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Abstract 

Bagga, K.S., L.W. Beineke, W.D. Goddard, M.J. 

Discrete Applied Mathematics 37138 (1992) 13-28. 

Lipman and R.E. Pippert, A survey of integrity, 

A communication network can be considered to be highly vulnerable to disruption if the destruction of 

a few elements can result in no member’s being ab!e to communicate with very many other;. This idea 

suggests the concept of the integrity of a graph - the minimum sum of the orders of a set of vertices 

being removed and a largest remaining component. This survey includes results on the integrity of 

specific families of graphs and combinations of graphs, relationships with other parameters, bounds, 

computational complexity, and some variations on the concept. 

1. Introduction 

In an analysis of the vulnerability of a communication network to disruption, two 
quantities (there may be others) that come to mind are (i) the number of elements 
that are not functioning and (ii) the size of the largest remaining group within which 
mutual communication can still occur. In particular, in an adversarial relationship, 
it would be desirable for an opponent’s network to be such that the two quantities 
can be made to be simultaneously small. 

The concept of integrity was introduced as a measure of graph vulnerability 
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in this sense. Formally, the vertex-integrity (frequently called just the integrity) is 

I(G) := x-l~in) { 1x1 + MG -x)L 

where m(H) denotes the order of a largest component of H. This concept was in- 
troduced by Barefoot, Entringer and Swart [7], who discovered many of the early 
results on the subject. In his thesis [ 151, Goddard added many results and developed 
some generalizations. 

We note that even though the motivation for the concept was the disruption of 
communication, the definition does not require that a graph be connected. We also 
note that the original definition permitted the removal of all vertices, but that is 
never necessary. As immediate consequences of the definition, we have the follow- 
ing: If G is a graph of order p, then I 5 I(G)sp, a;ld if H is any subgraph of G, 
then I(H) I I(G). 

A few further comments on notation are appropriate. here. The ordc:r of a graph 
G (that is, the number of vertices) will generally be deno:4 by p, but may also be 
denoted by ICI. As usual, Y and E will denote respectively the sets of vertices and 
edges of G, and X will denote a proper subset of V. As noted earlier, m(G) equals 
the largest order among the components of G. 

The next section is the heart of this survey. It contains results on the integrity of 
specific families of graphs, on bounds for the integrity, on maximal and minimal 
graphs of given integrity, on relationships between integrity and other parameters, 
and on computational complexity. In Section 3 we discuss variations and generaliza- 
tions of the concept. 

2. Results on integrity 

2.1. Basic results 

In order to develop some intuition for integrity, we first consider trees. Since the 
deletion of the center vertex from the star K,,,] leaves n isolated vertices, clearly 
I(&,,) = 2. For a second example, we consider the path Pp with P vertices. If a set 
of r vertices is removed, then there are r+ 1 or fewer components remaining, and 
one of them must have at least (p - r)/(r+ 1) vertices. It follows that 

P-r 
I(P,)Zmin r+- 

r I I r+l - 

Now for XL 0, the function f(x) =x + (P -x)/(x + 1) has a minimum value of 
21/pi-2. Since the integrity is integer valued, we round this up to get a lower 
bound. This value can in fact be achieved for each p, so we have 

z(P,) = r21/pil- 2. 
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Fig. 1. 

Having considered stars and paths, we turn to other trees. Define the comet Cl,, 
to be the graph obtained by identifying one end of the path Pr with the center of 
the star Kt,, (see Fig. 1). It is not difficult to show that if one edge is moved from 
the “head” to the “tail”, then the integrity cannot go down and it can go up by 
at most 1; that is9 

Since paths and stars are extreme comets, it follows that comets of order p achieve 
all values between I(K I,p_l) and I(P,). Not surprisingly, this covers the range of 
values for all trees. Among all graphs of order p, the range of the integrity is the 
set {1,2, . . . . p); for nontrivial connected graphs, it is (53, . . . ,p}, these values being 
assumed by graphs obtained by attaching a complete graph to the end of a path. 

