f is bounded then for small enough a and large enough b,
Ry(a, b) is the gth Betti number of S and the “Morse numbers” M, are
independent of a and . Thus inequalities (3.11) and (3.12) are in this case
the classical Morse inequalities.

Proof of Theorem 3.1. If one of the numbers M,..., M~ is infinite then
M, = o by (3.10), and (3.11) is trivially satisfied. Therefore for the proof
of this inequality we may make the additional assumption (IV), and thus
replace (i) by (i'). But under the latter condition the proof of (3.11) and (3.12)
inequalities is the same as the one given by Pitcher for the finite dimensional
case ([11, Section 11]) and is therefore omitted.

To give the proof under condition (ii) it will now be sufficient to prove
that this condition implies (i'). Since (iv) is obviously implied by (ii) the
proof will be finished if we verify that (ii) implies (i) by showing that the
groups H (4, , A,) are finitely generated. This is done by induction in
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a: Hy(4, , A,) is certainly finitely generated since this group is C,!. We assume
that Hy(A4,_,, A,) is finitely generated and consider the part

H( Ao, 4g) > Hf Ay, Ao) > Hf Ay, Aumy),

of the homology sequence for the triple 4,C 4, _; CA4, . Here the two extreme
groups are finitely generated, the one at the left by induction assumption,
the one at the right because it is the critical group C.* From this and the
exactness of the sequence it follows that the kernel K of the map j* as
well as the group H(A4,, 4,)/K are finitely generated. This obviously
implies that H (4, , 4,) is finitely generated. This completes the proof of
the theorem since (iii) and (iv) together imply (ii).
We now return to the situation of Section 2 by setting S = V.

TaeoreM 3.2. Theorem 3.1 is valid if S =V and if Assumption 3.1 is
replaced by Assumptions 2.1-2.4 and the additional

AssuMPTOIN 3.2. A finite interval contains at most a finite number of
stationary values (cf. Definition 2.4).

In fact Assumptions 2.1-2.4 and 3.2 imply Assumption 3.1 as the following
two lemma show.

LemMMA 3.6. A critical value is a stationary value, i.e., A, C /.

Proof. We show: if ¢ is not a stationary value then ¢ is not critical. Indeed
by Assumption 3.2 there correspond to a nonstationary ¢ two numbers a, b
with @ < ¢ <C b such that [q, b] contains no stationary values. By Lemma 2.11
the set f, can be deformed into the set f, but this implies that ¢ is not critical
(cf. Definition 3.1).

LemMma 3.7. The set A, of critical values satisfies Assumption 3.1.

Proof. Assumption 3.2 together with Lemma 3.6 show that the («) part of
Assumption 3.1 is satisfied. The (8) part follows immediately from Lemma
2.13 if the interval [a, ) which by assumption is free of critical levels is also
free of stationary levels. Suppose now [a, b) contains stationary values. By
Assumption 3.2 there are only a finite number, say s; > 5, > =" >s,.
Since the s; are not critical values there exist a;, b; such that @, <<s; < b,
and such that f,,i can be deformed into f,,i . Obviously we can choose the a,
and b; in such a way that in addition

b>b.>s5,>a,>b_y>5 ,>a_,> " >b >s5 >a >a
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(with an obvious modification if a is a stationary value). Now there are no
stationary values in [b, , b). Therefore f, can be deformed into f, (again by
Lemma 2.13). But fb, can be deformed into far . Going on this way we obtain
deformations whose product deforms f, into f, .

LemMA 3.8. Cyfc) ~ Hfy,[.) tf c is the only critical value in [c, b].

This is an immediate consequence of the preceding lemma and Definition
3.2 together with the deformation invariance of the homology groups.

Remark. In Theorems 3.1 and 3.2 only critical levels are considered. But
if we were to define critical groups C,(c) (in analogy to Definition 3.2) for
stationary but not critical levels ¢ then it is easily seen from Definition 3.1
that these C,(c) are zero groups. Therefore M(c) = {(Cyc)) = 0. Thus
there would be no change in the inequalities (3.11) and (3.12) if all stationary
levels were taken into account, i.e., if A, is replaced by 4.

