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Background: The discovery and the description of the genetic background of common human diseases is
hampered by their complexity and dynamic behavior. Appropriate bioinformatic tools are needed to
account all the facets of complex diseases and to this end we recently described the survival dimension-
ality reduction (SDR) algorithm in the effort to model gene–gene interactions in the context of survival
analysis. When one event precludes the occurrence of another event under investigation in the ‘compet-
ing risk model’, survival algorithms require particular adjustment to avoid the risk of reporting wrong or
biased conclusions.
Methods: The SDR algorithm was modified to incorporate the cumulative incidence function as well as an
adapted version of the Brier score for mutually exclusive outcomes, to better search for epistatic models
in the competing risk setting. The applicability of the new SDR algorithm (SDR-CR) was evaluated using
synthetic lifetime epistatic datasets with competing risks and on a dataset of scleroderma patients.
Results/conclusions: The SDR-CR algorithms retains a satisfactory power to detect the causative variants
in simulated datasets under different scenarios of sample size and degrees of type I or type II censoring. In
the real-world dataset, SDR-CR was capable of detecting a significant interaction between the IL-1a
C-889T and the IL-1b C-511T single-nucleotide polymorphisms to predict the occurrence of restrictive
lung disease vs. isolated pulmonary hypertension.
We provide an useful extension of the SDR algorithm to analyze epistatic interactions in the competing
risk settings that may be of use to unveil the genetic background of complex human diseases.
Availability: http://sourceforge.net/projects/sdrproject/files/.

� 2012 Elsevier Inc. All rights reserved.
1. Introduction

The development, the availability and the widespread diffusion
of high-throughput technologies have helped, in the last decade, to
lay the groundwork for the comprehension of the genetic architec-
ture of complex human diseases. Despite these efforts, however, a
large proportion of the estimated genetic variance of individuals
remains unexplained [1,2]; several hypothesis have been put for-
ward to explain the so-called ‘missing heritability’, including
gene–gene interactions or epistasis [2–4]. It has indeed been ar-
gued that genetic complexity does not arise from the independent
action of a large number of different genes but it is rather the result
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of extensive genetic interactions among them [5,6]. These concepts
prompted the development or the application of different algo-
rithms to detect meaningful gene–gene interactions in case-
control studies; each method comes up with its own solutions as
well as with its own inductive biases to the many computational
challenges that the modeling of epistasis poses [7–9]. Not until
the recent work by Beretta et al. [10] and by Gui et al. [11] the
problem of epistasis in the context of survival analysis has specif-
ically been approached from the machine-learning point of view.
Cox regression may be suitable to detect non-linearities in pres-
ence of right-censored data, however, this method may not always
be the optimal choice to this end: a priori knowledge of the variable
relationships may be needed to properly model interactions and
type I error may increase due to the inflated number of polynomial
terms. The ‘‘survival’’ issue is of particular interest whenever the
event of interest takes time to happen or does not happen at all
due to a short observational time or to the loss of information dur-
ing the follow-up period as in the case of recurrence of a disease,
response to treatment and prognostication. We demonstrated
that the novel survival dimensionality reduction (SDR) algorithm
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retains a satisfactory power to sort out a set of causative genes
with mild-to-moderate epistatic effect size from a pool of candi-
date genes in synthetic lifetime datasets and that the algorithm
was capable of identifying epistatic interactions that drive the re-
sponse to anti-TNF biological agents in a population of patients
with active rheumatoid arthritis [11]. One of the main advantages
of SDR is its inherent non-parametric nature, as it is necessary to
neither make a priori assumptions about the underlying interaction
model nor about the shape of the underlying survival distribution.
Yet, despite its advantages, SDR is not suitable in a number of clin-
ically relevant contexts, as for instance when an event precludes
the occurrence of another event under investigation. In this situa-
tion, generally referred to as ‘competing risks’, each individual is at
risk of experiencing multiple events at any time, but cannot expe-
rience one outcome once failure has occurred due to another event
[12,13] and each event is mutually exclusive to the others.