In the following theorem, we give the integrity of a variety of families of graphs. 
These results were first found by Barefoot, Entringer and Swart [7,8]. 

Theorem 2.1. The integrity of 
(a) the complete graph Kp is p; 
(b) the null graph Kp is 1; 
(c) the star K1 ,, is 2; 
(d) the path Pi is r2 fpT-]- 2; 
(e) the cycle Cp is r2 $I- 1; 
(0 the comet Cp_ r r is I(P,), if rl fpi - 4; [2fpyrl- 1, otherwise; 
(g) the complete bbartite graph K,,, ,, is 1 + min(m, n>; 
(h) any complete multipartite graph’of order p and largest partite set of order r 

isp-r-H. 

We observe that among the graphs missing from this list is the n-dimensional 
cube; in fact, its integrity remains undetermined and this is discussed in Subsection 
2.5.4. 

The second theorem tells which graphs have integrity near the extremes of the 
range; only the case I(G) =p - 1 is nontrivial [19]. 
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Theorem 2.2. Let G be a graph of order p. 
(a) I(G) = 1 if and only v G is null. 
(b) I(G) = 2 if and on@ if all nontrivial components of G are edges or the only 

nontrivial component is a star. 
(c) I(G) =p - 1 if and only if G is not complete and G has girth at least 5. 
(d) I(G) = p if and only if G is complete. 

2.2. Extrema! matters 

In proving results on integrity, one frequently uses a set X of vertices, called an 
l-set, that achieves the integrity; that is, X is an I-set if 1X1+ m(G -X) = I(G). If 
X is an I-set, then it is not difficult to show that 

(a) I(G-X)=m(G-X); 
(b) X is a cut set unless G is complete; 
(c) if X is minimal, then each vertex u in X is a cut vertex of G - (X- (v>). 
This last observation leads to an alternative formulation of integrity, as stated in 

our next result; it could be taken as a recursive definition [19]. 

Theorem 2.3. If G is a nontrivial graph, then 

I(G) = min (m(G), 1 + rEi; I(G - v)) . 

For nontrivial connected graphs, this can be restated as 

I(G) = 1 + rEi; I(G - v). 

Some vertices that achieve this minimum are described in the next result. 

Theorem 2.4. If in graph G, v is a vertex for which deg v I I(G - v), then I(G) = 
I+ I(G - v). 

We observe that this result is best possible in that the bound on the degree cannot 
in general be reduced. An example is an endvertex v in P3. Furthermore, the con- 
verse is not true since all vertices in an I-set of G may satisfy deg v < I(G - v), as 
in a path. 

Graphs that are minimal with respect to a given parameter are generally of in- 
terest. Formally, we define a graph G to be hninimd iF fm every edge e in =G, 
I(G - e)< I(G). Note that if G is I-minimal, then I(G - e) = I(G) - 1, and because 
of the monotonicity property of integrity, I(H)< I(G) for every proper subgraph 
H of G. Clearly, every graph has an I-minimal ;ubgraph with the same integrity. 
Complete graphs are of course I-minimal, and in fact K2 is the only connected I- 
minimal graph of integrity 2. Beyond this, little is known about such graphs. 

A similar concept is that of an t-critical graph: G is such a graph if I(G - v) < I(G) 
for every vertex v. Again, not much study has been made of these graphs. Clearly, 



an I-critical graph can have no isolated vertices, and an I-minimal graph wi 
such vertices must be I-critical. Some graphs that are I-critical but not I-minim 
the cycles of square order. 

At the opposite extreme from an I-minimal graph is a graph G satisfying 
I(G U e)> I(G) for every edge e in G. Such graphs are called l-maximal, and 
are characterized in [19]; they are joins of complete graphs with the unions of 
complete graphs. 

Theorem 2.5. A noncomplete graph is I-maximal if anti’ only if it is of the f&-m 
K,-+(K,,,U--UK,,,), where tz2, and if nl<nzc~~~n,, then n,_,=n,rnl+n2-I. 

