Unbounded solutions of a class of planar systems

Xiaojing Yang

Department of Mathematics, Tsinghua University, Beijing 100084, China

Received 5 January 2004
Available online 8 July 2004
Submitted by J. Mawhin

Abstract

In this paper, the unbounded solutions for the following nonlinear planar system:

\[x' = a^+ y^+ - a^- y^- + f(t), \]
\[y' = -b^+ x^+ + b^- x^- + g(t), \]

is discussed, where \(a^\pm, b^\pm \) are positive constants satisfying

\[\frac{1}{\sqrt{a^+ b^+}} + \frac{1}{\sqrt{a^- b^-}} + \frac{1}{\sqrt{a^+ b^-}} + \frac{1}{\sqrt{a^- b^+}} = \frac{4}{\omega}, \]

\(x^\pm = \max\{\pm x, 0\}, \ y^\pm = \max\{\pm y, 0\}, \omega \in \mathbb{R}^+ \setminus \mathbb{Q}, \ f(t), g(t) \in L^\infty[0, 2\pi] \) are \(2\pi \)-periodic functions.

© 2004 Elsevier Inc. All rights reserved.

Keywords: Periodic solutions; Planar system; Fučík spectrum

1. Introduction

In this paper, we consider the existence of unbounded solutions for the following planar system:

\[x' = a^+ y^+ - a^- y^- + f(t), \]
\[y' = -b^+ x^+ + b^- x^- + g(t), \]

(1)
where \(a^\pm, b^\pm\) are positive constants satisfying

\[
\frac{1}{\sqrt{a^+ b^+}} + \frac{1}{\sqrt{a^- b^+}} + \frac{1}{\sqrt{a^+ b^-}} + \frac{1}{\sqrt{a^- b^-}} = \frac{4}{\omega},
\]

(2)

and \(x^\pm = \max\{\pm x, 0\}, y^\pm = \max\{\pm y, 0\}, \omega \in R^+/Q, f(t), g(t) \in L^{\infty}[0, 2\pi]\) are \(2\pi\)-periodic functions.

Let \(a^+ = a^- = 1, b^+ = \alpha, b^- = \beta, f \equiv 0\). Then (1) is equivalent to the following second order differential equation:

\[x'' + \alpha x^+ - \beta x^- = g(t)\]

(3)

with \(\alpha, \beta\) satisfying

\[
\frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} = \frac{2}{\omega}.
\]

(4)

If there exists \(n \in N\) such that

\[
\frac{2}{n + 1} < \frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} < \frac{2}{n},
\]

(5)

then Fučík [5] proved that (3) has at least one \(2\pi\)-periodic solution under condition (5).

The unboundedness problem of solutions of (3) was recently discussed in [1] in case \(\alpha \neq \beta\) and

\[
\frac{1}{\sqrt{\alpha}} + \frac{1}{\sqrt{\beta}} = \frac{2m}{n},
\]

where \(m, n \in N\).

Let \(C(t)\) be the solution of the following initial value problem:

\[
x'' + \alpha x^+ - \beta x^- = 0, \quad x(0) = 1, \quad x'(0) = 0.
\]

Then it is well known that \(C(t) \in C^2(S^1 =: R/2\pi Z)\) is \(\tau\)-periodic with

\[
\tau = \frac{\pi}{\sqrt{\alpha}} + \frac{\pi}{\sqrt{\beta}}.
\]

Define a \(2\pi\)-periodic function \(\Phi_g\) if \(\tau = 2m\pi/n\), with \(m, n \in N\) by

\[
\Phi_g(\theta) = \frac{2\pi}{\int_0^{2\pi} C\left(\frac{m\theta}{n} + t\right) g(t) dt}, \quad \theta \in S^1 =: R/2\pi Z,
\]

it is proved in [1] that if the set

\[
\Omega = \{\theta \in S^1, \ \Phi_g(\theta) = 0\}
\]