The survival model in presence of competing of risks is known
as the ‘competing risk model’ and it requires adequate statistical
techniques to make proper inferences about it. Several evidences
suggest that the naïve application of traditional survival methods
to the competing risk model, as for instance the non-parametric
Kaplan–Meier (KM) estimator, leads to biased and inflated esti-
mates of the probability of failure [13–15] and that the bias is
greater when the hazard of the competing events is larger. More
honest failure estimates can be obtained calculating the cumula-
tive incidence function (CIF) via proper modification of the KM
estimator. The SDR algorithm makes extensive use of KM failure
estimates in its constitutive induction phase, where multilocus
genotypes are either assigned to the ‘high-risk’ or to the ‘low-risk’
group (see Section 2). In presence of competing risks, a significant
deterioration in the discriminative capability of the SDR method is
therefore expected if these risks are not properly estimated or if
the naïve KM is applied ignoring these risks altogether. In the pres-
ent work, we’ll illustrate that the modification of the SDR code to
incorporate the CIF in its searching phase as well as to use the
adapted version of the Brier score for competing risks [16] allows
a correct and adequate detection of epistatic interactions in life-
time datasets with multiple and mutually-exclusive outcomes.
2. Methods

2.1. Review of the SDR algorithm

The SDR algorithm is detailed in [11]; it is main steps are
hereafter summarized. Initially, the dataset is partitioned into
k-nonoverlapping testing sets, where k � 1 parts (training sets)
are used for model construction and k testing sets are retained for
model validation. In every training set, survival estimates are calcu-
lated via the KM method and multilocus cells resulting from the
interaction of n biallelic genetic markers are represented into the
multidimensional space. KM survival estimates are also calculated
for each of these cells and their estimates are compared to those de-
rived from the whole training set; the cells with average survival
estimates lower than the training estimates are classified as ‘high-
risk’ or as ‘low-risk’ otherwise. Examples from high-risk cells are
pooled into one group and those from low-risk cells into another;
predictions from both groups are then evaluated via the integrated
Brier score (IBS) for censored data [17]. For each n-combination of
variables, the k training IBS are averaged and the n-combination
yielding the lowest mean IBS is selected and considered for model
validation. Here, the individual subjects data from the k testing sets
together with their assigned labels are merged sort to produce a lar-
ger TM testing set and a meta-IBS is here computed (a validation pro-
cedure later described in [18]); the n-combination yielding the
lowest meta-IBS is then chosen as the final model.
Whilst in the original form the SDR algorithm uses KM esti-
mates to assign the ‘‘high-risk’’ or the ‘‘low-risk’’ labels to multilo-
cus cells, these estimated can interchangeably substituted by the
estimated cumulative hazards, 1 – KM. The possibility to adapt
the SDR algorithm to the competing risks model is therefore
dependent from an appropriate estimation of the outcome-specific
cumulative hazards.

2.2. Notations for the competing risk model

Let 0 < t1 < t2 < � � �< t be the ordered distinct time points at
which failures of any cause occur and let k be the possible causes
of failure, where k > 1.

We can calculate the survival estimates for any cause of failure
via the Kaplan–Meier method:

bSðtÞ ¼Y
tj6t

1� di

ni

� �
ð1Þ

where ni is the number of cases ‘‘at risk’’ of any event prior to sur-
vival time t, and di, is the total number of events at time ti.

For each time-point ti it is possible to estimate the uncondi-
tional probability of failing from cause k, pk(ti) as the product of
the hazard for the specific cause k, kk(ti) and the probability of
being event-free prior to ti:

cpkðtiÞ ¼ bkkðtiÞbSðti�1Þ; bkkðtiÞ ¼
dki

ni
ð2Þ

where dki is the number of subjects failing from cause k at ti andbSðt0Þ ¼ 1.
Finally, the cumulative incidence for the specific cause k, Ik(t)

can be calculated as the sum of the abovementioned terms pk(ti)
for every time-points before t:

bIkðtÞ ¼
X
ti6t

cpkðtiÞ ð3Þ
2.3. SDR for competing risks

The main difference between SDR and SDR for competing risks
(SDR-CR) lies in the way risk estimates are calculated to assign
either the ‘‘low-risk’’ or the ‘‘high-risk’’ label to multilocus cells
for the competing outcomes. Predictions from pooled assignments
are then evaluated with an adapted version of the Brier score that
specifically accounts for competing risks.