There are many other interesting extremal questions about integrity, most of 
which are still unexplored. One example of such a problem is to find the maximum 
and minimum integrities for connected graphs (or other families) with given 
numbers p and q of vertices and edges. As we observed above, among trees (w 
q =p - 1) the extremes occur for paths and stars; and when q = p, the cycle Cp gives 
the maximum, while a star with one additional edge clearly achieves the minimum 
(there are others). In general, this seems to be a hard problem, for as is easily ob- 
served from Theorem 2.2(c), just finding the minimum number of edges in a graph 
with integrityp - 1 is equivalent to finding the maximum number of edges in a graph 
with girth at least 5. 

2.3. Integrity and other parameters 

Certain other parameters provide bounds on the integrity of a graph. For exam- 
ple, since a minimal I-set in a noncomplete graph must be a cut set, it is obvious 
that the integrity of any graph is at least 1 more than the connectivity. However, 
even though equality sometimes holdr here (as, for example, for stars), this lower 
bound can be improved by using instead the minimum degree. Parameters that will 
be discussed here include the following: 

l 6, the minimum vertex degree; 
l K, the connectivity; 
l a, the covering number; 
l fl, the independence number; 
l x, the chromatic number; 
c f, the tomughness. 
The results that follow are due to Goddard and Swart [19,20]. Each of the bounds 

given in the first theorem is sharp; the second theorem tells when equality holds for 
three of them. 

Theorem 2.6. For any graph G, 
(a) I(G)(a(G)+ 1; 
(b) I(G)rG(G)+ 1; 
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(c) I(G)? min, max{d,, t - 1 >, where the degrees of G are dl Ed,>, l .* 1 dP; 

(d) I(G) 1 x(G); 
(e) I(G) 2 (p - K(G))@(G) + K(G); 
(f) I(G)?2 fip - T, if G is not complete. 

Theorem 2.1. For any graph G, 
(a) I(G) = K(G) + 1 if and on& v K(G) = Q(G); 
(b) I(G) =a(G) + 1 if and only if G does not contain 2K2 as an induced 

subgraph; 
(c) I(G) = 6(G) + I if and only if G z rK,, or G z rK,, + F for some graph F satis- 

fying s(F)zIGJ -(2r-l)n-1. 

In addition, we note that equality holds in part (d) (and hence also in (c)) of 
Theorem 2.7 for stars and complete graphs, among others. Inequality (e) is sharp 
for any graph G satisfying K(G) = a(G) or a(G) - 1, while (f) is sharp for cycles of 
length greater than 3. 

Comparisons among several vulnerability measures for some specific families of 
graphs have been made by Barefoot, Entringer and Swart [7] and Goddard and 
Swart [ 181. 

2.4. Unary operations 

The remainder of this section is devoted primarily to results on the integrity of 
graphs obtained via various operations. In this subsection we concentrate on the opera- 
tions of taking complements and powers; the next is devoted to binary operations. 

2.4. I. Complement 
We begin with the Nordhaus-Gaddum theory as developed in [ 181. The following 

theorem gives lower bounds for the sum and product of the integrity of a graph and 
its complement. 

Theorem 2.8. For any graph G, 
(a) I(G)cI(Qzp+ I; 
(b) I(G)* I(G)rp. 

As is frequently the case with results of this type, the bound for the product is 
simply an algebraic consequence of that for the sum. Here, equality in (b) is attained 
only when G or G is complete. However, there are additional graphs for which 
equality holds in (a), such as any complete bipartite graph or K,,, - e. 

Good upper bounds appear to be considerably more difficult to obtain, with the 
best current results being given in terms of the Ramsey numbers r(m,n)-the 
smallest number such that every graph of that order contains either m mutually ad- 
jacent vertices or n independent vertices. Few values of r(m,n) ax known. 
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Theorem 2.9. Let Sp :=2p+&min(m+n: r(m,n)>p). Then foranygraph G of 
order p, 

(a) I(G)+I(@rS,; 
(b) I(G) l I(@s tS;Aj. 

