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1. INTRODUCTION 

The Morse theory of critical points of a real valued functionf defined on a 
finite dimensional manifold M without boundary was generalized by Palais 
and Smale to the case where h4 is a Hilbert manifold without boundary [8, 
lo]. In particular if all critical points are nondegenerate (and therefore 
isolated) the well known Morse inequalities between the Betti number R, of M 
and the Morse numbers M, were generalized in an appropriate form (see 
[8, p. 338, Theorem 71; for the definition of M, see Eq. (3.10) of the present 
paper; see also Remark at the end of Section 3). 

On the other hand the Morse theory for real valued functions f defined in 
the closure r of a bounded open set V in a finite dimensional vector space E 
was generalized to the case where E is a Hilbert space. The case where f 
satisfies a “regular boundary condition” (stating essentially that at every 
point of the boundary p of V the gradient off is exteriorly directed, see 
Assumption 2.4) was treated in [14], and the case of “general boundary 
conditions” (where f is allowed to have the direction of the interior normal at 
a finite number of points of p) was treated in [13]. In either case the statement 
of the boundary condition required the existence of a unique exterior unit 
normal, and it was this requirement which motivated the assumption that p 
be a Fredholm manifolds. In the case of the regular boundary condition 
sufficient conditions for the validity of the Morse relations were given, (see 
[14, Theorem 81 where f is supposed to be bounded). 

The present paper aims at a synthesis of the investigations mentioned in 
the preceding paragraph with those referred to in the first paragraph by 
treating the case where the domain off is the closure r of an open bounded 
connected subset V of a Hilbert-Fredholm-Riemannian manifold M and 
where a regular boundary condition is satisfied. (Thus critical points on the 
boundary p of V are excluded, and so are corners on l? Such points are 
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admitted in the investigations of D. Braess concerning the finite dimensional 
case (see [l]). 

Section 2 below is mainly concerned with the geometric background. 
Under the assumption that the Hilbert manifold M is Fredholm the notion 
of a hyper-submanifold N of M is introduced in analogy to the notion of an 
(n - 1)-dimensional submanifold of an n-dimensional manifold (Definition 
2.2). It is supposed that the boundary a of the open subset V of M is a 
hyper-submanifold of M and that M is Riemannian. Then a unique exterior 
unit normal to p can be defined (Definition 2.3) and the regular boundary 
condition (Assumption 2.4) can be stated. This assumption together with the 
other basic assumptions of this paper (Assumptions 2.1-2.3) allow us to show 
that a “gradient line” through a point of I’ does not intersect the boundary p 
if followed in the sense of decreasing f (Theorem 2.2). 

Section 3 deals with the Morse theory. First a function f defined on a 
topological space S is considered and under rather general assumptions 
(Assumption 3.1) critical groups C,(c) are attached to a critical value c off. 
Sufficient conditions for the validity of the Morse relations (3.11) and (3.12) 
(which latter are written in terms of the ranks of the groups C,(c)) are given 
(Theorem 3.1 whose proof is essentially the same as the one given by Pitcher 
[I l] in the finite dimensional case). It is then shown that these sufficient 
conditions are satisfied if S = r and if Assumption 3.2 is added to Assump- 
tions 2.1-2.4 (Theorem 3.2). 

So far only critical levels were considered. The consideration of critical 
points begins with Definition 3.4. Critical groups are attached to critical 
points and a relation is established between the group C,(c) and the groups 
of the critical points at level c provided there are only a finite number of 
critical points at that level (Theorem 3.3). This finiteness condition is (on 
account of Lemma 2.8) certainly satisfied if there are althogether only iso- 
lated (not necessarily nondegenerate) critical points. Thus in this case all 
groups C,(c) are finitely generated and therefore the Morse relations (3.12) 
hold. For the special case that all critical points are non-degenerate see the 
Remark following Theorem 3.4. 

In Section 4 it is shown that for functions which are bounded from below 
the main facts of the Lusternik-Schnirelman theory hold under Assumptions 
2.1-2.4. The proof consists in verifying that under these assumptions a set 
of conditions is satisfied which were proved to be sufficient by F. Browder 
[2, Theorems 2 and 31. A different proof for assertion (ii) of Theorem 4.1 
can be given by generalizing a method employed by Seifert and Threlfall 
[16, p. 911 in the case of a finite dimensional manifold. This proof requires 
more assumptions on f but it is more constructive in that it constructs R 
closed sets covering v if there are K critical points by extending the “cylin- 
drical neighborhood” of each critical point. (For the definition of a cylindrical 
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neighborhood see [16, Section 91 in the finite dimensional case, and [14, 
Section 51 in the Hilbert space case.) Details of this proof will be given in 
another paper [15a]. 

For a short survey of the history of the Lusternik-Schnirelman theory 
we refer the reader to [2, pp. 5 and 61. 

We conclude this introduction by listing a few notations used in the sequel: 
If F is a real valued function with domain S and a area1 number then 

{f=u} ={xESIf(x) =a>; 
fa =+ESIf(X) <a>, and Ja = (X E S 1 f(x) < a}. 

In general an upper bar denotes closure. The distance of the elements x and y 
in a metric space will be denoted by [I x, y I( while B(x, a) denotes the open 
ball with center x and radius a. If b > a the [a, b] denotes the closed interval 
with endpoints a and b while the point set [a, b] - (b} is denoted by [a, b). 
The symbol “M” between two groups denotes isomorphism. The zero 
element of a vectorspace will be denoted by 0. 

2. THE GEOMETRICAL BACKGROUND 

Let M be a connected CT manifold without boundary modelled on a fixed 
Hilbert space E(r is a positive integer). For the definition of such a manifold 
as well as for the definition and properties of charts and of an atlas for M 
we refer the reader to [7] or [8]. Here we recall that a chart for M at a point 
x0 E M is a pair (U, 9) where U is an open neighborhood of x0 and 4 is a 
bijection of U onto an open subset of E, and that an atlas A for M is a col- 
lection of charts such that the neighborhoods U cover M, with the additional 
property: if (U, 4) and ( W, (CI) are two charts in A for which the intersection 
U n W is not empty then the map 

+p:$(Un W)+#(Un W) (2.1) 

is a CT isomorphism, i.e., a one to one map onto admitting continuous 
(Frechet) differentials up to and including order r. 

Since r > 1 it follows that the differential d#$-l(~O , u) of the map (2.1) 
at a point u,, E $( U) with “increment” u E E is (as function of U) a (bounded) 
linear one to one map of E onto E. 

DEFINITION 2.1. M is called a Fredholm manifold if there exists an atlas 
A for M such that for any two charts (U, 4) and ( W, #) in A 
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where C is completely continuous. (See [4].) Concerning the question when 
a given manifold can be “reduced” to a Fredholm manifold we refer the 
reader to [4, p. 751 and [3, p. 7681. From the statements made there it follows, 
e.g., that every paracompact manifold modelled on a separable Hilbert space 
can be so reduced. 