After having parted the dataset into the desired number of
training/testing sets, survival estimates are calculated into the
training sets by applying Eq. (1). The complement of the estimated
survival function is then computed:

bF ðtÞ ¼ 1� bSðtÞ ð4Þ

Cumulative incidences for every cause of failure k, in every
time-interval ti, are then derived according to Eq. (3). Eqs. (4)
and (3) are then applied to calculate the outcome-specific cumula-
tive incidences in every multilocus cell c, here labeled as bJkðtiÞ.
k-Specific differences between the above-mentioned quantities
are then calculated in every multilocus cell:

DkðtiÞc ¼ bIkðtiÞ �bJkðtiÞ ð5Þ

All the Dk(ti)c for each multilocus cells are then averaged via the
geometric mean (GM); to avoid zero o negative values, these are
transformed into a meaningful equivalent positive adding 1 to
any Dk(ti)c value:

GMkðtÞc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiY

ti6t
½1þ DkðtiÞc�t

q
ð6Þ
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Cells with GMk(t)c 6 1 are classified as ‘‘high-risk’’ and cells with
GMk(t)c > 1 are classified as ‘‘low-risk’’ for the k outcome. Examples
from high-risk cells for each k outcome are pooled into one group
and those from low-risk cells for the same k outcome into another.

SDR-CR predictions are evaluated via a version of the Brier score
for censored data modified to account multiple and mutually-
exclusive outcomes, BSCR(t)k [17]. The BSCR(t)k for 0 < ti < t and out-
come k is defined as:

BSCRðtÞk ¼
1
n

Xn

i¼1

½Iðti 6 t di ¼ kÞ �bIðtjXiÞ�2xðt; ti; di; bS; XiÞ

where bSðtÞ is the Kaplan–Meier estimate calculated according to Eq.
(1) which is based on the observations (ti, 1 � di) and I stands for the
indicator function and:

xðt; ti; di; bS; XiÞ ¼
Iðti 6 diÞbSðti � jXiÞ

þ Iðti > tÞbSðtjXiÞ

BSCR(t)k depends on time t, hence it makes sense to use the inte-
grated Brier score for competing risks (IBSCRk) as an overall mea-
sure for the prediction of the model at all times:

IBSCRk
¼ t�1

Z t

0
BSCRðtÞkdt

The lower the IBSCRk the less inaccurate or, conversely, the more
precise the prediction for the k cause-specific outcome is. Thus, for
k-specific outcomes, SDR-CR yields k IBSCRk values, to describe the
best interactions that best explain the k competing causes of
failure.

2.4. Data simulation and power calculation

The general process of data simulation is hereafter described
and detailed in the end of this subsection; the process of compet-
ing risk simulation in the context of survival-time analysis is akin
to [19].

a. The cumulative incidence functions and the cumulative spe-
cific hazards (CSH) for two mutually-exclusive outcomes are
defined; this way the number (proportion) of individuals
failing from each competing event at a pre-specified number
of time-points is set.

b. CSH are generated in three ways to simulate different kind of
scenarios: (1) hazards are kept constants for both outcomes
(e.g. follow an exponential-shaped survival distribution); (2)
the hazard for one outcome is kept constant while the other
varies in time (e.g. follows a different survival class distribu-
tion); (3) the hazard of both outcomes varies in time.

c. A two-factor epistatic models is generated for each compet-
ing event and their distribution of multilocus cells ‘‘at risk’’
and ‘‘not at risk’’, are kept constant over time and fitted to
the number of individuals failing at the pre-specified time-
points.

d. A finite sample of individuals (0.4% and 0.6%) is randomly
drawn from the original population. A 30% or 50% of the
sampled individuals is then randomly censored. Sampling
and censoring is repeated 100 times to eventually derive
the success rate of the search algorithm

In detail, we firstly made reference to the logistic-exponential
equation:

SðtÞ ¼ 1þ ðekh � 1Þk

1þ ðekðtþhÞ � 1Þk
t P 0; k > 0; k > 0; h P 0

and to the corresponding hazard function [20]:
hðtÞ ¼ kkektðekt � 1Þk�1

1þ ðekt � 1Þk
t P 0

here, S(t) is the logistic-exponential survival distribution, t is the
survival time, k is a positive scale parameter and j is a positive
shape parameter and h is a P 0 parameter that shifts the distribu-
tion to the left. From S(t) we can derive the cumulative incidence
function F(t) as 1 � S(t).