We now consider critical posns.

DerFInNITION 3.4, The point y, € V is called a critical point of f is for no
neighborhood W of y, the set f, N W U {yo}, can be deformed into the set
fo N W where ¢, = f(y,). The critical point y, is called isolated if there exists
a neighborhood of y, containing no other critical point.

LemmMa 3.9. If y, is critical then vy, is stationary.

Proof. Suppose vy, is not stationary and let ¢, = f(y,). Then g(y,) 5= 6.
Therefore there exists a neighborhood W of y, in which || g(#)|| is bounded
from below by m = || g(y,)l//2. On account of this fact it is easy to construct a
deformation deforming f, N W U {y,} into f, N W by using the gradientline
through y, (cf. (2.22)).

Lemma 3.10. Let W and W, be open neighborhoods of the isolated critical
point v, . Suppose that W and W, contain no other critical point. Then, with

Co :f(YO)r
H(fo, 0 W1V {ye}s foy 0 W) & H(foy 0 WU {5}, fo, O W).

Proof. We may assume that WD W, (otherwise consider W; N W). Then
the lemma follows by excising the set U = (W — W;) N f,, from the couple
at the right member.

This lemma allows us to state the following.

DerFiniTioN 3.5. The gth critical group C,(y,) of the isolated critical
point y, is defined by

Colvo) = Ho(foy O W {yohs fo, N W),
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where W is an open neighborhood of y, containing no other critical point and

where ¢, = f(y,)-
A remark analogous to the one following Lemma 3.8 can be made con-

cerning the definition made concerning the definition of groups attached to an
isolated stationary but not critical point.

TueoreM 3.3. Let the assumptions of Theorem 3.2 be satisfied. Suppose that
¢ is a critical level at which there are only a finite number of critical points, say
Yi» Yo seer Vo Let b > ¢ be such that the interval (c, b] contains no critical values.
Then

ClO) ~ HolFerf)~ Y. Colrd, (.13

where X denotes the direct sum.

Tor the proof we need Lemmas 3.11 and 3.12.

LemmMa 3.11. Let the assumptions of Theorem 3.3 be satisfied. Let x(c, x,)

satisfy

e

(3.14)
x(0, x4) = x4 , xg € f (e, B].

Then
) L& (5 —o),
(1) ¢ <flx(o,x) <b for 0 << 1,

(i) lim f(x(, ) = ¢,

(iv) lirlrl x(o, Xo) exists.

For assertions (i)—(ii1) the assumption that the critical set at level ¢ is finite is not
necessary.

Proof. The elementary proof of assertions (i)—(iii) may be found in [12,
Lemma 5.3]. We turn to the proof of (iv) which is an modification suited to
the present situation of the proof given in [12, Theorem 5.1)].

Let {(«) be the distance of the point x(x, x,) to the critical set I'(c) at level ¢,
and let

[ = inf (o).

0<a<l

We distinguish two cases.
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Case I. { > 0. In this case there exists a positive constant m such that
g >m forxeS ={x =0, x) | 0 < a <1} (3.15)

Indeed otherwise we would from Assumption 2.3 and the boundedness of f
on S (quaranteed by (ii)) conclude the existence of a stationary point v,
in the closure of S. There would then be a sequence «, , o ,... such that

Ll_{g x, =7y, if x = x(a,, x). (3.16)

Now because of our assumption { > 0 the point y, cannot belong to I'(c).
Thus y, € I — I'(c). But this is also impossible. For by Assumption 3.2 there
exists a d > 0 such that

I —T()Cfg ULf b+ db. (3.17)

But it follows from (3.16) and assertion (ii) above that ¢ < f(y,) < b.
Thus the existence of an m satisfying (3.15) is established. From this in
conjunction with (3.14) we see that for 0 <o’ <a” <1

(e’ 50) — 3(e, o)l = [ " da| <1 fa) — )l (& — )fm
<O —c)(" —a)m.
By Cauchy’s principle this implies the validity of assertion (iv).
Case II. { =0. Then there exists a convergent sequence {o;} with

0o <1 and limo; = oy < 1

-0

such that the sequence x(x; , x,) converges to one of the points y; , ¥g ,--., ¥ 5
say to y;:
lim (o, , ) =97 . (3.18)
d-d

We must have
oy = lgg o; = 1. (3.19)
For otherwise 0 < oy << 1, and by assertion (ii) above,

im f(%(o , %)) = f (%(org » %) > c.