We observe that again inequality (b) follows from (a). It is known that (a) is sharp 
for pi 10 except when p = 8, in which case S,,= 13, but 12 is an upper bound. In 
general, the largest known sum for I(G) + I(G) when p>4 is [3p/21, and this is 
achieved when the cycle CP is taken to the power Lp/4j (see next theorem). 

2.4.2. Powers 
We begin with the integrity of powers of cycles, a result due to Barefoot, 

Entringer and Swart ([8] corrects some values given in [7]). 

Theorem 2.10. For 11k~p/2, let s= rfjxq-+l. Then 

Since for any graph G amd positive integer i, G’ is a subgraph of G’+ i, it follows 
that 

Furthermore, if I(G) = m(G), then equality holds throughout. The following partial 
converse to that fact is established in [ 171. 

Theorem 2.11. If G is a graph for which I(G3)= I(G), then I(G) =m(G). 

2.5. Binary operations 

In this subsection we consider results (primarily from [17]) on the integrity of the 
union, join, composition, and product of two graphs. 

2.5.1. Union 
Clearly, if G is the union of G,, G2, . . . , G,, then m<G) = max m(Gi). It follows 

that when 5 has enough components of the largest older (or enough near to that), 
then I(G) = m(G). In particular, if G = ri,Y and n 2 m(H) - 1, then I(G) = m(H). In 
general, however, we have only elementary bounds for the integrity of unions of 
graphs, as stated in the following result. 

Theorem 2.12. If G = Uy=, Gi, then 

maxI(Gi)9(G)s i I(Gi)-n+l. 
i i= I 
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It is not difficult to find graphs for which these bounds are sharp. In fact, the 
two bounds are equal for any graph with just one nontrivial component. 

2.5.2. Join 
In this case, exact results are known. 

Theorem 2.13. For any graphs G and H, 

I(G+H)=min{I(G)+ IHI, I(H)+ ICI>. 

Corollary. For any graph G, I(G + K,) = I(G) + r. 

This result also follows from Theorem 2.5. 

2.5.3. Composiiion 
The composition (also known as the lexicographic product) G,[Gz] of two 

graphs GI and Gz has as its vertex set V(G,) x V(G*), with (u,,L+) adjacent to 
(ut, u?) if either ul is adjacent to t)l in G, or u1 = ol and u2 is adjacent to 02 in G2. 
Note that, unlike the union, join, and (Cartesian) product, this operation is not 
commutative. 

Theorem 2.14. For any graphs G and H, 

I(G[H]; -=min(l(G). IHI, cx(G)- IHI + I(P(G)H)). 

Corollary. For any graph G, 
(a) WW,,I) = nW). 
(b) QKJGI) = (n - 1) IGI + W). 

2.5.4. Product 
The (Cartesian) product G, x Gz of graphs G1 and G2 also has V(G,) X I/(&) as 

its vertex set, but here (ul, w2) is adjacent to (ut, u2) if either u1 = uI and u2 is adja- 
cent to u-, or u2 =u2 and uI is adjacent to ot. We observe that the product of two 
graphs is a subgraph of their composition and that it contains copies of each graph 
equal in number to the order of the other graph. These observations give the rather 
crude bounds stated in the next theorem. 

Theorem 2.15. For any graphs G and H, 

By using results on unions and compositions, variour other bounds for the integri- 
ty of products can be obtained. Furthermore, when one of the graphs is specified, 
it may be possible to refine the bounds, as is done for Kz in the following result [2]: 
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Theorem 2.16. For any graph G, 

21 

These bounds are sharp; for example, G = Kz,, achieves the lower bound, while 
for mfn, G= K,,,,. achieves the upper one. Our next two theorems (also from [2]) 
show that the integrity of prisms and ladders is always within 1 of this upper bound, 
and equals it about half the time. 

Theorem 2.17. (a) For n = 3 or 4, I(Kz x C,,) = 2I(C,) - 1 = 5. 
(b) For nr5, ifn=r%k with Osks2r, then 

2I(C,,)-1, if 1 cksf 
3r 

I(K2 x C,) = 
or r<kl--, 

2 
otherwise. 