We then considered the existence of two competing risks, each
characterized by its own S(t) and F(t), termed S1(t) and S2(t), and
F1(t) and F2(t), respectively. From these distributions we can derive
the cumulative incidence function in the whole population where
the two risks compete:

FpðtÞ ¼ F1ðtÞ þ F2ðtÞ

For S1(t) and S2(t) a finite number of solution exist so that FP

(t) 6 1, any other hypothetical scenario that violates this assump-
tion also violates the conditional independence of outcomes
[12,13] and thus the model is misspecified by the user. The adher-
ence to the abovementioned requirement was ensured during sim-
ulation via a try-and-error procedure.

For simulation purposes, the survival time t was set to five time
units (t = t5) and k1, j1 and h1 as well as k2, j2 and h2 were adjusted
so that FP(t5) was equal to an arbitrary value of 0.6, where
F1(t5) = F2(t5) = 0.3, respectively. The shape of the underlying sur-
vival distribution for each of the competing event was set as fol-
lows: Simulation (1) S1(t) = Exponential (EXP), S2(t) = EXP;
Simulation (2) S1(t) = EXP, S2(t) = Bathtub-Shaped Failure Rate
(BT); Simulation (3) S1(t) = BT, S2(t) = Increasing Failure Rate (IFR).
Example plots depicting the cause-specific hazard functions, the
cause-specific cumulative hazards and the CIF when
F1(t5) = F2(t5) = 0.3 are depicted in Fig. 1.

According to Culverhouse et al. [21], we then generated two dif-
ferent epistatic models (e.g. one model per competing risk), each
composed of two biallelic SNPs, A1–B1 and A2–B2 in Hardy–
Weinberg equilibrium (HWE) with qA1 = qA2 = qB1 = qB2 = 0.2 so
that K1(t5) = KA1 = KB1 = F1(t5) and that K2(t5) = KA2 = KB2 = F2(t5),
where KA1–KB1 and KA2–KB2 are the marginal penetrances for SNP
A1–B1 and SNP A2–B2. In these models the proportion of phenotypic
variance attributable to genetic variation, that is the broad-sense
heritability (H2) can easily be calculated. We set the multilocus
penetrances so that the penetrances of the epistatic models fit
the cumulative prevalence of events at the survival time,
F1(t5) = F2(t5); we therefore define the H2 of these models as the a
cumulative estimate of H2 at t5, H2(t5). The cause-specific H2(t5)
was set to 0.075, 0.10, 0.125 or 0.15 to simulate populations where
the genetic contribution is low-to-mild, that is we expect that the
genetic interaction of two causative SNPs explains from 7.5% to
15% of the cumulated events per outcome.

To calculate the number of events per time-point we proceeded
as follows: let fA1B1(ti) and fA2B2(ti) the cumulative multilocus pen-
etrances for the two epistatic models, where 0 < ti 6 t and A, B = 0, 1
or 2 according to the number of mutant alleles. Time-point cumu-
lative multilocus penetrances are proportionally derived from
F1(t5) and F2(t5):

fA1B1ðtiÞ ¼ fA1B1ðt5Þ � F1ðtiÞ=F1ðt5Þ
fA2B2ðtiÞ ¼ fA2B2ðt5Þ � F2ðtiÞ=F2ðt5Þ

From these values time-point cumulative estimates of H2 or
H2(ti) can easily be calculated and are reported in detail in
Appendix A.

Time-point multilocus penetrances f �A1B1ðtiÞ and f �A2B2ðtiÞ were
then derived from cumulative penetrances:



Fig. 1. Cause-specific hazards and cumulative hazards used for simulation. Cause-specific hazards (top panels) and cause-specific cumulative hazards (bottom panel) in the
populations used for simulation; each outcome parameter is represented by a thin gray or black line, the cumulative incidence functions by a thick black line. Shape
parameters for the logistic-exponential equation and the corresponding hazard functions [19] were as follows: (a) k = 0.072, j = 1 (gray and black lines); (b) k = 0.072, j = 1
(black line) and (c) k = 0.04, j = 0.5, h = 0.023 (gray line); k = 0.04, j = 0.5, h = 0.023 (black line) and k = 1.301, j = 0.08, h = 5.011 (gray line). The corresponding survival
distributions were: (a) exponential (EXP) and EXP; (b) EXP and bathtub-shaped failure rate (BT); (c) BT and Increasing Failure Rate (IFR).
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f �A1B1ðtiÞ ¼ fA1B1ðtiÞ � fA1B1ðti�1Þ
f �A2B2ðtiÞ ¼ fA2B2ðtiÞ � fA2B2ðti�1Þ