Out next goal is to give a definition of a hypersubmanifold of a Fredholm 
manifold M. From the definition of a submanifold N of M as given in [7, 
Chapter II, Section 21, and adopted in the present paper, the following fact 
follows directly; if y E N then there exists a chart (U, 4) for M at y with the 
property: there exists a direct decomposition 

E = F + E2, (2.3) 

of E into two closed (linear) subspaces, and two sets Vi and Va which are open 
subsets of El and E2 resp. such that 

and 

c+(U) = v1 x v’2, (2.4) 

+(Un N) = V2CE2. 

A chart (W, #) for iV at y is obtained by setting 

(2.5) 

W=Ur\N, #=(blw (2.6) 

and the charts so obtained form an atlas for N. 
We now would like to give the following 

DEFINITION 2.2. The submanifold N of the Fredholm manifold M is 
said to be hypersubmanifold of M at the point y E N if the space El in the 
decomposition (2.3) is one dimensional. N is called a hypersubmanifold of M 
if it is a hypersubmanifold at everyone of its points. 

However to make this definition legitimate we obviously have to prove the 
following. 

LEMMA 2.1. Let (W, #) be a chartfm Nat y as in (2.6), and let (#‘, $) be 
another chart for N at y obtained from a chart ( o,& for M at y for which there 
exist a direct decomposition 

E = F $ i?, (2.3) 

and sets p which are open subsets of l? (i = 1,2) szrch that & 0) = p1 x r2 
and $( 0 n N) = Vz C e2. It is asserted: if El is one dimensional then 81 is 
onedimensional. 
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The proof is based on the following. 

LEMMA 2.2. If E2 is hyperspace in E (i.e., a closed linear subspace of 
codimension 1) then the image of E2 under a nonsingular linear map E -+ E of 
the form u + C(u) with a completely continuous C is also a hyperspace in E. 

This lemma was proved in [13, Lemma 3.21. 

Proof of Lemma 2.1. We consider maps &b-l: +( U n 0) -+-I$( U n a), 
&,b-1: $(Wn tv)-Hp(Wn tv), and, at a point ur E #(W n @), their 
differentials 

L(u) = d&W, , u>, l(u) = d$,F(u, , u). 

Then Z(U) is a linear map of E2 onto J!?, whileL(u) maps E onto E. Now it is 
easily verified that z&k’ is a restriction of &-’ from +( U n U), to fj( W n IP). 
It is not hard to see (using the definition of a FrCchet differential) that this 
fact implies that I(u) is the restriction of L(u) from E to E2. Therefore 
L(E2) = Z(E2) = B2. Application of Lemma 2.2 now finishes the proof of 
Lemma 2.1. 

Later on we will deal with real valued functions defined on the closure r 
of an open bounded subset V of M. From now on we will assume that M is a 
Fredholm manifold and that the boundary p of V is a hypersubmanifold 
of M (cf. Assumption 2.1 below). 

The following lemma is a consequence of this assumption. 

LEMMA 2.3. Let (U, 4) be a chart for iI4 at a point y of V with 4(y) = 8, 
and let El and E2 be as in (2.3) with N = V. Then there exist a unit vector 
el E 6 and a positive number [,-, of the following property: if 0 < t: < CO and af 
the sets B,+ and B,- are defined by 

B,+ = (u E B(4 r> I (u, el> > O), 

therz (i) the sets 4-l(BE+) and +-l(B,-) are contained in U, and (ii) the points of 
+-l(Bt+) are exterior to V while @l(B,-) C V. 

Proof. Assertion (i) follows trivially from the fact that 4(U) is open. Let 
us then prove the iirst part of assertion (ii) with a positive 5 < to where 5s 
satisfies (i). $-l(B(8, b)) is a neighborhood of the boundary pointy of V and 
therefore contains a point yO exterior to V. Let uO = $(y,,). Then 
‘co E+(U) = Vl x V, C E, and if P is one of the two unit vectors which 
span El we have by (2.3) the representation 

t1 = (240 , Zl), e2e V2CEa. P-8) 
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Here t, # 0 since otherwise 

y. = +-‘(uo) = +-l(3) c 4-y V2) c P, 

in contradiction to the fact the y0 is an exterior point. We now define e1 by 
setting er = P if tr is positive, and e = --P if tr is negative. Then (u,,el) > 0. 

With e1 thus defined we will prove that (qb-l(u,) is exterior to V for u1 in the 
set B,+ given by (2.7). Indeed uor = (1 - a) u,, + olur E B,+ for 0 < OL < 1 
since B,+ is convex. In particular u, has no point in common with E2. From 
this it follows that $-l(uU) is a continuous curve not intersecting $‘. Since 
(5-1(u0) = y0 is an exterior point so is $-‘(ur). This finishes the proof of the 
first part of assertion (ii), and the second part is proved correspondingly. 

COROLLARY TO LEMMA 2.3. Every point x0 in V has a nezghborhood (with 
respect to r) which is contractible to x0 on v. (This corollary will be used in 
Section 4). 

Proof. Consider first a point x,, = y E p. Then in the notation of the 
preceding lemma it follows from that lemma that for 5 small enough the set 
+-l(B& is a neighborhood of x,, with respect to p. This neighborhood satisfies 
the requirement of the corollary since Bc is contractible on itself to x0 . The 
proof is still simpler if x0 E V. 

We now recall certain facts concerning tangent spaces to M and N. Our 
goal is to arrive at a definition of exterior normals at points of 8. 

Let ( Uj , +i) be the charts at a point of M indexed by an index set I, and let 
uj denote points in E. It can be verified that an equality of the form 

uk = d$k+il(% 1 ui), uo = ~dxo), xoEUjn u,, (2.9) 

represents an equivalence relation. If (2.9) holds we say that the triples 
(U3.,h,ud and (Ukr+k, uk) are equivalent or simply that uj and z+ are 
equivalent (with respect to the above charts), in symbols: r+ N uk . 

The tangentspace to M at x, denoted by M, , is then defined as the set of 
equivalence classes under the relation (2.9). A point t of M, is a collection 
{ui}jsl of equivalent points. With a natural definition of addition and multi- 
plication by a scalar, Mz becomes a linear space. 

We recall the definition of the differential of a map F of M into another 
manifold M* modelled on a Hilbert space E*. Let (U, 4) be a chart at x0 E M, 
and let (U*, $*) be a chart at y. = F(x,). Let Fbern be the map of b(U) on 
$*( U*) defined by Fm.6 = +*F+-l. Then dF,&u, , U) is well defined if 
uog$(U) and uEE. If (o,$) is another chart of x0 it can be shown that 

dF,&,; 4 = dF,,,(u, , 4, (2.10) 
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if 

ec, = 8*5vuo> and if v - 21. 

If (o*, $*) is another chart at y. it can be shown that 

(2.11) 

4+&o 9 4 N dF&u,; u). (2.12) 

It follows from (2.10) and (2.11) and the definition of a tangent space that 

dFe&o , u) induces a linear mapping t * = dF(x,; t), called the differential 
ofF at x0, of Ma0 into MzO . 