is nonempty and for every \(\theta \in \Omega\), \(\Phi'_g(\theta) \neq 0\), then there exists \(R_0 > 0\) such that every solution \(x(t)\) of (3) with initial value \((x(t_0), x'(t_0))\) such that

\[
x^2(t_0) + (x'(t_0))^2 > R_0^2,
\]
for some $t_0 \in \mathbb{R}$, goes to infinity in the future or in the past. Recently, Wang [8], studied the following differential equation:

$$x'' + f(x)x' + ax^+ - bx^- = p(t), \quad (6)$$

where a, b are positive constant satisfying

$$\frac{1}{\sqrt{a}} + \frac{1}{\sqrt{b}} = \alpha \in \mathbb{R}^+ \setminus \mathbb{Q}. \quad (7)$$

He showed that the Poincaré mapping of Eq. (6) in generalized polar coordinates can be written in the following form:

$$\theta_1 = \theta + 2\alpha \pi + r^{-1} \mu_1(\theta) + O(r^{-2}),$$

$$r_1 = r + \mu_2(\theta) + O(r^{-1}), \quad r \gg 1. \quad (8)$$

Then every solution of (6) with large initial value, that is, for $r_0 \gg 1$, $x(t)$ of (6) with initial value satisfying

$$x^2(t_0) + (x'(t_0))^2 \geq r_0^2$$

goes to infinity in the future or in the past if the following holds:

$$\int_0^{2\pi} \mu_2(\theta) d\theta \neq 0.$$

For more recent boundedness or unboundedness problem of solutions of (1), we refer to [2–6] and references therein. But so far few results have been obtained in the literature if α and β satisfy (7) and $\mu_2(\theta) \equiv 0$. In this paper, by applying the well-known Birkhoff ergodic theorem, we obtain some sufficient conditions for the existence of unbounded solutions for Eq. (1).

2. Fučík spectrum and generalized polar coordinates transformation

Let a^\pm, b^\pm be nonzero constants, we consider the Fučík spectrum [5] for the following homogeneous planar system, that is, we find conditions for the existence of nonzero periodic solution to the system

$$x' = a^+ y^+ - a^- y^-,$$

$$y' = -b^+ x^+ + b^- x^- \quad (9)$$

By reversing time if necessary, we can assume $a^+ > 0$. From (9), we see that any nonzero periodic solution of (9) must turn around the origin, hence by the assumption $a^+ > 0$, we get $a^- > 0$. Similarly we get $b^+ > 0, b^- > 0$. Next, we will show a^\pm, b^\pm must satisfy (2). Since (9) is positively homogeneous, that is, if $(x(t), y(t))$ is a solution of (9), then $(kx(t), ky(t))$ is also a solution of (9) for any positive constant k, we can assume therefore that $(x(t), y(t))$ is a nonzero periodic solution satisfying $(x(0), y(0)) = (0, 1)$. It
is easy to see this solution turns around the origin clockwise. Let t_k be the least time for $(x(t), y(t))$ stay in the kth quadrant. Then in the first quadrant, (9) becomes
\[
x' = a^+ y,
y' = -b^+ x.
\] (10)
Hence, by using $(x(0), y(0)) = (0, 1)$, we obtain
\[
a^+ y^2 + b^+ x^2 = a^+.
\] (11)
Substituting (11) into (10), we obtain
\[
\frac{dy}{dt} = -\sqrt{a^+ b^+ (1 - y^2)}
\] from which we obtain
\[
t_1 = \frac{1}{\sqrt{a^+ b^+}} \int_0^1 \frac{dy}{\sqrt{1 - y^2}} = \frac{\pi}{2\sqrt{a^+ b^+}}.
\]
Similarly, we can prove
\[
t_2 = \frac{\pi}{2\sqrt{a^+ b^+}}, \quad t_3 = \frac{\pi}{2\sqrt{a^- b^-}}, \quad t_4 = \frac{\pi}{2\sqrt{a^- b^-}}.
\]
Combing above results, we obtain
\[
t_1 + t_2 + t_3 + t_4 = \frac{\pi}{2} \left(\frac{1}{\sqrt{a^+ b^+}} + \frac{1}{\sqrt{a^+ b^-}} + \frac{1}{\sqrt{a^- b^+}} + \frac{1}{\sqrt{a^- b^-}} \right).
\] (12)
Therefore it follows from (12) that a necessary and sufficient condition for the $(x(t), y(t))$ to be $(2\pi/\omega)$-periodic is that $t_1 + t_2 + t_3 + t_4 = 2\pi/\omega$, which implies that (2) holds. Moreover, the origin of (9) is a global center and any nonzero solution of (9) has the same period of $2\pi/\omega$.