Once f �A1B1ðtiÞ and f �A2B2ðtiÞ for 0 < ti 6 t are derived, they are used
to build a population of 100,000 individuals which has a natural
type I censoring rate equal to FP(t5) (e.g. 0.6 in our simulation),
we thus obtained four populations where the first competing risk
was related to the epistatic interaction between SNP A1–B1 and
the second competing risk was related to the epistatic interaction
between SNP A2–B2. To each population, 21 unrelated SNPs in
HWE, with MAF ranging from 0.1 to 0.5 were added (for a total
of 25 SNPs per dataset). From the simulated populations we finally
randomly draw 100 samples of n = 400 or n = 600 instances where
30% or 50% of the n instances were further randomly censored
(type II censoring). A total of 1600 datasets per simulation were
thus generated; overall 1600 datasets � 3 simulations (according
to the different survival distribution used) = 4800 datasets were
built.

SDR-CR with 5-fold cross-validation was run on each dataset
under the null hypothesis of no association between the causal
pairs and the cause-specific outcome; to this end a 100-fold per-
mutation test was used to set the nominal type I error rates to
0.05. From each replication set of 100 datasets/model/degree-
of-censorship/n of instances, we then calculated the power of
SDR-CR, defined as the proportion of simulated samples/set of
which the first causal pair (SNP A1–B1) was selected as the best
model with a significance < 0.05 for the first outcome and, at the
same time, the second causal pair (SNP A2–B2) was selected as
the best model with a significance < 0.05 for the second outcome.

Finally, to better gauge the magnitude of a correct handling of
competing risks over the naïve application of the KM algorithm
when competing risks are ignored, we also run a 5-fold experiment
with the conventional SDR algorithm on the simulated datasets,
treating the alternative outcomes as censored cases and setting
the nominal error rates as above.

Datasets were built using the 2way_EpiComp_Generator tool
written in python and available at, http://sourceforge.net/
projects/sdrproject/files/. Details about the penetrance functions
used for simulation are reported in Appendix A; a step-by-step
example of the processes involved in the generation of the syn-
thetic datasets via the simulation tool is described in Appendix B.
All the calculations were made using the SDR_V2.0b algorithm
written in python with C extensions [22] and available at the
Sourceforge site as outlined beforehand.
2.5. Application of the SDR-CR algorithm in systemic sclerosis (SSc)
lung dataset

To illustrate the applicability of SDR-CR in a real-world setting
we used a dataset of 210 SSc patients referring to our outpatient
clinic. All the patients from referral undergo a thorough evaluation
with a twice-a-year execution of pulmonary function testings
(PFTs) and ecocardiography and, when required, high-resolution
computed tomography (HRCT) or right-heart catheterization
(RHC). It is thus possible to retrospectively collect observational
data about lung involvement in our case-series of SSc patients.
SSc-related lung involvement [23] may either present as: (a) inter-
stitial lung disease (ILD), defined as a forced vital capacity (FVC) on
PFTs < 70% of predicted values + typical appearances on HRCT
extending at least up to the pulmonary venous confluence [24]
and involving at least 5% of the parenchyma; or (b) pulmonary
arterial hypertension (PAH), defined as an increased mean pulmon-
ary artery pressure (mPAP) above 25 mmHg at rest on RHC with a
pulmonary wedge pressure < 15 mmHg and no signs of ILD as de-
fined above [23,25]. Thus, ILD and PAH constitute the typical com-
petitive risk setting, being both cause of failure mutually exclusive.
In our population we considered the occurrence of either outcome
within 10 years from referral.