But by (3.18) this limit equals f(y;) =c.
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Thus (3.19) is true, and we may assume that the «; are monotone increasing.
We now prove assertion (iv) by showing that

lirlrl x(oe, ) =y . (3.20)

To do this we first exhibit a positive §, of the following property:
if 0 << ¢ < {, then there exists a positive constant m = m({; , {;) such that

gl >m  forxe By, L) — Blyis &)- (3.21)

We choose for {, a positive number satisfying

t< min Jyi—nl2  and 1S~ o) < min(d/2,b— o)
for x € B(yy , {;) where d is as in (3.17). Since then ¢ — d/2 < f(x) < b for
x € B(yy , {y)itis (cf. (3.17)) easily verified that the closure of the set appearing
in (3.21) contains no point of I" = I'(c) U (I' — I'(c)). The existence of an m
of the asserted property follows then from Assumption 2.3.

To prove the assertion (3.20) we now make the assumption that it is false.
Then there exists a positive 8 and a monotone increasing sequence {o;'} such
that

i x(aj’! xo), v1ll =8 (3.22)
and
Jlirg o =1, (3.23)

Let now B be a positive number such that g(x) is Lipschitz in B(y, , 58)
(cf. Assumption 2.2) and such that

0 << 58 < min(8, &). (3.24)
Then (3.21) is satisfied if we choose
{y =8 (3.25)
Now by (3.18) there exists an integer n, such that
x(otn , %) € By, , 8)  form =mny. (3.26)

On the other hand, by (3.23), (3.22) and (3.24) there corresponds to each
7 > ny an integer n' == n'(n) such that

Uy < Ay <oty < 1 (3.27)
and
H x(a;r ) xO): "1 “ = Sﬂ (328)
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The proof of (3.20) will be finished by showing that for some #’ = n'(n)
with #n > n,
#(or 5 %o) € By1 , 4B), (3.29)

in contradiction to (3.28). To this end we note first that the relations (3.26)-
(3.28) imply the existence of an «,* for which

0 <oy <o <oF <oy <1 (3.30)
and
(o *, %) € Bly1 , 3F) (3-31)
where B denotes the boundary of B. Then by (3.30) and (3.19)

lim a * = 1. (3.32)

71—

We now consider the ball B,, = B(x(c,*, %), B). Obviously
B, C B(y1, 58) = B(y1, B)-

It therefore follows from our first assumptions on 8 and from (3.21) that the
right member of (3.14) is Lipschitz in B, and there bounded by a constant
independent of #n. If M is such a constant it follows from the definition of
%(a, x,) as solution of the differential equation (3.14) that

| %, %), #(ot™, )| <M | & — a* |, (3.33)
if
|a — o, * | < B/M. (3.34)

We now choose a fixed # > n, such that 0 << 1 — a,* << /M. This choice
is possible by (3.32) and (3.30). It then follows from (3.30) that (3.34), and
therefore (3.33), is satisfied with « =aj, . Thus (o, , x,) € B, which
obviously implies (3.29).

LeMMA 3.12.  Under the assumptions of Lemma 3.11 the set f, is a deforma-
tion retract of f .

Proof. Let x{a, x,) be as in Lemma 3.11 and let

Mo ), i oz, i mefo—fi, O<a<l,

8(xy , o) = ligl_x(rx, %), if  xpefo—fi, a=1,
X4 5 if  xef,, 0<ax .

8(x, , @) obviously retracts f, onto f,, (for the continuity of &(x,, «) cf. the
appendix in [14]).
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We now turn to the proof of Theorem 3.3. From Lemma 3.12 and Defini-
tion 3.2 we see that Co(c) &~ H,(f,,f,) if a is such that ¢ is the only critical
level in [a, 4]. From this the first part of (3.13) follows since f, can be deformed
into f, (cf. Lemma 3.7).