Lemma 2.4 below follows immediately from the above definitions applied 
to the map F = 4-l of d(U) onto U C M, from (2.11) and from the non- 
singularity of d$. 

LEMMA 2.4. u + t = d$-l(u,; u) is a map of E onto MnO . Morewer 
d@l(u,; u) = d+*-l(v,v) if and only zjc (2.11) holds. 

We now assume that M is a Riemannian manifold. Then for each x E M 
the tangent space M, is a Hilbert space with a scalar product (s, t). . If then 
(U, $) is a chart at x0 and U, = +(x0) it follows from Lemma 2.4 that 

($9 ho = W-Yu,; a>, d+-l(zl,; v)>, . (2.12) 

with u, v uniquely determined by s, t. The right member is a positive definite 
symmetric form on E and defines therefore a scalar product (u, v> 4 on E 
depending on 4, For 4 = +, we write (u, v), for (u, v) 4 if (U, , q& is the 
family of charts at x0 indexed by the set I. Let u = u, , v = v, be the couple 
satisfying (2.12) for given s, t. Then by (2.12) 

Cs9 t>% = C”$ 2 v*) $* = C”* 2 v*>j * 

Let now x0 be a point of r. Then by (2.5) and Definition 2.2 

(2.13) 

where Ej2 is a hyperspace in E. Thus E = E,l + El2 for any space E,l 
spanned by an element e,l of E not in Ej2. We choose e,l as a unit vector 
orthogonal to Era in the metric given by the scalar product (,), defined in 
(2.13). We make the choice of e,l unique by the additional requirement that 
4,‘([e,l) is exterior to V for small enough positive 5. (This choice is possible 
by Lemma 2.3.) 

DEFINITION 2.3. The element n(xo) = {n,},E1 of MS0 where 

*5 = 43Mxo); e5’) 

is called the exterior normal to P at x0 . 
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The following theorem shows that a number of properties intuitively 
expected of an exterior normal actually hold for n(xJ. 

THEOREM 2.1. (i) M=, is spanned by n(q) and pFO; (ii) n(x,) is orthogonal 
to p%-,,; (iii) for positive 5 small enough +;‘(cej’) is a pornt of M which is exterior 
to V while for all real 1, d$;‘(+(xJ; [ejl) is the point &(x0) of M,, . 

For the proof we need the following 

LEMMA 2.5. Let 0 be an open subset of E, and let E2 be a closed linear sub- 
space of E. Let F be a Cl map 0 ---f E, and let F2 be the restriction of 
F to O2 = 0 n E2. Finally let u2 be an element of 02. Then the restriction to E2 
of the linear map E -+ E given by u + dF(u, , u) is the map E2 -+ E2 given by 
u + dF2(u2 , u). 

The proof consists in a routine argument based on the definition of a 
differential. We therefore omit it and proceed to the proof of Theorem 2.1. 

Proof of Theorem 2.1. (i) Let (U, , +j)iol be the charts for M at x,, 
indexed by I. Then a point of M,, is a set of points ui of E which are equi- 
valent under the relation 

uk = d$k&‘(d(%>; %>- (2.14) 

If (IV, , &) is the chart for p at x,, defined as in (2.6) (with N = #), then a 
point of Fe0 is a set of points vj which are equivalent under the equivalence 
relation 

Ok = d’bk~;‘(~(%>; vj). (2.15) 

We note that the “target space” for all dj is E, while the target space for 
#j is Ej2 since $i( IVj) = $j( Vi n 8) C Vj2 C Ej2. 

Now &#;’ is the restriction of F = &+il from 0 = +j( Uj) to &(z+ f3 P). 
It therefore follows from Lemma 2.5 that d+k$;l(uo; v) is the restriction of 
d$k$;l(u,; U) from E to Ej2. Consequently, if (2.15) holds then (2.14) holds 
with Uj = ~j, uk = ~)lc, and we thus see that a point of pzjEg is also a point of 
M 5 , in other words pz;, C M, . 

Let now t = {&, be an aibitrary point of Mz, . But Uj = Xej’ $- Uj2 

with h real and uj2 E Ej2. Thus t = h{e,l} + {Uj”]. This proves assertion (i) 
of our theorem since {ejl} = n(xJ and {uj2} E pzO . 

Proof of (ii). Let t be an arbitrary element of pzO . By Lemma 2.4 (with (b 
replaced by $j and E by Ej2) and again by Lemma 2.5 t is of the form 

t = d~;%W,,); 4 = d~T’(drb>; 4 vj E Ej2. 
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Therefore by Definition 2.3 and by (2.13) 

(4 4x0)>,, = <4SWo); 4, 43dj(xo>; ej’)>, 
= (vj , ejl)j . 

But the scalar product at the right is zero since vi E Ei2, and since eji was 
chosen to be orthogonal to Ej2. This proves assertion (ii). 

Finally the two assertions of (iii) follow immediately from Definition 2.3 
and the paragraph preceding it. 

We now recall the definition of the gradient of a Cr map f: MzO + R, the 
reals. Since R may be identified with its tangent space the differential df (x,,; t) 
is a real valued continuous linear functional on the Hilbcrt space ME, . 
Therefore there exists a unique element g(x,,) E Mz, such that 

df(xo; 4 = <&oh 0% * 

g((x,,) is called the gradient off at x,, . (In symbols Vf, or gradf). If f is 
Ck+l (k 3 1, theng is Ck. (For a proof see [8, p. 3131.) 

The next lemma deals with relations between the gradient on M and the 
gradient on the linear space E. 

LEMMA 2.6. Let (U, 4) be a chart at x0 E M. We set 

h(u) = f#-l(u), y(u) = grad h(u), u E #( U) C E. (2.16) 
Let 

uo = TYxoh t = d$5-yu,; u). (2.17) 
Then, 

(Y(Uo), u> 4 = (g(xo), ozo * (2.18) 

&o> = W(uo; Y(UO)? r(u3 = 4(x0; dxo)) (2.19) 

II dxo)ll~o = II YWll? - (2.20) 

Proof of (2.18). Using (2.17), the definitions involved and the chain rule 
we see that 

<Y@oh a#a = 4 240; 24) = df#-yu,; 24) = df (p(uo); d-yu,; 24)) 
= df (x0; t) = (&Go), 0s * 

Proof of(2.19). The two assertions of (2.19) are equivalent. We prove the 
first one. From (2.18), the definition of (,}, (given in the paragraph following 
(2.12)), and from (2.17) we see that 

(‘@O>> t>zo = <r@oh u>r = @$w~o; Y(UoN3 4wJo; 4>zo 

= w-‘(uo; Y(Uo), t>zo * 

Since this equality holds for all t E M,, it implies the first part of (2.19). 
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Proof of (2.20). By (2.19) and the definition of (,), 

LEMMA 2.7. Let (U, q5) be a chart for M. Let A be an open interval and let 
x be a Cl map A-++(U). F or 01 in A we adopt the usual dejinition 
x’(a) = dx(q 1). Moreover Zet 

(2.21) 

Using the notations of the preceding lemma we assert: 

(9 If 

then 

rl’b) = -YhbN- 
(ii) If 

then 
x’(4 = -&(~))lll g II29 

rl’(4 = -rt~t4/ll Y v- 

Proof. From (2.21) and the chain rule we see that 

~‘(a) = d+(a); 1) = d+(x(ol); x’(a)). 