Theorem 2.18. For n 2 2, if n = r2 + k with 0 I kl2r, then 

I(K2 x P,J = 
21&)-l, 

3r 
if OSk<i or r%k<--, 

otherwise. 

It would be very interesting to learn the integrity of general products of paths- 
the so-called “grid graphs”, for which this last theorem provides a beginning. In 
fact, the previous two theorems notwithstanding, exact results on products seem dif- 
ficult to obtain, even for natural families of graphs. One other successful effort 
yielded the integrity of products of stars [ 171. 

Theorem 2.19. If rs s, then 

w,r x Kl,,) = 
2r-1, if r=s, 
2r 

9 otherwise. 

Even the integrity of the product of complete graphs is complicated. The expres- 
sion in the next formulation in fact involves the solution of an integer optimization 
problem. 

Theorem 2.20. Let 21 min. Then 

I(K,,, x K,,) = mn - max j . 
I 5 j< 01 

Corollary. (a) I(K2, x KzS) = 3rs. 
(b) [f 2s + 1 s r’, then I(K2r x K2,$ + I ) = 3rs + 2r. 
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(c) Let rn=2r+ 1, nzr’, and n=t (mod tn) with Ost<m. Then 

if t is odd, 

if t is even. 

We conclude this subsection with another problem involving products: What 
is the integrity of the n-dimensional cube? For some time it was conjectured to 
be 2” -t + 1, a value obtained by removing a complete partite set of vertices. 
Quite recently, it was shown [l l] that the integrity of the n-dimensional cube is 
O(2” log n/fi). 

2.6. Computational complexity 

As is true of many interesting measures of vulnerability, the determination of in-, 
tegrity is NP-complete. More formally, it was shown by Clark, Entringer and 
Fellows [ 131 that the following decision problem is NP-complete: 

Vertex-integrity. 
Input: A graph G and a positive integer k. 
Question: Is I(G) s k? 

In fact, the question remains NP-complete even when the input is restricted to 
planar graphs. 

On the other hand, it was shown by Fellows and Stueckle [14] that when k is fixed 
the decision problem has an O(p’) algorithm; that is, the following decision pro- 
blem is O(p’): 

k-vertex-integrity. 
Input: A graph G. 
Question: Is I(G) 5 k? 

This result uses the Robertson-Seymour theory of minors and the fact that the 
set of graphs !Gk := (G: I(G)5 k} is closed under the operations or replacing a 
graph with a subgraph of itself and of contracting an edge. (That is, St. is a !ower 
ideal in the minor ordering. It is not true that $&. is a lower ideal in the lnlmersion 
ordering.) The proof produces an algorithm with a hidden constant associated with 
O($) that is exponential in k. in [13] the obstruction sets for ks3 are con- 
structed, and it is proved that for large k the number of obstruction sets is greater 
than (1.7)‘. 

A second type of complexity question concerns the computation of I(G) when G 
is restricted to some specified class of graphs. In particular, we have shown that 
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I(G) can be computed in time O(p3) when G is a tree or a cactus (unpublished). 
These algorithms work from the endblocks of the graph toward the center and have 
the feature that for a specified M they compute a minimal set X for which 
I~J(G - X&M. The integrity is then found by repeating the procedure for several 
values of M. 

Since the original decision problem is known to be NP-complete for planar graphs 
but polynomial for trees, it would be interesting to know more about the computa- 
tional complexity of other families of graphs. 

3. Variations and generalizations 

3. I. Edge-integrity 

In the most significant variation of integrity, edges rather than vertices are 
destroyed. Formally, the edge-integrity of a graph G is defined as 

I’(G):=FI; { ISI +nr(G-S)}. 

This definition may appear questionable since it involves adding numbers of ver- 
tices and edges. An obvious alternative is to weight the elements in some fashion in 
order to make them more comparable to each other, but it 1s not obvious what the 
weighting factors should be. In fact, the original version leads to a number of inter- 
esting results, and for that reason, as well as its simplicity, it continues to be used. 