Let $(S(t), C(t))$ be the solution of the following initial value problem:
\[
x' = a^+ y^+ - a^- y^-,
y' = -b^+ x^+ + b^- x^-,
x(0) = 0, \quad y(0) = 1.
\]
Then it is easy to verify the following equation:
\[
a^+ (C^+(t))^2 + a^- (C^-(t))^2 + b^+ (S^+(t))^2 + b^- (S^-(t))^2 \equiv a^+, \quad \forall t \in \mathbb{R}.
\] (13)
For $r > 0, \theta \pmod{2\pi}$, we introduce the following generalized polar coordinates transformation $T: (x, y) \rightarrow (r, \theta)$ as
\[
T: \quad x = dr S \left(\frac{\theta}{\omega} \right), \quad y = dr C \left(\frac{\theta}{\omega} \right),
\] (14)
where $d = \omega/a^+$, then system (1) is changed into the following form:
\[
\theta' = \omega + r^{-1}(t) \left(C\left(\frac{\theta}{\omega}\right) f(t) - S\left(\frac{\theta}{\omega}\right) g(t) \right), \\
r' = \frac{1}{\omega} \left(S'\left(\frac{\theta}{\omega}\right) g(t) - C'\left(\frac{\theta}{\omega}\right) f(t) \right).
\] (15)

For \(r_0 \gg 1, \theta_0 \in \mathbb{R}, t \in [0, 2\pi], \) let \((\theta(t), r(t)) = (\theta(t; \theta_0, r_0), r(t; \theta_0, r_0))\) be the solution of (15) satisfying the initial value \((\theta(0), r(0)) = (\theta_0, r_0)\).

Then \((\theta(t), r(t))\) has the following expression:

\[
\theta(t) = \theta_0 + \omega t + \int_0^t r^{-1}(\tau) \left[C\left(\frac{\theta}{\omega} + \tau\right) f(\tau) - S\left(\frac{\theta}{\omega} + \tau\right) g(\tau) \right] d\tau, \\
r(t) = r_0 + \frac{1}{\omega} \int_0^t \left[S'\left(\frac{\theta}{\omega} + \tau\right) g(\tau) - C'\left(\frac{\theta}{\omega} + \tau\right) f(\tau) \right] d\tau.
\] (16)

From (16), we obtain

\[
r^{-1}(t) = r_0^{-1} + O(r_0^{-2}), \quad \forall t \in [0, 2\pi].
\] (17)

Going back to (15), we obtain

\[
\theta(t) = \theta_0 + \omega t + r_0^{-1} \lambda_1(t, \theta_0) + O(r_0^{-2}), \\
r(t) = r_0 + \mu_0(t, \theta_0) + O(r_0^{-1}),
\] (18)

where

\[
\lambda_1(t, \theta) = \int_0^t \left[C\left(\frac{\theta}{\omega} + \tau\right) f(\tau) - S\left(\frac{\theta}{\omega} + \tau\right) g(\tau) \right] d\tau
\] (19)

and

\[
\mu_0(t, \theta) = \frac{1}{\omega} \int_0^t \left[S'\left(\frac{\theta}{\omega} + \tau\right) g(\tau) - C'\left(\frac{\theta}{\omega} + \tau\right) f(\tau) \right] d\tau.
\] (20)

Substituting above expressions into (16), we obtain

\[
r^{-1}(t) = r_0^{-1} + r_0^{-2} \mu_0(t, \theta_0) + O(r_0^{-3}).
\] (21)

and then substituting (21) into (16).