Therefore if (2.22) holds then by (2.19) and (2.21) 

--I’(“) = 4(44; g@(4) = Yww = Y(rl) 

(2.22) 

(2.23) 

(2.24) 

(2.25) 

(2.26) 

which proves (2.23). 
If (2.24) holds we see from (2.26) (2.19) and (2.20) that 

-~‘(4 = 4&+-4; &W/II g II2 = rC$HNll Y l12. 

We now state our basic assumptions: 

Let n/r be a connected Hilbert Riemannian C’ manifold (Y > 1) without 
boundary, let V be an open bounded subset of M, and f a real valued function 
defined on the closure P of V. 

ASSUMPTION 2.1. M is a Fredholm manifold, and the boundary p of V 
is a hyper-submanifold of M (see Definition 2.2). 
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ASSUMPTION 2.2. (i) f is not constant in any ball; (ii) the gradient g off 
exists and is locally Lipschitz; (iii) if W is a subset of V on which /f 1 is 
bounded then /I g 1) is bounded on W. 

ASSUMPTION 2.3. The Palais-Smale condition is satisfied, i.e., if f is 
bounded on a subset 5’ of v while /Ig 11 is not bounded away from zero on S 
then g vanishes in some point of closure S of S. 

ASSUMPTION 2.4. 

<g(x), wh! > 0 for every x E V. (2.27) 

Here n(z) denotes the exterior unit normal to p at the point x E p (see 
Definition 2.3). 

THEOREM 2.2. Let f be a real valued Cl function with domain v, and let 
Assumptions 2.1-2.4 be satisjed. Let x0 E V, and let x(a) be the gradient line 
through x,, , i.e., the solution of the differential equation 

X’(4 = -g(x(4, 

satisfying the initial condition 

x(0) = xg . 

(2.28) 

(2.29) 

Then x(a) E Vfor all nonnegative u for which x(a) is defined. 

Proof. If the assertion were not true there would be an CQ > 0 such that 

Xl = x(aJ E P, x(a) E v for 0 < OL < 01~ . (2.30) 

Let now (U, +) be a chart for 44 at x, (of the type described in (2.3) to (2.6)), 
let T(U) be defined by (2.21), and let 

u1 = &4 = Tw%)) = +%)- (2.31) 

Let e1 be defined as in the paragraph preceding Definition 2.3 (with qGj = 4) 
and let y be as in Lemma 2.6. We then see from (2.17), (2.18) (with u = el), 
from the Definition 2.3 of the exterior normal, and from (2.27) that 

<YW 6>4 = (g(4 n(xl)>,l > 0, 

and, taking (2.28) and Lemma 2.7 into account, that 

(7’W e’h < 0. (2.32) 
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We will now show that, in contradiction to (2.32), 

(?‘W, oh5 2 0. (2.33) 

and thus finish the proof of the theorem. We see from Lemma 2.3 that for 
positive and small enough 01~ - OL, 

~(a) = --Xe’ + e2, h = X(a) > 0, e2 E E2. (2.34) 

But it follows from (2.30) and (2.31) that ~(a~) E E2, and therefore from (2.34) 
that ~(a) - ~(a~) = --he’ + c2 with h > 0, and with .Z2 E E2. This proves 
that 

+h4 - ~h>>/(~ - 4,e’> 4 > 0, (2.35) 

since e’ is orthogonal to E2 (with respect to the scalar product (,)Q) and since 
a - 01~ is negative. (2.35) obviously implies (2.33). 

DEFINITION 2.4. A point ‘ys E v is stationary forf if g(x,,) = 0. A number c 
is called a stationary value (or level) forfiff(y) = c for at least one stationary 
point y. The set of stationary points will be denoted by I’ and the set of 
stationary levels by il. 

LEMMA 2.8. Let the set W be as in Assumption 2.2(iii) and assume it to be 
open. Then the set r n w is compact. 

Since f is bounded on r n W the proof given for assertion (i) of Lemma 
2.3 in [14] applies. 

LEMMA 2.9. The set A is closed. 

Proof. Let cr , cs ,... be a convergent sequence of stationary levels, and let 

c0 = lim ci . i&xc (2.36) 

We have to prove that 
C,EA. (2.37) 

Let yi be a stationary point at level ci . Then on account of (2.36), f is bounded 
on the set {ri}. Since yi is an element of the open set V we can choose positive 
Li such that If(x) -f (ya)l < I 1 f or x E B(r, , &) C V. Then obviously f 
is bounded on the open set W = (Ji B(yi , &). Consequently, by Lemma 2.8, 
there exists a subsequence {m,} of the sequence {rj) which converges to a 
point y0 E r. Then we see from (2.36) that 

This proves (2.37). 
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LEMMA 2.10. If the closed interval [a, b] contains no critical levels then 
there exists a positive m such that 

II &)ll > m for x E f -l[a, b]. (2.38) 

Proof. The lemma is an immediate consequence of Assumption 2.3 
since f is bounded in the closed set f -l[a, b]. 

LEMMA 2.11. Let a, b and m be as in the preceding lemma. Let x(01, x0) be 
the gradient line through x,, , (as dejned in the Theorem 2.2). Then 

x(01, x0> Efa if x0 EJb and a! 3 T = (b - a/m”). 

Proof. If this were not true then f (T, x0) > a for some x0 E f -l[a, b], and 
for such x0 we would see from (2.38) that 

a <f(xo) + loTg dt = f (xo) + l’ (g(x), $) dt 

= f (x0) - lo’ 11 g(x)j12 dt < 6 - m2T = a. 

LEMMA 2.12. Let r(c) denote the set of stationary points at level c (which 
may be the empty set). Let W be an open neighborhood of r(c). Then there exist 
real numbers a, b and T with a < c < b and T > 0 such that 

x(T, xo) ~fa u W for XOEfb. (2.39) 

Remark. We note that the existence of deformations having the property 
asserted for x(01, x0) in the lemma was proved by Palais [9a] and Browder [2] 
for Banach manifolds (without boundary) by the use of “pseudo gradients.” 
The proof below is given for completeness sake. It is divided into four steps. 

Step 1. It is asserted that there exist a, , b, with a, < c < b, such that 

I-O = I- n f -‘[a0 , b,] C W. (2449 

We will show that there exists a C? > 0 such that (2.40) is true with a0 = c - d, 
bo=c+difO<d<J. 

