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Abstract

Given a control region O on a compact Riemannian manifold M; we consider the heat

equation with a source term g localized in O: It is known that any initial data in L2ðMÞ can be

steered to 0 in an arbitrarily small time T by applying a suitable control g in L2ð½0;T � � OÞ;
and, as T tends to 0; the norm of g grows like expðC=TÞ times the norm of the data. We

investigate how C depends on the geometry of O: We prove CXd2=4 where d is the largest

distance of a point in M from O: When M is a segment of length L controlled at one end, we

prove Cpa�L2 for some a�o2: Moreover, this bound implies Cpa�L2
O where LO is the length

of the longest generalized geodesic in M which does not intersect O: The control transmutation

method used in proving this last result is of a broader interest.
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1. The problem

Let ðM; gÞ be a smooth connected compact n-dimensional Riemannian manifold

with metric g and boundary @M: When @Ma|; M denotes the interior and %M ¼
M,@M: Let dist : %M2-Rþ denote the distance function. Let D denote the

(negative) Dirichlet Laplacian on L2ðMÞ with domain DðDÞ ¼ H1
0 ðMÞ-H2ðMÞ:

Consider a positive control time T ; and an open control region O: Let 1�0;T ½�O

denote the characteristic function of the space–time control region �0;T ½�O: The
heat equation on M is said to be null-controllable (or exactly controllable to zero) in

time T by interior controls on O if for all u0AL2ðMÞ there is a control function

gAL2ðR� MÞ such that the solution uAC0ð½0;NÞ;L2ðMÞÞ of the mixed Dirichlet–
Cauchy problem

@tu 	 Du ¼ 1
�0;T ½�O

g in �0;T ½�M; u ¼ 0 on �0;T ½�@M; ð1Þ

with Cauchy data u ¼ u0 at t ¼ 0; satisfies u ¼ 0 at t ¼ T : For a survey on this
problem prior to 1978 we refer to [19]. For a recent update, we refer to [26]. Lebeau
and Robbiano have proved (in [14] using local Carleman estimates) that there is a

continuous linear operator S : L2ðMÞ-CN

0 ðR� MÞ such that g ¼ Su0 yields the

null-controllability of the heat equation on M in time T by interior controls on O:
The most striking feature of this result is that we may control the heat in

arbitrarily small time whatever geometry the control region has. In this paper we
address the following question: How does the geometry of the control region influence

the cost of controlling the heat to zero in small time?
Now, we shall formulate this question more precisely and give references.

Definition 1.1. For all control time T and all control region O; the null-controllability

cost for the heat equation on M is the best constant, denoted CT ;O; in the estimate

jjgjjL2ðR�MÞpCT ;Ojju0jjL2ðMÞ

for all initial data u0 and control g solving the null-controllability problem described
above.

By duality (cf. [5]), CT ;O is also the best constant in the observation inequality for

the homogeneous heat semigroup t/etD:

8u0AL2ðMÞ; jjeTDu0jjL2ðMÞpCT ;OjjetDu0jjL2ðð0;TÞ�OÞ:

Lebeau and Robbiano’s result implies the finiteness of the null-controllability cost
for the heat equation on M for any control time and any control region. Èmanuilov
extended this result to more general parabolic operators in [6] using global Carleman
estimates with singular weights. When ðM; gÞ is an open set in Euclidean space, this
method was used by Fernández-Cara and Zuazua [8] to obtain the optimal time
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dependence of the null-controllability cost for small time, i.e.

0o sup
%BrCM\ %O

r2=4p lim inf
T-0

T ln CT ;Op lim sup
T-0

T ln CT ;OoþN; ð2Þ

where the supremum is taken over balls Br of radius r: The lower bound is stated in

Section 4.1 of Zuazua [26] and it is based on the construction of a ‘‘very singular
solution of the heat equation in ð0;þNÞ � Rn’’ used in the proof of Theorem 6.2 in
[8]. Note that the method used in Theorem 1 of Lebeau and Robbiano [14] seems to
fall short of the optimal time dependence. Actually, using the improved version of
Proposition 1 in [14] presented as Proposition 2 in [15], we have only been able to
prove that lim supT-0 T g ln CT ;O is finite for all g41:

Indeed Seidman had already asked how violent fast controls are, and his first
answer concerned heat null-controllability from a boundary region GC@M: In [21],
under the condition that the wave equation on M is exactly controllable by controls
in G in time L; he computes an explicit positive value b such that

lim supT-0 T ln CT ;GpbL2 (we give more explanations on this geometric upper

bound in Section 2 after Theorem 2.3). The positivity of lim infT-0 T ln CT ;G when

M is an interval was subsequently proved by Güichal in [9], ensuring the optimality
of Seidman’s result with respect to the time dependence. Later, Seidman also
addressed finite-dimensional linear systems as well as the Schrödinger and plate
equations (cf. the companion paper [16] for more details and references).

2. The results

2.1. Lower bound

Our first result, proved in Section 3, generalizes and improves on the geometric
lower bound of Fernández-Cara and Zuazua.