Continuing in this way, we obtain the following approximate expressions:

\[
r(t) = r_0 + \mu_0(t, \theta_0) + \lambda_1(t, \theta_0)r_0^{-1} + \mu_2(t, \theta_0)r_0^{-2} + O(r_0^{-3}), \\
\theta(t) = \theta_0 + \omega t + \lambda_1(t, \theta_0)r_0^{-1} + \lambda_2(t, \theta_0)r_0^{-2} + O(r_0^{-3}).
\] (22)

Let

\[
S = S\left(\frac{\theta}{\omega} + \cdot\right), \quad C = C\left(\frac{\theta}{\omega} + \cdot\right), \quad f = f(\cdot), \quad g = g(\cdot).
\]
Substituting (22) into (16), we obtain the following recursive formulas:

\[
\mu_1(t, \theta) = \frac{1}{\omega} \int_0^t [S''g - C''f] \lambda_1 d\tau,
\]

\[
\lambda_2(t, \theta) = \int_0^t \left[\frac{1}{\omega} (C'f - S'g) \lambda_1 - (Cf - Sg)\mu_0 \right] d\tau,
\]

\[
\mu_2(t, \theta) = \frac{1}{\omega^2} \left\{ \int_0^t [S''g - C''f] \lambda_2 d\tau + \frac{1}{2\omega} \int_0^t [S'''g - C'''f] \lambda_1^2 d\tau \right\},
\]

\[
\lambda_3(t, \theta) = \int_0^t \left[\frac{1}{\omega} (C'f - S'g) \lambda_2 + \frac{1}{2\omega^2} (C''f - S''g) \lambda_1^2 \right.
\]

\[- \frac{1}{\omega} (C'f - S'g) \lambda_1 \mu_0 + (Cf - Sg)(\mu_0^2 - \mu_1) \bigg] d\tau,
\]

where

\[
\lambda_k = \lambda_k(\cdot, \theta), \quad k = 1, 2,
\]

\[
\mu_m = \mu_m(\cdot, \theta), \quad m = 0, 1.
\]

If we define \(r_1 = r(2\pi), \theta_1 = \theta(2\pi), \lambda_k(\theta) = \lambda_k(2\pi, \theta), \mu_{k-1}(\theta) = \mu_{k-1}(2\pi, \theta), k = 1, 2, 3, \) in (19)–(23), then we obtain the following approximate expansions:

\[
r_1 = r + \mu_0(\theta) + \mu_2(\theta)r^{-1} + \mu_2(\theta)r^{-2} + O(r^{-3}),
\]

\[
\theta_1 = \theta + 2\omega\pi + \lambda_1(\theta)r^{-1} + \lambda_2(\theta)r^{-2} + \lambda_3(\theta)r^{-3} + O(r^{-4}).
\]

Moreover, we have

Lemma 1. The following equalities hold:

\[
\mu_0(\theta) = -\frac{1}{\omega} \int_0^{2\pi} C(\theta/\omega + t)f(t) - S(\theta/\omega + t)g(t) dt,
\]

\[
\lambda_1(\theta) = \int_0^{2\pi} \left[C(\theta/\omega + t)f(t) - S(\theta/\omega + t)g(t) \right] dt,
\]

\[
\mu_1(\theta) = -\frac{1}{\omega^2} \int_0^{2\pi} \left[C''(\theta/\omega + t)f(t) - S''(\theta/\omega + t)g(t) \right] dt
\]

\[- \int_0^t \left(C(\theta/\omega + \tau)f(\tau) - S(\theta/\omega + \tau)g(\tau) \right) d\tau dt,
\]
\[\dot{\lambda}_2(\theta) = \lambda_1(\theta)\lambda'_1(\theta), \]
(30)
\[\mu_2(\theta) = -\frac{1}{\omega^2} \left[\int_0^{2\pi} (C'' f - S'' g) \frac{d\tau}{\tau} \int_0^t (C f - S g) d\tau dt \right. \]
\[+ \left. \frac{1}{2} \int_0^{2\pi} (C'' f - S'' g) \left(\int_0^t (C f - S g) d\tau \right)^2 dt \right], \]
(31)
\[\dot{\lambda}_3(\theta) = -\frac{1}{2\omega^2} \int_0^{2\pi} (C'' f - S'' g) \left(\int_0^t (C f - S g) d\tau \right)^2 dt \]
\[+ \lambda_1(\theta) \left((\lambda'_1(\theta))^2 - \mu_1(\theta) \right). \]
(32)