If this were not true there would exist sequence of positive numbers d, 
converging to zero, and a sequence of points yV with the properties 

3/v ~f-‘[a - 4, c i- 41, yv E r - w. (2.41) 

Since the sequencef(y,) is bounded we may by Lemma 2.8 assume that the 
yV converge. The limit y. is a stationary point which, by (2.41), lies on the 
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level c. Thus y,, E r(c) C W, and therefore yV E W form a certain v on. This 
contradicts the second part of (2.41). 

Step 2. The set r” defined by (2.40) is compact, and the set v - W 
is closed. Therefore these two sets which by (2.40) are disjoint have a 
positive distance 5d, . Let now y. E To and let [(yo) be a number such that 

0 < LXYO) < do 9 (2.42) 

I f(x) - f(Yo)l < 1 for x E Yro T 5(roNy (2.43) 

g(x) satisfies a Lipschitz condition in B(y, , 35(yo)). (2.44) 

(See Assumption 2.2). 
Since To is compact there exist a finite number of points y” (u 

in To such that the balls B(y”, [(y”)) cover P. We set 

Then 

wi = u qY”,Jx(Y”)) forj = 1, 2,3. 
0 

(2.45) 

PC WlC w2c w3c w. 

We claim: there exists a positive T such that 

4% x0) E w forO<cc<T and xosW2. 

(2.46) 

(2.47) 

For the proof we note first that as a consequence of (2.44) g is bounded in 
W3, say 

II &)I1 < M for x0 E W3. (2.48) 

Let now 3co E W2. Then 

II x - Y” II < Z(Y”) 

for at least one cr. For such u we have obviously 

(2.49) 

qxo , 5(3p)) c B(Y”, 35(v)) c w3 c w. (2.50) 

It follows from this inclusion in conjunction with (2.44) that g satisfies a 
Lipschitz condition in B(zco, ((y”)). Moreover (2.48) is satisfied for 
x E B(x,, c(v)). Therefore the local existence theorem for differential equa- 
tions allows us to conclude that X(CX, x0) is defined at least for j 01 / < i$-)/M, 
and that for such 01, x((Y, x0) E B(x, , c(y”)) C W2 (cf. 2.50)). This shows that 
the assertion (2.47) is satisfied with 

T = ,=$n*., &Y”). (2.51) 
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Step 3. We assert the existence of a positive m’ such that 

II &>ll > ml for x E Si =f-l[a, , b,] - W2. (2.52) 

Indeed f is bounded on the closed set S. Therefore if the assertion were not 
true, Assumption 2.3, (2.40) and the inclusion (2.46) would imply the exist- 
ence of a point 7 E s’ n r C I’O C W2. This contradicts the fact that by 
definition the intersection S ~7 W2 is empty. 

Step 4. Let T and m, be as in (2.51) and (2.52) resp. Let a, ,6, be as in 
Step 1. Finally let, a, b be a couple of numbers satisfying 

a,<a<b<bo (2.53) 
and 

b-a<Tqa. (2.54) 

With this choice of a, b, and T we will show that (2.39) is satisfied. To this 
end we write j* as the union of three sets: 

jb = ja u {f -l[u, b] n Wz} u {f -+z, b] n V - W2} (2.55) 

If x0 E ja then (2.39) is obviously satisfied since f (x(oI, x0)) is non increasing 
in 01. If x0 is a point in the second summand at the right of (2.55) then, by 
(2.53), x0 E f -l[uo , b,] n m2, and our assertion (2.39) is satisfied by (2.47). 

Finally let x0 be an element of the third summand in (2.55). Suppose first 
that 

x(a, x0) c v - w2 for 0 < 01,< T. (2.56) 

We then show that (2.39) holds by proving that 

f (4T, 4) < a. (2.57) 

If this inequality were not true we could conclude from the monotonicity of 
f (x(oI, x0) and from (2.53) that 

bo 3 b > f (xo) > f+, ~0)) 2 f (CC ~0)) > = 2 a, for 0 < (Y < T. 

Thus, by (2.56), x((Y, x0)) E 9 (cf. (2.52), and (2.52) holds with x = x((Y, x0) 
for these 01. Then 

a -=c f(x(T, ~0)) = f (xo) + l= $ dT 

= f (x0) - L* 1) g /I2 dr < b - q2T < a (cf. (2.54)). 

This contradiction proves (2.39) if (2.56) is satisfied. 



THE THEORIES OF MORSE AND LUSTERNIK-SCHNIRELMAN 95 

Suppose now that (2.56) is not true. Then since by assumption 

x(0, x0) = x0 c v - w2, 

there must be an cyl such that 

0 < aI d T, 4% x0> I $V2 forO<ol<ol,, 
E IV2 for 01 = cir . 

(2.58) 

Let now x1 = x(o1r , x0) and let 5((B) = a(/?, x1) be the gradient line defined by 
dqdp = -g(q)), P(0, x1) = x1 . It then follows from (2.47) with x(01, x,,) 
replaced by ~((8, x1) that x@, x1) E W for 0 < fi < T. Therefore X(OL, x0) E W 
for 01~ < 01 < a1 + T since x(q + /3, x,,) = ~$3, x1). This proves that 
x( T, x,,) E W since 0~~ < T. 

LEMMA 2.13. If the half open interval [a, c) contains no stationary values 
then J, is a deformation retract of fc . 

Proof. For x0 E fC - Ja let x(~r, x0) be the solution of 

dx 
- = - (f(x0) - a)g(x)/llg Hz, dol 

x(0, x0) = x0 , 

and let 

It is then easily seen that 6(a, x0) retracts fC ontofa (see, e.g., [14, Lemma 3.41). 
We conclude this section by proving the following theorem needed in 

Section 4. 

THEOREM 2.3. r is an ANR, i.e. an absolute neighborhood retract in the 
class of met&sable spaces. 

The proof is based on the following lemma. 

LEMMA 2.14. Let Y be an ANR. Let Yl and Yz be closed subspaces of Y 
whose union is Y and whose intersection is an ANR. Then Yl and Y2 are ANR’s. 

This lemma is proved in [6, Proposition 9.1, p. 47 in conjunction with 
Theorems 3.1, p. 83 and 3.2, p. 841). 

To apply this lemma to the proof of Theorem 2.4 we recall that every 
metric Banach manifold is an ANR (see [9, Corollary, p. 31). Thus Y = 
M and r are ANR. Setting Yr = r, Y2 = M - I/ we see that the lemma 
implies the theorem. 
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3. THE MORSE THEORY 

Letfbe a real valued continuous function-defined on a topological space S. 

DEFINITION 3.1. A real number c is called a critical value (or level) for f 
if for no two numbers a, b with a < c < b the setja can be deformed into the 
set ja . The set of critical values will be denoted by A,, . 

ASSUMPTION 3.1. (a) A finite interval contains at most a finite number 
of cirtical values. (/3) If the half open interval [a, b) contains no critical values 
then fb can be deformed into ja . 

For reference sake we state the following obvious consequence of Assump- 
tion 3.1 as a lemma; 

LEMMA 3.1. If the closed interval [a, b] contains no critical values then jb 
can be deformed into ja . 