A large number of our patients underwent a program of DNA
extraction and genotyping as a part of a European genetic program
[26]; genotyping for a number of single-nucleotide polymorphisms
(SNPs) within genes for cytokines with pro-inflammatory, pro-
fibrotic and regulatory functions on the immune system, as de-
scribed elsewhere [27], is available. Overall observational and
genotypic data for 17 SNPs are available for 210 patients; genotyp-
ing details are described in Beretta et al. [27] the list of the studied
SNPs is as follows: IL-1a C-889T, IL-1b C-511T, IL-1b C + 3962T, IL-
1R Cpst1970T, IL-1Ra Cmspal11100T, IL-2 G-330T, IL-2 G + 160T,
IL-4Ra A + 1902G, IL-6 C-174G, IL-6 Ant565G, IL-10 A-1082G, IL-
12 A-1188C, TGF-b1 T/C codon 10, TGF-b1 G/C codon 25, IFNc
AUTR5644T, TNFa A-308G, TNFa A-238G.

http://sourceforge.net/projects/sdrproject/files/
http://sourceforge.net/projects/sdrproject/files/


178 L. Beretta, A. Santaniello / Journal of Biomedical Informatics 46 (2013) 174–180
We run the SDR-CR algorithm on the SSc-lung dataset (up to
3-way interactions) with a 10-fold cross-validation searching
strategy and 1000-fold permutation testing as described above.
SDR-CR was compared to plain SDR with the same settings where
the competing outcomes were alternatively censored.

3. Results

3.1. Simulation study

The power for the SDR-CR algorithm to identify both the caus-
ative pairs of SNPs in the simulated datasets with nominal type er-
ror I rate = 0.05, is reported in Table 1. The shape of the underlying
cause-specific incidence function apparently does not affect the
power of the SDR-algorithm, even if a slight increase in the detec-
tion rate can be observed in models involving a BT distribution
(simulation 2 and 3). This is most likely due to sharper increase
in the hazards for the BT-shaped risk (see Fig. 1), and consequently
in a higher genetic contribution (e.g. cumulative heritability) into
early time-points. As expected, the power of the algorithm is im-
paired by the increase in type II censor rate and is recovered when
the sample size increases.

When competing risks are ignored and treated as censored
cases, a marked reduction in the power to contemporaneously de-
tect both the causative pairs of SNP can be observed, with a reduc-
tion as high as 60% in models with low H2(5). This reduction is less
pronounced models with high H2(5), with a loss of power no higher
than 20%. Table 2 summarizes the power for the conventional SDR
method and the relative decrease of power with respect to the
SDR-CR algorithm, as described in Table 1.

3.2. SSc-lung dataset

The main characteristics of our SSc population were as follows:
191 patients were females (91.1%) and 46 patients (21.9%) had the
diffuse cutaneous subset of the disease; 205 patients (97.6%) tested
positive for antinuclear antibodies (ANAs) and specifically 84 (40%)
were positive for anti-centromere antibodies, whilst 89 (42.4%)
tested positive for anti-topoisomerase I antibodies. Overall type I
censoring was equal to 36 cases (17.1%), 20 subjects (9.5%) experi-
enced PAH during the course of the follow-up, whilst 47 (22.4%)
developed ILD; in the dataset type II censoring accounted for 107
(50.1%) of cases.

SDR-CR identified the IL-10 A-1082G as the best predictor for
PAH, however, this association was not significant after
Table 1
Power for the survival dimensionality reduction algorithm for competing risks (SDR-
CR) in simulated datasets.

H2(5) C (%) n = 400 n = 600

EXP–EXP EXP–BT BT–IFR EXP–EXP EXP–BT BT–IFR

0.075 30 52 56 58 61 62 60
50 36 41 37 46 49 48

0.1 30 73 75 74 81 82 81
50 58 62 60 67 71 66

0.125 30 93 95 94 95 99 96
50 84 83 84 91 93 92

0.15 30 99 100 100 100 100 100
50 99 100 99 100 100 100

Power for the SDR-CR algorithm under different scenarios in synthetic epistatic
lifetime datasets with competing risks; power calculated after 5-fold cross-
validation and 100-fold permutation test to set a nominal type I error rate = 0.05.
H2(5), cumulative heritability at the survival time t, where t = 5; C, degree of type II
censorship; n, datasets size. Shapes of the cause-specific cumulative incidence
functions: EXP, exponential; BT, bath-tube failure rate; IFR, increasing failure rate.
permutation testing (p = 0.602); conversely, a significant interac-
tion between IL-1a C-889T and the IL-1b C-511T SNP was found
to be associated with the occurrence of ILD, with a IBS = 0.1596
and a permutation p value equal to 0.029. As outlined in Fig. 2, pa-
nel a, the interaction between these SNPs shows the typical non-
linear or epistatic pattern. Fig. 2, panel b depicts the cumulative
incidences of ILD for the pooled high- and low-risk cells.