Proof. By using (16)–(22) and integration by parts, we obtain above equations. \(\square \)

Lemma 2. From above equalities, we can prove the following relations:

\[\mu_0(\theta) = -\lambda'_1(\theta), \]
\[\mu_2(\theta) = \lambda'_3(\theta) - 2\lambda_1(\theta)\lambda'_1(\theta)\lambda''_1(\theta) - \left(\lambda'_1(\theta) \right)^3 + \lambda'_1(\theta)\mu_1(\theta) + \lambda_1(\theta)\mu'_1(\theta). \]

3. Unbounded motions of planar mappings

In this section, we adopt the notations used in [1]. Given \(\sigma > 0 \), let the set \(E_\sigma \) be the exterior of the open ball \(B_\sigma \) centered at the origin and of radius \(\sigma \), that is, \(E_\sigma = \mathbb{R}^2 - B_\sigma \), then \(E_\sigma = \{(\theta, r) \mid r \geq \sigma \} \). Define \(S^1 = \mathbb{R} \setminus 2\pi \mathbb{Z} \), then the points in \(S^1 \) are defined by \(\bar{\theta} = \theta + 2k\pi, \ k \in \mathbb{Z}, \ \theta \in \mathbb{R} \), and the group distance in \(S^1 \) is defined by \(\| \bar{\theta} \| = \min \{ |\theta + 2k\pi| \mid k \in \mathbb{Z} \} \).

Let \(\bar{P} : E_\sigma \to \mathbb{R}^2 \) be a mapping that is one to one and continuous. We assume that its lift, denoted by \(P \), can be expressed in the following form:

\[\theta_1 = \theta + 2\omega \pi + \lambda_k(\theta)r^{-k} + F_k(r, \theta), \]
\[r_1 = r + \mu_m(\theta) r^{-m} + G_m(r, \theta) \]
(33)

for \(r \geq \sigma, \theta \in S^1 \) and \(\lambda_k, \mu_m \in C(S^1), k \geq 1, m \geq 0, F_k = O(r^{-(k+1)}), G_m = O(r^{-(m+1)}) \) are continuous and \(2\pi \)-periodic in \(\theta \). Given a point \((\theta_0, r_0) \in E_\sigma \), let \(\{(\theta_k, r_k)\}_{k \in \mathbb{Z}} \) be the unique solution of the initial value problem for the following difference equation:

\[(\theta_{k+1}, r_{k+1}) = P(\theta_k, r_k). \]
This solution is defined in a maximal interval

\[I = \{ k \in \mathbb{Z} \mid k_a < k < k_b \}, \]

where \(k_a, k_b \) are certain numbers in the set \(\mathbb{Z} \cup \{ +\infty, -\infty \} \) satisfying

\[-\infty \leq k_a < 0 < k_b \leq +\infty.\]

The solution \(\{(\theta_k, r_k)\} \) is said to be defined in the future if \(k_b = +\infty \) and is said to be defined in the past if \(k_a = -\infty \).