If B r> A is a couple of subsets of S, and q a nonnegative integer then 
H&B, A) will denote the qth singular homology group of the couple (B, A). 
The coefficient group will always be supported to be a principal ideal ring. 

LEMMA 3.2. If [a, b] contains no critical values then 

HdJ, ,.fJ = 0 for all 4. (3.1) 

This is an immediate consequence of Lemma 3.1 and well known properties 
of the homology groups. 

LEMMA 3.3. If for all intervals [a, b] containing the real number r the homo- 
logy group %(.h , fJ is dff i eren t f rom zero for some q then r is a critical value. 

Proof. If r is not critical then by Assumption 3.1(a) there exists an inter- 
val [a, b] containing r and no critical values. For such interval (3.1) holds by 
Lemma 3.2 for all q. This obviously proves the lemma. 

LEMMA 3.4. Let c be a critical value. Then H,,( jb , jJ does not change as 
long as c is the only critical value in [a, b]. 

Proof. We have to show that 

H&ib da) = H,(h ,L), (3.2) 

if the intervals [a, b] and [01, fi] both satisfy the condition of the lemma. It is 
easy to see that we may assume b > /3 > c > 01 3 a. We will first show that 

&(h 3 jaa) = H,(jb 2 .fx,,. (3.3) 
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fu’ow the interval [a, a] contains no critical value. This fact implies by Lemma 
3.2 that 

f&(3, ,3a> = 0. (3.4) 

It also implies that fa is empty if ja is empty since, by Lemma 3.1, fa can be 
deformed into fa . Therefore in this special case the assertion (3.3) reduces to 
fU3tJ = HAJtJ. But if Ja . is not empty then it is well known that (3.4) 
implies (3.3) (see [5, 1.8.11). 

This proves (3.3), and the isomorphism 

&(3b 932 * KAJ, ,3J, 

is proved in a similar way. But (3.3) and (3.5) imply (3.2). 
Lemma 3.4 allows us to make the following definition. 

(3.5) 

DEFINITION 3.2. The qth critical group C,(c) at the critical level c off 
is defined by C,(c) = H,( fb , jr,) w h ere a < c < b and where c is the only 
critical level in [a, 61. 

Since the coefficient group G of the homology theory is supposed to be a 
principal ideal ring. The classical decomposition theorems hold if G is 
finitely generated. If G is not necessarily finitely generated we have the 
following definition. 

DEFINITION 3.3. Let T be the torsion submodule of G. Then the rank 
c(G) of G is defined as follows: if the quotient module G/T is not finitely 
generated then c(g) = CO; if G/T is finitely generated then t(G) = {(G/T), 
i.e., the number of elements in a base of the (free) group G/T. 

LEMMA 3.5. If c(G) is jfinite then we have the direct decomposition 

G=F/T, (3.6) 

where T is as above and where F is a free module. Moreover 

5(G) = 5(F). (3.7) 

The proof follows easily from a well-known lemma (see, e.g., [5, p. 133, 
Lemma 6.31). 

We now introduce notations which will be used in Theorem 3.1 below. 
Let a < b be two number which are not critical values and let cr < c2 < . . . c, 
be the critical values in [a, b]. Moreover let a, , a, ,..., a,,, be numbers such 
that 
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In addition we set 

A =3a, B =3t,, 4 =3aa, 9 

Caa = C&a) = K&% 9 4x-A 

M,” = S(Cqa), M, = 5 M,“, 
a=1 

R&s b) = W,(B, A)), a = 1, 2 ,,,., N. 

(3.9) 

(3.10) 

THEOREM 3.1. For the validity of the inequality 

(3.11) 

each of the following three conditions is sujjicient 

(i) [(&(A, , A,) < co, a~ = 1, 2 ,..., N. 

(ii) the critical groups Cga are Jinitely generated, 

(iii) the coeficient group G is a jield. 

Moreover if (i’) is condition (i) with the additional proviso that 

(iv) M,” = [(Cam) < co, 01 = l,..., N 

then each of the conditions (i’) and (ii) is suficient for the validity of the inequality 

$O(-l)q-siM,(a,b) >~$O(-l)‘+sR,(a~b). (3.12) 

Remark. If f is bounded then for small enough a and large enough b, 
%(a, b) is the qth Betti number of S and the “Morse numbers” M, are 
independent of a and b. Thus inequalities (3.11) and (3.12) are in this case 
the classical Morse inequalities. 

Proof of Theorem 3.1. If one of the numbers Mpl,..., MaN is in&rite then 
M, = co by (3.10), and (3.11) is trivially satisfied. Therefore for the proof 
of this inequality we may make the additional assumption (IV), and thus 
replace (i) by (i’). But under the latter condition the proof of (3.11) and (3.12) 
inequalities is the same as the one given by Pitcher for the finite dimensional 
case ([ 11, Section 1 I]) and is therefore omitted. 

To give the proof under condition (ii) it will now be sufficient to prove 
that this condition implies (i’). Since (iv) is obviously implied by (ii) the 
proof will be finished if we verify that (ii) implies (i) by showing that the 
groups &(A,, A,,) are finitely generated. This is done by induction in 
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a: H&4, , A,) is certainly finitely generated since this group is C,l. We assume 
that HJA,-r , A,) is finitely generated and consider the part 

of the homology sequence for the triple A, CA,-, CA, . Here the two extreme 
groups are finitely generated, the one at the left by induction assumption, 
the one at the right because it is the critical group Cpa. From this and the 
exactness of the sequence it follows that the kernel K of the map i* as 
well as the group H,(& , &J/K are finitely generated. This obviously 
implies that Ti,(A, , A,) is finitely generated. This completes the proof of 
the theorem since (iii) and (iv) together imply (ii). 

We now return to the situation of Section 2 by setting S = r. 

THEOREM 3.2. Theorem 3.1 is valid if S = r and ;f Assumption 3.1 is 
replaced by Assumptions 2.1-2.4 and the additional 

ASSUMPTOIN 3.2. A finite interval contains at most a finite number of 
stationary values (cf. Definition 2.4). 

In fact Assumptions 2.1-2.4 and 3.2 imply Assumption 3.1 as the following 
two lemma show. 

LEMMA 3.6. A critical value is a stationary value, i.e., A, CA. 

Proof. We show: if c is not a stationary value then c is not critical. Indeed 
by Assumption 3.2 there correspond to a nonstationary c two numbers a, b 
with a < c < b such that [a, b] contains no stationary values. By Lemma 2.11 
the set j,, can be deformed into the set ja but this implies that c is not critical 
(cf. Definition 3.1). 

LEMMA 3.7. The set A, of critical values satisfies Assumption 3.1. 