Now the set f, can be deformed into the set f, U I'(c) by the deformation
given by the solution of (2.22). Therefore

Cole) ~ Hyfe » fo) ~ H(fe Y T'(€), fo)- (3.35)

For i =1, 2,..., 7 let now B, be a ball with center y, in whose closure vy, is
the only critical point, (for the proof of the existence of such a ball cf. the
argument for the existence of {, in the paragraph following (3.21)). If we let
W = |J; B; and excise the set f, U I'(c) — W from the couple at the right
of (3.35) we see from (3.35) and the excision theorem [5, VIII, 9.1] that

Cloy~ Hf(fen WU I{e), f,nW).

But the group at the right is isomorphic to the direct sum of the groups
H(f.nB;Uy,,f, N B,) as is seen from the addition theorem {5, I, 13.2]
and the definition of W. By Definition 3.4 this proves the second part of
assertion (3.13).

We now turn to a discussion of the Morse inequalities (3.12) in the case
that all critical points are isolated.

TreOREM 3.4.  Using the notations introduced in the paragraph immediately
preceding Theorem 3.1 we suppose that the critical set I'(c,) at level c, consists of a
[finite number of points v} (i =1, 2,...,7,, o« = 1, 2,..., N). Let m} denote the
rank of C(y.’) (see Definition (3.5)). We suppose moreover that the groups
Cy(vst) are finitely generated. Then the Morse inequalities (3.12) hold with

r

R

M:

4

Mz

mi.
1

Il
-

It

Proof. The theorem is an immediate consequence of Theorems 3.2 and
3.3.

Remark. Suppose all y,? are non degenerate. (For the definition of non
degeneracy and of the index of a nondegenerate critical point see, e.g.,
[8, p. 307]). Then the critical group C,(y,?) is isomorphic to the coefficient
group if ¢ equals the index of y.%, and 0 otherwise as proved in [8, p. 336] (for a
different proof see [15; Theorem 2.1 and Corollary to Theorem 2.2}). It
follows that the conclusion of the preceding theorem is valid in this case. It
follows moreover that JM, equals the number of critical points of index q.
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Cf. [8, p. 338] where the Morse relations are proved in the case of non-
degeneracy if the manifold is without boundary and the coefficient group is a
field.

For another case in which the C(y,?) are finitely generated see [14, Theo-
rem 7.3].

4. A LUSTERNIK—SCHNIRELMAN THEOREM

We first recall some basic definitions. Let 4 be a subset of the topological
space X. Then cat (4, X), the category of A with respect to X is defined as
follows: cat(4, X) = 1if A in contractible on X to a point of X; cat(4, X) =%
if k is the smallest integer such that 4 can be covered by % closed sets each of
which is of category 1 with respect to X; if no such % exists then
cat(4, X) = oo.

For positive integer & < cat(X, X) and real valued f with domain X the
Lusternik-Schnirelman number m;, = m(f, X) is defined as follows:
let S, be the family of those subsets 4 of X for which cat(4, X) > k. Then

my, = inf sup f(x).

AeS zeA

THEOREM 4.1. Let f and V satisfy the Assumptions 2.1-2.4. In addition f
is supposed to be bounded below. Then

(i) each flnite my is a stationary value of f,
(ii) the number of stationary points is not smaller that cat(X, X),

(ii) 2 my = myyy = Myy, and my, is finite then cat(L(my), X) > n 4 1.
Here I'(my,) denotes the set of stationary points at level my, .

Proof. The following facts were proved earlier or follow directly from
the definitions involved; I is a metrizable absolute neighborhood retract
(Theorem 2.3). The intersection of the set of stationary points with f~{a, 5]
where [, b] is a finite interval is compact (Lemma 2.8). Each point of ¥ has a
neighborhood contractible to that point (Corollary to Lemma 2.3). But these
facts together with Lemmas 2.11 and 2.12 are known to ensure the validity of
our assertion (See [2, Theorems 2 and 3].)
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