Proposition 1. Assume the above conditions hold and

\[2\pi \int_0^\mu_m(\theta) \, d\theta > 0. \]

Then there exists \(R_0 > \sigma \), such that if \(r_0 \geq R_0 \), the orbit \(\{(\theta_n, r_n)\} \) of (33) with initial value \((\theta_0, r_0) \) is defined in the future and satisfies

\[\lim_{n \to +\infty} r_n = +\infty. \]

Proof. By induction one can prove for each \(n \in M \),

\[\theta_n = \theta_0 + 2n\omega \pi + \left(\sum_{i=0}^{n-1} \lambda_k(\theta_0 + 2i\omega \pi) \right) r_0^{-k} + O(r_0^{-(k+1)}), \]

\[r_n = r_0 + \left(\sum_{i=0}^{n-1} \mu_m(\theta_0 + 2i\omega \pi) \right) r_0^{-m} + O(r_0^{-(m+1)}). \]

(34)

Define a transformation \(T : S^1 \to S^1 \) as \(T(\theta) = \theta + 2\omega \pi \). Since \(\omega \in \mathbb{R}^+ / \mathbb{Q} \), \(T \) is ergodic. It follows from the Birkhoff ergodic theorem [7, Theorem 1.14] that

\[\lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu_m(\theta + 2i\omega \pi) = \lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu_m(T^i \theta) = \frac{1}{2\pi} \int_0^{2\pi} \mu_m(\theta) \, d\theta > 0 \]

for almost every \(\theta \in S^1 \). Next we show that

\[\lim_{n \to +\infty} \frac{1}{n} \sum_{i=0}^{n-1} \mu_m(\theta + 2i\omega \pi) = \frac{1}{2\pi} \int_0^{2\pi} \mu_m(\theta) \, d\theta > 0 \]

holds uniformly in \(\theta \in S^1 \).

In fact, we can assume \(S^1 = [0, 2\pi] \). Let \(I \) be a subset of \([0, 2\pi]\) with measure 0 such that for each \(\theta \in [0, 2\pi] \setminus I \) the above limit hold. This means that for each \(\varepsilon > 0 \), there exists \(n_\varepsilon \in \mathbb{N} \) such that

\[\left| \frac{1}{n} \sum_{k=0}^{n-1} \mu_m(\theta + 2k\omega \pi) - \mu_m \right| < \frac{\varepsilon}{2}. \]
where
\[\bar{\mu}_m = \frac{1}{2\pi} \int_0^{2\pi} \mu_m(\theta) d\theta. \]

By the continuity of \(\mu_m \) and the compactness of \([0, 2\pi]\), there exists \(\delta > 0 \) such that for any \(\theta, \theta' \in [0, 2\pi] \) with \(|\theta - \theta'| < \delta \), we have
\[|\mu_m(\theta) - \mu_m(\theta')| < \frac{\varepsilon}{2}. \]

For any \(\theta_0 \in I \), there exists \(\theta \in [0, 2\pi] \setminus I \) such that \(|\theta - \theta_0| = |(\theta + 2k\omega\pi) - (\theta_0 + 2k\omega\pi)| < \delta \) and hence for \(n \geq n_\varepsilon \), we have
\[
\frac{1}{n} \left| \sum_{k=0}^{n-1} \mu_m(\theta_0 + 2k\omega\pi) - \frac{\mu_m}{n} \right|
\leq \frac{1}{n} \left| \sum_{k=0}^{n-1} \mu_m(\theta + 2k\omega\pi) - \frac{\mu_m}{n} \right|
+ \frac{1}{n} \left| \sum_{k=0}^{n-1} \mu_m(\theta + 2k\omega\pi) - \bar{\mu}_m \right|
< \frac{1}{n} \varepsilon + \frac{\varepsilon}{2} = \varepsilon.
\]

This shows that the uniform convergence claims.

It follows from above analysis that there exists an integer \(p \in N \) and a constant \(\delta > 0 \) such that
\[\frac{1}{p} \sum_{i=0}^{p-1} \mu_m(\theta + 2i\omega\pi) \geq \delta > 0 \]
for all \(\theta \in S^1 \). Therefore for \(r_0 \gg 1 \), it follows from (34) that
\[
r_p = r_0 + \frac{1}{p} \sum_{i=0}^{p-1} \mu_m(\theta_0 + 2i\omega\pi) r_0^{-m} + O(r_0^{-(m-1)}) \geq r_0 + (p-1)\delta r_0^{-m}.
\]
\[
r_p = r_0 + \frac{1}{p} \sum_{i=0}^{p-1} \mu_m(\theta_0 + 2i\omega\pi) r_0^{-m} + O(r_0^{-(m-1)}) \leq r_0 + (p+1)\delta r_0^{-m}.
\]