Proof. Assumption 3.2 together with Lemma 3.6 show that the (a) part of 
Assumption 3.1 is satisfied. The (/3) part follows immediately from Lemma 
2.13 if the interval [a, b) which by assumption is free of critical levels is also 
free of stationary levels. Suppose now [a, b) contains stationary values. By 
Assumption 3.2 there are only a finite number, say sr > s2 > ... > s, . 
Since the si are not critical values there exist ai , bi such that ai < si < b, 
and such that jbbi can be deformed into jai . Obviously we can choose the ai 
and bi in such a way that in addition 

b > b, > s, > a7 > b,-, > s,-~ > a,-, > ‘.. > b, > s1 > a, > a 
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(with an obvious modification if a is a stationary value). Now there are no 
stationary values in [b, , b). Therefore fb can be deformed into J,, (again by 
Lemma 2.13). ButX, can be deformed intofall . Going on this way we obtain 
deformations whose product deforms fb into ja . 

LEMMA 3.8. C,(c) M H,(fa ,fJ if c is the only critical oalue in [c, b]. 

This is an immediate consequence of the preceding lemma and Definition 
3.2 together with the deformation invariance of the homology groups. 

Remark. In Theorems 3.1 and 3.2 only critical levels are considered. But 
if we were to define critical groups C,(c) (in analogy to Definition 3.2) for 
stationary but not critical levels c then it is easily seen from Definition 3.1 
that these C,(c) are zero groups. Therefore M,(c) = [(C,(c)) = 0. Thus 
there would be no change in the inequalities (3.11) and (3.12) if all stationary 
levels were taken into account, i.e., if A,, is replaced by A. 

We now consider critical points. 

DEFINITION 3.4. The point y0 E Y is called a critical point off is for no 
neighborhood W of ‘ye the set f,, n W u {ys}, can be deformed into the set 
foe n W where c,, = f (‘y,,). The critical point y,, is called isolated if there exists 
a neighborhood of y,, containing no other critical point. 

LEMMA 3.9. If y,, is critical then y,, is stationary. 

Proof. Suppose y,, is not stationary and let co = f (3/s). Then g(y,,) # 8. 
Therefore there exists a neighborhood W of y,, in which /I g(x)// is bounded 
from below by m = 11 g(rJ1/2. 0 n account of this fact it is easy to construct a 
deformation deforming fc, n W u {~a} into fc, n W by using the gradientline 
through ‘y,, (cf. (2.22)). 

LEMMA 3.10. Let W and W, be open neighborhoods of the isolated critical 
point y,, . Suppose that W and WI contain no other critical point. Then, with 

co = f (‘yoh 

Proof. We may assume that WI WI (otherwise consider WI n W). Then 
the lemma follows by excising the set U = (W - WI) n fc, from the couple 
at the right member. 

This lemma allows us to state the following. 

DEFINITION 3.5. The qth critical group C,(y,) of the isolated critical 
point y. is defined by 

Cho> = f&(f,, n W u ~~~Lfc, n Wh 
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where W is an open neighborhood of y,, containing no other critical point and 
where ca =f(yJ. 

A remark analogous to the one following Lemma 3.8 can be made con- 
cerning the definition made concerning the definition of groups attached to an 
isolated stationary but not critical point. 

THEOREM 3.3. Let the assumptions of Theorem 3.2 be satisjed. Suppose that 
c is a critical level at which there are only a finite number of critical points, say 

Yl , yz ,..., yr . Let b > c be such that the interval (c, b] contains no critical values. 
Then 

C*(c) 7% f&(fc ,fc) r=x k CAYi), (3.13) 
i=l 

where .Z denotes the direct sum. 

For the proof we need Lemmas 3.11 and 3.12. 

LEMMA 3.11. Let the assumptions of Theorem 3.3 be satis$ed. Let x(01, x0) 
satisfy 

dx 
- = -(f hi) - 4 dx)lll &)l12~ da: 

Then 

40, x0) = x0 , x0 ef-l(c, b]. 
(3.14) 

(i) df (~) - = -(f@o) -4 da 
(ii) c<f(x(cd,Xo)<bfoY O<a<l, 

(iii) &nf(x(q x0) = C, 

(iv) j$ x(01, x0) exists. 

For assertions (i)-(iii) the assumption that the critical set at level c is finite is not 
necessary. 

Proof. The elementary proof of assertions (i)-(iii) may be found in [12, 
Lemma 5.31. We turn to the proof of (iv) which is an modification suited to 
the present situation of the proof given in [12, Theorem 5.1)]. 

Let {(a) be the distance of the point x(01, x0) to the critical set r(c) at level c, 
and let 

We distinguish two cases. 
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Case I. [ > 0. In th’s 1 case there exists a positive constant m such that 

II &)ll > m forxES={z=X(a,&)O<a<l1). (3.15) 

Indeed otherwise we would from Assumption 2.3 and the boundedness off 
on S (quaranteed by (ii)) conclude the existence of a stationary point y0 
in the closure of S. There would then be a sequence 01~ , 01s ,,.. such that 

pi X” = Yo if x, = x(s) x0). (3.16) 

Now because of our assumption % > 0 the point y. cannot belong to I’(c). 
Thus y. E r - r(c). But this is also impossible. For by Assumption 3.2 there 
exists a d > 0 such that 

r - r(c) C&--d U {f 2 b + 4. (3.17) 

But it follows from (3.16) and assertion (ii) above that c < f (yo) < b. 
Thus the existence of an m satisfying (3.15) is established. From this in 

conjunction with (3.14) we see that for 0 < a’ < a” < 1 

II+“, x0) - x(a’, *0)ll = I[ C” x’ da (j < 1 f (x0) - c)l (a” - a’)/m 

< (b - c) (a” - a’)/m. 

By Cauchy’s principle this implies the validity of assertion (iv). 

Case II. r = 0. Then there exists a convergent sequence {ai} with 

O<CL,<l and lim ai = as < 1 i-m 

such that the sequence ~(a~ , x0) converges to one of the points yr , ys ,..., yr , 
say to yi: 

& x(ai ,x) = n . (3.18) 

We must have 

~=limai=l. 
i+w (3.19) 

For otherwise 0 < a,, < 1, and by assertion (ii) above, 

f&f @(ai , x0)) = f @(a0 2 x0) 3 c. 

But by (3.18) this limit equals f (yl) = c. 
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Thus (3.19) is true, and we may assume that the 01~ are monotone increasing. 
We now prove assertion (iv) by showing that 

lim x(01, x) = y1 . 
e-1- 

(3.20) 

To do this we first exhibit a positive [,, of the following property: 
if 0 < i$ < 5, then there exists a positive constant m = m(& , &,) such that 

il &)li > m for x E 45 , 5,) - Ql ,5d (3.21) 

We choose for {,, a positive number satisfying 

Ll < ,=y&,, II Yi - Yl ll/2, and I f(x) - fbd < mW/2, b - 4 

for x E B(rl , [,,) where d is as in (3.17). Since then c - d/2 <f(x) < b for 
x E B(y, , to) it is (cf. (3.17)) easily verified that the closure of the set appearing 
in (3.21) contains no point of r = r(c) u (I’ - r(c)). The existence of an m 

of the asserted property follows then from Assumption 2.3. 
To prove the assertion (3.20) we now make the assumption that it is false. 