Like the vertex-integrity, this concept was introduced by Barefoot, Entringer and 
Swart [7], and they discovered a number of its basic properties. The edge-integrity 
of a graph with p vertices is always between I and p, and it is always ai least as large 
as the vertex-integrity. Exploring edge-integrity in its fullness would take us too far 
afield from the main topic of this survey. For that reason and for space considera- 
tions, we will only consider some highlights here, and refer the reader to [5] for a 
fuller survey. 

The following theorem gives the edge-integrity o,f some elemznltary families of 
graphs. 

Theorem 3.1. The edge-integrity of 
(a) the complete graph KP i:: p; 
(b) the nuN graph RP is 1; 
(c) thestar K, ,, is n+l; 
(d) the path Pi is r2 til- 1; 
(e) the cycle CP is r2 $1 .for p 14; 
( f) the comet CP_ r r is I’(P,), ifp-rs fp- 1; r+ 1+ rp/(r+l)l, otherwise; 
(g) the complete bhartite graph K, ,, is m + n; 
(h) any complete multipartite graph’ of order p is p; 
(i) the n-dimensional cube Q,, is 2”. 
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As with the vertex-integrity, paths and stars attain the extremes of the edge- 
integrity among all trees, but now they are at the opposite ends. The edge-integrity 
of trees and tree-like graphs has received considerable attention; see, for example, 

[3,6&U. 
The reader may have observed that unlike the vertex-integrity, the edge-integrity 

of many graphs equals their order, including such sparse graphs as the n-cubes. 
Because such graphs have the greatest possible edge-integrity, they have been called 
honest. If a graph is not honest, then, except for the path P4, its complement is 
honest [4,21]. But in fact, almost all graphs are honest, since every graph of diameter 
2 is known to be honest [l], and almost all graphs have diameter 2. Additional con- 
nections between the edge-integrity and diameter have also been explored [9]. 

Most of the questions that have been asked about vertex-integrity can also be 
asked in the edge case; see, for example, [1,5,4,10,15,21]. As with the vertex- 
integrity, it is the case that the computation of the edge-integrity is NP-complete 
[ 13,141, but is known to be polynomial for some families such as trees [3,6]. 

3.2. Mean integrity 

The mean integrity is a variation that uses the average order, instead of the max- 
imum order, of a component in a graph. Formally, we let p,(G) denote the order 
of the component of G containing vertex u and define the average component order 
to be 

1 
WG) := p ,,&pJG) 

(in contrast to the maximum component order /n(G) = anax_ ~JI,(G)). The mean 
integrity is then defined analogously to the integrity as 

J(G):=r$y {/Xi +m(G-X)}. 
2’ 

This concept was introduced by Chart rand, Kapoor, McKee and Oellermann [12], 
and the results given here are taken from that paper. Clearly, for any graph G, 
J(G)sZ(G), and the following theorem implies that there are some elementary 
graphs for which the two parameters are equal. 

Theorem 3.2. Let G be a graph of order p. 
(a) J(G) =p if and only if G is complete. 
(b) J(G) = 1 if and only if G is null. 
(c) J(K,,,,,) = 1 + min {III, n]. 
(d) If G is a complete multipartite graph with largest partite set of order r, then 

J(G)=p-r+ 1. 

However, the following result shows that the range of values of the mean-integrity 
function is considerably less restricted than that of integrity. 
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Theorem 3.3. For every rational number rz 1, there exists a graph with mean in- 
tegrity r. 

It is therefore not surprising that there exist pairs of graphs with equal integrity 
but different mean integrity, and vice versa. 

The mean integrity is related to certain other parameters in the following way: 

In particular, we note that if G is n-connected, then J(G)1 n + 1. Chartrand et al. 
[12] established the following partial converse for graphs with high mean integrity 
(between p- 2 and p- 1). 

Theorem 3.4. If n is a positive integer for which 

J(G)>p-2+ 
2 

p-n+1 ’ 

then G is n-connected. 

Corollary. For any graph G, 

I+~(G)sJ(G)s~--2+ 
2 

P-W) l 

We conclude with another lower bound. 

Theorem 3.5. Let G be a graph with p vertices and q edges and let 

n:= L(p-+)- f-q]. 