Inductively, we obtain for \(n \in N \),
\[r_{np} \geq r_0 + n(p-1)\delta r_0^{-m}, \]
and
\[r_{np} \leq r_0 + n(p+1)\delta r_0^{-m}. \]

Which implies that the solution \(r_{np} \) is defined in the future and satisfies
\[\lim_{n \to +\infty} r_{np} = +\infty. \]
Moreover, it is not difficult to show that for each \(j \in \{1, 2, \ldots, p - 1\} \), we have
\[
\lim_{n \to +\infty} r_{np+j} = +\infty.
\]
Therefore we see that \(r_n \) is defined in the future and
\[
\lim_{n \to +\infty} r_n = +\infty.
\]

Similarly we can prove the following

Proposition 2. If the above conditions hold and
\[
2\pi \int_0^{2\pi} \mu_m(\theta) \, d\theta < 0,
\]
then there exists \(R_0 > \sigma \) such that if \(r_0 \geq R_0 \), the orbit \((\theta_n, r_n) \) is defined in the past and satisfies
\[
\lim_{n \to -\infty} r_n = +\infty.
\]

We state now the main results of this paper.

Theorem 1. Let the assumptions on \(f, g, \alpha, \beta \) in Section 1 be satisfied and let the functions \(\lambda_k(\theta), \mu_{k-1}(\theta) \), \(k = 1, 2, 3 \), be given by (26)–(32). Suppose the following assumption holds:
\[
\mu_0(\theta) \equiv 0, \quad \int_0^{2\pi} \mu_1(\theta) \, d\theta \neq 0.
\]
Then there exists \(R_0 > 0 \) such that every solutions \(x(t) \) of (1) with initial value \((x(0), x'(0))\) such that
\[
x^2(0) + (x'(0))^2 \geq R_0^2,
\]
goes to infinity in the future or in the past.

Proof. Under the generalized polar coordinates transformation (14), the Poincaré mapping of (1) is equivalent to the following system:
\[
\begin{align*}
\theta_1 &= \theta_0 + 2\omega \pi + \lambda_1(\theta_0)r_0^{-1} + \lambda_2(\theta_0)r_0^{-2} + O(r_0^{-3}), \\
r_1 &= r_0 + \mu_0(\theta_0) + \mu_1(\theta_0)r_0^{-1} + O(r_0^{-2}).
\end{align*}
\]
Now Theorem 1 follows from Propositions 1 and 2 for \(\lambda'_1(\theta) = \mu_0(\theta) \equiv 0 \) and \(\mu_m(\theta) = \mu_1(\theta) \).

Remark. Since \(S \in C^2(R) \), for \(k \geq 3 \) the functions \(S^{(k)} \) and \(C^{(k-1)} \) in (28)–(32) are not defined in some finite number of points, but as they are bounded, the functions of \(\lambda_j \) and \(\mu_{j-1} \) for \(j \geq 2 \) are well defined.
Example. Consider the following second order differential equation:
\[x'' + \alpha x^+ - \beta x^- = p(t), \]
where \(\alpha \neq \beta \) satisfy (4), \(p(t) \in L^\infty[0, 2\pi] \) is \(2\pi \)-periodic and piecewise constant. Then numerical calculation shows that we can choose \(p(t) \) such that
\[\mu_0(\theta) \equiv 0 \]
and
\[\int_0^{2\pi} \mu_1(\theta) d\theta \neq 0. \]
In this case, Theorem 1 implies that all solutions of with large initial values goes to infinity either in future or in the past.

Acknowledgments

This paper was written during the author’s visit to Mathematical Institute, University of Augsburg, Germany. The author is very grateful to Prof. Dr. Bernd Aulbach for his warm hospitality and kind support. The author is also grateful to the referee for his corrections and suggestions to the original manuscript.

References