Then there exists a positive 8 and a monotone increasing sequence {o+‘} such 
that 

II x(9’, %), Yl II t 6 (3.22) 
and 

lim oLi’ = 1. j+m (3.23) 

Let now j3 be a positive number such that g(x) is Lipschitz in B(y, , 5/?) 
(cf. Assumption 2.2) and such that 

0 < 5/3 < min(6, Co). (3.24) 

Then (3.21) is satisfied if we choose 

51 = P. (3.25) 

Now by (3.18) there exists an integer n,, such that 

4% 3 43) E Wl > 8) for 1z > n, , (3.26) 

On the other hand, by (3.23), (3.22) and (3.24) there corresponds to each 
n > n,, an integer 11’ = n’(n) such that 

and 

ano < a, < a;* < 1 (3.27) 

II x(4&* > x0), Yl II b v. (3.28) 
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The proof of (3.20) will be finished by showing that for some 71’ = n’(n) 
with n > n, 

x(4? , x0> E ml 3 4P)Y (3.29) 

in contradiction to (3.28). To this end we note first that the relations (3.26)- 
(3.28) imply the existence of an a,* for which 

0 < anO < an < a:,* < a;, < 1 

and 

4an*, x0> E %l t 3P) 

where B denotes the boundary of B. Then by (3.30) and (3.19) 

(3.30) 

(3.31) 

lima,* = 1. n+m (3.32) 

We now consider the ball B, = B(x(cx,*, x0), ,9). Obviously 

It therefore follows from our first assumptions on fi and from (3.21) that the 
right member of (3.14) is Lipschitz in B, and there bounded by a constant 
independent of n. If M is such a constant it follows from the definition of 
~(a, x,,) as solution of the differential equation (3.14) that 

II 4% x0), x(%*9 %)ll < fJff I a - an* I > (3.33) 
if 

I a - an *I <BIM. (3.34) 

We now choose a fixed n > n,, such that 0 < 1 - a,,* </3/M. This choice 
is possible by (3.32) and (3.30). It then follows from (3.30) that (3.34), and 
therefore (3.33), is satisfied with (Y = aI, . Thus ~(a:, , x,,) E B, which 
obviously implies (3.29). 

LEMMA 3.12. Under the assumptions of Lemma 3.11 the set J, is a deforma- 
tion retract of Jo . 

Proof. Let ~(a, x,,) be as in Lemma 3.11 and let 

qx, , a) = 

1 

X(% x0>, if x0 9 if XcJE&-ffc, O<ff<l, 

lp(% x0>, if XO~X -fc 9 a = 1, 

x0 2 if x0 EfC ? O<a<l. 

Qil 9 a) obviously retracts J,, onto jC, (for the continuity of 6(x, , a) cf. the 
appendix in [14]). 
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We now turn to the proof of Theorem 3.3. From Lemma 3.12 and Defini- 
tion 3.2 we see that C,(c) m H,,(jc , ja) f i a is such that c is the only critical 
level in [a, b]. From this the first part of (3.13) follows sincef, can be deformed 
into Ja (cf. Lemma 3.7). 

Now the set fc can be deformed into the set fc u r(c) by the deformation 
given by the solution of (2.22). Therefore 

For i = 1, 2,..., r let now Bi be a ball with center yi in whose closure yi is 
the only critical point, (for the proof of the existence of such a ball cf. the 
argument for the existence of I&, in the paragraph following (3.21)). If we let 
W = (Ji Bi and excise the set fc U r(c) - W from the couple at the right 
of (3.35) we see from (3.35) and the excision theorem [5, VIII, 9.11 that 

C,(c) - &(fc n Wu W,fc n W). 

But the group at the right is isomorphic to the direct sum of the groups 
H,(fc n Bi u yi , fc n Bi) as is seen from the addition theorem [5, I, 13.21 
and the definition of W. By Definition 3.4 this proves the second part of 
assertion (3.13). 

We now turn to a discussion of the Morse inequalities (3.12) in the case 
that all critical points are isolated. 

THEOREM 3.4. Using the notations introduced in the paragraph immediately 
preceding Theorem 3.1 we suppose that the critical set r(c,) at level c, consists of a 
finite number of points ‘yai (i = 1, 2 ,..., ror , 01 = 1, 2 ,..., N). Let mcri denote the 
rank of C’,(Y,~) (see Definition (3.5)). W e su pp ose moreover that the groups 
C,(y,“) are finitely generated. Then the Morse inequalities (3.12) hold with 

M, = g 2 m,i. 
a=li=l 

Proof. The theorem is an immediate consequence of Theorems 3.2 and 
3.3. 

Remark. Suppose all ymi are non degenerate. (For the definition of non 
degeneracy and of the index of a nondegenerate critical point see, e.g., 
[8, p. 3071). Then the critical group CQ(yoli) is isomorphic to the coefficient 
group if q equals the index of yori, and 0 otherwise as proved in [8, p. 3361 (for a 
different proof see [15; Theorem 2.1 and Corollary to Theorem 2.21). It 
follows that the conclusion of the preceding theorem is valid in this case. It 
follows moreover that M, equals the number of critical points of index q. 



106 E. H. ROTHE 

Cf. [8, p. 3381 where the Morse relations are proved in the case of non- 
degeneracy if the manifold is without boundary and the coefficient group is a 
field. 

For another case in which the CP(rai) are finitely generated see [14, Theo- 
rem 7.31. 

4. A LUSTRRNIK-SCHNIRELMAN THEOREM 

We first recall some basic definitions. Let A be a subset of the topological 
space X. Then cat (A, X), the category of A with respect to X is defined as 
follows: cat(A, X) = 1 if A in contractible on X to a point of X; cat(A, X) = K 
if k is the smallest integer such that A can be covered by K closed sets each of 
which is of category 1 with respect to X; if no such k exists then 
cat(A, X) = co. 

For positive integer K < cat(X, X) and real valued f with domain X the 
Lusternik-Schnirelman number m, = mk(f, X) is defined as follows: 
let S, be the family of those subsets A of X for which cat(A, X) > k. Then 

THEOREM 4.1. Let f and V satisfy the Assumptions 2.1-2.4. In addition f 
is supposed to be bounded below. Then 

(i) each jlnite m, is a stationary value off, 

(ii) the number of stationary points is not smaller that cat(X, X), 

(iii) ifm, = m,,, = *.. mktn and mk isfinite then cat(r(m,), X) > n + 1. 
Here r(m,) denotes the set of stationary points at level mk . 

Proof. The following facts were proved earlier or follow directly from 
the definitions involved; F is a metrizable absolute neighborhood retract 
(Theorem 2.3). The intersection of the set of stationary points with f -l[a, b] 
where [a, b] is a finite interval is compact (Lemma 2.8). Each point of v has a 
neighborhood contractible to that point (Corollary to Lemma 2.3). But these 
facts together with Lemmas 2.11 and 2.12 are known to ensure the validity of 
our assertion (See [2, Theorems 2 and 31.) 
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