The naïve application of the SDR algorithm to the SSc-lung data-
set, treating either outcomes as censored cases, failed to find any
significant association with PAH or ILD.
3.3. Computational cost

To determine the computational demand of the SDR-CR algo-
rithm we run a 5-fold cross-validation experiment on datasets
with two competing causes of failure, 10 distinct time-points 10,
20, 50 or 100 SNPs and 500, 1000 or 2000 instances. On a Intel�

Core™ i7 CPU Q740 @ 1.73 GHz and 4 Gb RAM, the CPU time nec-
essary to run a 2-fold experiment is described by the following
exponential equations: 500 instances experiment, CPU time =
0.0109 � (n of SNPs)2.0703; 1000 instances experiment, CPU time =
0.0141 � (n of SNPs)2.0703; 2000 instances experiment, CPU
time = 0.0206 � (n of SNPs)2.0703. Thus, for instance a pairwise inter-
action in a 500 instances dataset with 50 SNPs would require
approximately 35 s.
4. Discussion

The comprehension of complex human diseases requires the
development and the availability of adequate investigational tools
capable of analyzing their intricate architecture. In the study of
chronic diseases, time represents a variable of primary interest to
evaluate the relationship between attributes and outcomes, espe-
cially when the occurrence of a certain event is scattered in the
time-course of the illness. Thus, to avoid the possibility to draw
wrong conclusions when censoring is ignored, specific statistical
algorithms have to be applied. SDR is an analytical approach con-
ceived in the effort to unveil another layer of complexity of human
disease: the non-linear interaction among genes in time-dependent
contexts [10]. In the present work we further push forward this po-
tential taking into account the not unusual situation where the end-
point consists of several mutually exclusive events of interest,
which defines the ‘competing risks model’. We demonstrated in
synthetic epistatic lifetime datasets the importance to properly
handle competing risks, as, indeed, when these are ignored and na-
ively treated as censored cases, the predictive capability of SDR is
greatly impaired. The better performance of SDR-CR compared to
the naïve SDR in the competing risk analysis mirrors previous
observations made in the context of univariate or linear interaction
analysis [12,14,15].

Herein we also showed that SDR-CR can be fruitfully applied in
the real-world, describing an epistatic interaction that is signifi-
cantly associated with the occurrence of ILD in a population of
scleroderma patients. In accordance with simulation results, this
association was overlooked when competing risks were ignored.
SDR-CR, similarly to other algorithms aiming at discovering epi-
static relations, do not provide clues about the precise mechanism
by which significant genetic variations do interact at the cellular or
molecular level [28]. Therefore, it would be speculative to hypoth-
esize the means by which the joint effect of the IL-1a C-889T and
the IL-1b C-511T SNPs would promote or sustain the development
of ILD in SSc subjects. Of interest, increased concentrations of IL-1b
in bronchoalveolar lavage fluid from SSc patients compared to con-
trols and a negative correlation between IL-1b and FVC, have been
reported by Hussein et al. [29].



Table 2
Power for the naïve survival dimensionality reduction algorithm ignoring competing risks and relative change vs. the SDR-CR algorithm risks (SDR-CR) in simulated datasets.

H2(5) C (%) n = 400 n = 600

EXP–EXP EXP–BT BT–IFR EXP–EXP EXP–BT BT–IFR

0.075 30 17 (�67.3%) 20 (�64.3%) 19 (�67.2%) 24 (�60.7%) 25 (�59.7%) 24 (�60%)
50 10 (�72.2%) 13 (�68.3%) 12 (�67.6%) 19 (�58.7%) 21 (�57.1%) 19 (�60.4%)

0.1 30 41 (�43.8%) 42 (�44%) 41 (�44.6%) 48 (�40.7%) 50 (�39%) 49 (�39.5%)
50 30 (�48.3%) 32 (�48.4%) 32 (�46.7%) 41 (�38.8%) 43 (�39.4%) 43 (�34.8%)