Then J(G)rn+ 1. 

(*c) 

This result is sharp since J(& + I$,__,) = n + 1, and n, p, and q satisfy (*). 

3.3. The general schema 

In [ 161, Goddard develops a schema for the construction of graphical parameters 
that emulate integrity in their behavior. From a given parameter ly, define a new 
parameter Y, induced by w, as follows: 

Integrity (when v(H) = vn(H)) and mean integrity (when W(H) = m(H)) are clearly 
two examples of such functions. Another is provided by connectivity, for which 

if H is connected, 

if H is disconnected. 
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More will be said about this type of inducing function later, but first we look at 
some results that are natural extensions of results on integrity. 

3.3. I. Basic properties 
We observe that if Y is induced by ry, then for any graph G, Y(G)5 v(G). Alsc, 

Y(K,) = w(K,), which we denote by vo. The following theorem gives analogues to 
certain results from Section 2 that hold when the inducing parameter satisfies one 
elementary property. There are other analogues that we do not bother to restate 
here. 

Theorem 3.6. Let v/ be such that y/(G) 1 A(G) + v/O for every graph G. 
(a) If G = H+ K,, then Y(G) = Y(H) + r, and, in particular, 

Y(K,) =p - 1 + &. 

(b) If the degrees of the vertices of G are d, 1 d+ ... 1 dP, then 

Y(G)zy/,+minmax(d,,t-1). 

(c) For any graph G, 

and 
Y(G)+ Y(@zp-1+2~/~, 

Y(G)= Y(@zpwo. 

3.3.2. Relations between parameters 
We now turn to questions involving more than one parameter in the general 

schema. Our first result in this area is an elementary observation: If I,V and 8 induce 
the parameters Y and 0 respectively, and if WIT for all G, then 
Y(G&O(G) for all G. 

For our next results we make another definition. Given a graph parameter p, a 
graph G is called p-acritical if G is trivial or for every vertex v, p(G - v) rp(G). We 
denote the family of acritical graphs of ,u by d(p). The following theorem deter- 
mines the parameters which fit the general schema. 

Theorem 3.7. Let p and v/ be graphical parameters, with p integer valued. Together, 
the for/o wing two conditions are necessary and sufficient for p = Y: 

(1) For all G, ,u(G) I v(G), with equality if G E&J). 
(2) For all G, p(G - v) z&G) - 1 for each vertex v. 

It is also shown in [16] that any family %? of graphs that contains K, is the 
acriiical family of some parameter in the schema. To this end, the recognizer ryg 
of such a family @? is defined to be 

y/,(G) = 
Pi -1, if G$g, 

0, if GE @?. 
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The following result is then immediate: 
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Theorem 3.8. If wv is the recognizer for a farnil’ @T of graphs containing K, , then 
for the induced parameter Yv, &(!&) = P?. 

We note that for nonacritical graphs, the recognizer could take any sufficiently 
large value instead of the order minus one; this choice is made in general because 
it fits with integrity. In an earlier observation, connectivity was given as an example 
in this form, with the acritical family being all disconnected graphs and Kt. The 
vertex covering number has as its acritical family all the null graphs. No such 
elementary description is known for the family of I-acritical graphs. 

3.3.3. Variations on the general schema 
More general classes of parameters can be generated by modifying the function 

being minimized. For a graphical parameter (p and a function f of two variables, 
form 

@J(G) := $;f (IXi, (p(G -XN. 

For example, the toughness of G is defined as 

r(G) := min ( 1 XI /k(G - X)> 

where k(Hj is the number of components of H, and the minimum is taken over all 
cut sets of G (this must be modified if G is complete). 

Further examples of this generalized schema are limited primarily by the interest 
they generate. Some may be of special interest because they provide good models 
or detect differences that are deemed important. 

Finally, we mention that the general schema has a natural edge analogue: 

Y(G) := yjn, ( (Si + ly(G - S)), 

with many corresponding results. In particular, it is clear that the edge-integrity is 
induced by m (the order of a largest component). 
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