0.125 30 51 (�45.2%) 52 (�45.3%) 51 (�45.7%) 55 (�42.1%) 57 (�42.4%) 54 (�43.8%)
50 42 (�50%) 44 (�47%) 43 (�48.8%) 51 (�44%) 55 (�40.9%) 52 (�43.5%)

0.15 30 66 (�33.3%) 68 (�32%) 66 (�34%) 73 (�27%) 75 (�25%) 72 (�28%)
50 57 (�42.4%) 59 (�41%) 58 (�41.4%) 63 (�37%) 66 (�34%) 63 (�37%)

Power for the naïve SDR algorithm to detect both the couples of causative SNPS under different scenarios in synthetic epistatic lifetime datasets with competing risks and
relative change in power (in brackets) compared to the SDR-CR method (see Table 1). Competing risks are handled as censored cases. For legend see Table 1.

Fig. 2. Best epistatic model for interstitial lung disease (ILD) in the systemic sclerosis (SSc)-lung dataset. Results from SDR-CR analysis in the SSc-lung datasets. (a) Pattern of
interaction between the IL-1a C-889T and the IL-1b C-511T single nucleotide polymorphisms (SNP) to explain the occurrence of ILD. The scattered distribution of high-risk
cells (geometric mean [GM] < 1) and low-risk cells is indicative of non-linear interaction or epistasis. (b) Cumulative incidence of ILD in patients classified as high-risk and
low-risk by the SDR-CR algorithm. No results are provided for the competing event (e.g. pulmonary arterial hypertension), which was not significantly associated with any
SNP or SNP–SNP interaction.
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To our knowledge, SDR-CR is the first data-mining method capa-
ble of handling non-linear interactions in lifetime competing risk
models. From the simulation we conducted we can conclude that
SDR-CR is suitable for this kind of analysis in candidate gene studies
and in small-to-medium-size datasets. We indeed observed a satis-
factory power also in situations with low number of instances (e.g.
200 per outcome), low heritability and high rates of lost-to follow-
up observations (e.g. type II censoring) which pose a number of not
easily solvable detection challenges. Conversely, we cannot make
inferences about SDR-CR predictive ability in large-scale datasets;
even if previous studies have shown that multifactor dimensional-
ity reduction, the case-control inspiring counterpart of SDR [10], is
relatively insensitive to background noise [30], this property could
not directly translated to SDR-CR and it would require an adequate
simulation study. Moreover the SDR-CR algorithm is computation-
ally demanding and an exhaustive analysis in large-scale datasets
may be unfeasible due to the large number of interactions to test
and to the time that this analysis would require. The test experi-
ment we conducted indicates, for instance, a CPU time of 9.5 h to
analyze via a 5-fold cross-validation experiment a pairwise interac-
tion in a 2000 instance dataset with 1000 SNPs and five time units.

Overall, SDR-CR strengths and weaknesses are largely similar to
those we previously described for SDR [10] among the former, be-
sides power, we can list, the fully non-parametric nature of the
algorithm, the small chance to describe false positive results due
to the cross-validation procedure (that can also be complemented
by permutation testing); among the latter, we remember the
difficulty to interpreter the results at the biological level as well
as the possibility that the performance of the algorithm may to
some extent be dampened in presence of heterogeneity [30].

The current version of SDR-CR as well as its precursor SDR, can-
not handle covariates or model interactions for quantitative trait
loci. A straightforward extension to tackle these issues would be
to estimate the population and the multilocus cell survival functions
via the Cox regression method (for SDR) or to model the hazards of
the subdistributions (for SDR-CR) according to Fine and Gray [31].
High-risk and low-risk assignments would then be performed via
the usual SDR procedure or could be accomplished via a parametric
estimation, similarly to the method outlined by Calle et al. [32].
5. Conclusions

Summarizing, herein we presented an extension of the SDR
algorithm to analyze competing risks models (SDR-CR). Simulation
studies let us think that this approach may be fruitfully used in the
analysis of genetic lifetime datasets with mutually-exclusive out-
comes, overcoming the limitations and the remarkable loss of
power observed when data are not properly handled.
Appendix A. Supplementary material

Supplementary data associated with this article (cause-specific
multilocus prevalences; generation of simulated epistatic lifetime
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dataset) can be found, in the online version, at http://dx.doi.org/
10.1016/j.jbi.2012.11.002.
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