Theorem 2.1. The null-controllability cost of the heat equation for small time (cf.
Definition 1.1) satisfies the following geometric lower bound:

lim inf
T-0

T ln CT ;OX sup
yAM

distðy; %OÞ2=4: ð3Þ

As put in [26], such a lower bound follows from the construction of a ‘‘very
singular solution of the heat equation’’. Our construction underscores that only a
large but finite number of modes is needed. For a short control time T40; we
consider a Dirac mass as far from O as possible, we smooth it out by applying the
homogeneous heat semigroup for a very short time (eT with small e) and truncating

very large frequencies (larger than ðeTÞ	1), and finally we take it as initial data in (1).
The proof relies on Varadhan’s formula for the heat kernel in small time (cf. [25]),
which requires very low smoothness assumptions as proved in [17].
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We believe that there is no solution of the heat equation which is more singular
than the heat kernel and therefore conjecture that this lower bound is also an upper

bound, i.e. limT-0 T ln CT ;O ¼ supyAM distðy; %OÞ2=4:

2.2. The segment controlled at one end

Our second result, proved in Section 4, concerns the most simple heat null-
controllability problem: the heat equation on a segment controlled at one end
through a Dirichlet condition. It is an upper bound of the same type as the lower

bound in Theorem 2.1, except that the quite natural rate 1
4
is replaced by the technical

rate (resulting from the complex multiplier Lemma 4.4)

a� ¼ 2
36

37

� �2

o2: ð4Þ

Theorem 2.2. For any a4a� defined by (4), there exists C40 such that, for B ¼ 1 or

B ¼ @s; for all L40; TA�0; infðp;LÞ2� and u0AL2ð0;LÞ; there is a gAL2ð0;TÞ such

that the solution uAC0ð½0;NÞ;L2ð0;LÞÞ of the following heat equation on ½0;L�
controlled by g from one end:

@tu 	 @2
s u ¼ 0 in �0;T ½��0;L½; ðBuÞns¼0 ¼ 0; uns¼L ¼ g; unt¼0 ¼ u0;

satisfies u ¼ 0 at t ¼ T and jjgjjL2ð0;TÞpCeaL2=T jju0jjL2ð0;LÞ:

Theorem 3.1 in [21] yields this theorem for a� ¼ 4b� with b�E42:86: This result of
Seidman can be improved to a� ¼ 8b� with b�E4:17 using his Theorem 1 in [22]. The
value a� defined by (4) in Theorem 2.2 is the best we obtained yet following the well
trodden path of the harmonic analysis of this problem (cf. [19,23] for seminal and
recent references). As explained at the end of the previous subsection, we conjecture

that a� ¼ 1
4

is the optimal rate. The proof of Theorem 2.1 also applies here, so that

Theorem 2.2 does not hold with a�o1
4
: This theorem is valid for more general linear

parabolic equations and boundary conditions as formulated in Theorem 4.1.

2.3. Upper bound under the geodesics condition

Our third result gives a good reason to strive for the best rate a� in Theorem 2.2. In
Section 5, we prove that the upper bound for the null-controllability cost of the heat
equation on a segment controlled at one end—the particular case in which the
computation are the most explicit—is also an upper bound for the multidimensional
case of Eq. (1) under the following geodesics condition on the control region: every

generalized geodesic in %M intersects O:
In this context, the generalized geodesics are continuous trajectories t/xðtÞ in %M

which follow geodesic curves at unit speed in M (so that on these intervals t/ ’xðtÞ is
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continuous); if they hit @M transversely at time t0; then they reflect as light rays or
billiard balls (and t/ ’xðtÞ is discontinuous at t0); if they hit @M tangentially then
either there exists a geodesic in M which continues t/ðxðtÞ; ’xðtÞÞ continuously and
they branch onto it, or there is no such geodesic curve in M and then they glide at
unit speed along the geodesic of @M which continues t/ðxðtÞ; ’xðtÞÞ continuously
until they may branch onto a geodesic in M: For this result and whenever
generalized geodesics are mentioned, we make the additional assumptions that they
can be uniquely continued at the boundary @M (as in [15], to ensure this, we may
assume either that @M has no contacts of infinite order with its tangents, or that g

and @M are real analytic), and that O is open.

Theorem 2.3. Let LO be the length of the longest generalized geodesic in %M which does

not intersect O: If Theorem 2.2 holds for some rate a� then the null-controllability cost

of the heat equation for small time (cf. Definition 1.1) satisfies the following geometric

upper bound:

lim sup
T-0

T ln CT ;Opa�L2
O: ð5Þ

When comparing this result to the lower bound in Theorem 2.1, one should bear in

mind that LO is always greater than 2 supyAM distðy; %OÞ (because the length of a

generalized geodesic through y which does not intersect O is always greater than

2 distðy; %OÞ) and can be infinitely so. For instance, on the sphere M ¼ Sn; if O is the
complementary set of a tube of radius e around the equator, then

supyAM distðy; %OÞ ¼ e and LO ¼ N: If O is increased by a tube slice of small

thickness d; then the first length is unchanged while the second length becomes
greater than the length of the equator of M minus d; so that LO is finite yet much

greater than supyAM distðy; %OÞ as e-0:

Moreover, as recalled in Section 1, this geodesics condition is by no means
necessary for the null-controllability of the heat equation. It is more relevant to the
wave equation on M; for which it is a sharp sufficient condition for exact
controllability in time T by interior controls on O as proved in [1] (cf. Theorem 5.3
for the precise statement). It was later proved in [3] that this condition is also
necessary when the characteristic function of �0;T ½�O is replaced by a smooth
function y such that fyðt; xÞa0g ¼�0;T ½�O:

In fact we use the exact controllability of the wave equation to prove our result on the
null-controllability of the heat equation. This strategy was already applied by Russell in
1973, but he used a complex analysis detour (cf. [19]). In [21], Seidman applied Russell’s
method to obtain an upper bound which, taking [1] into account, corresponds to
Theorem 2.3 with a� ¼ b�E42:86: Theorem 2.3 improves Seidman’s result beyond this
slight improvement of the rate a� insofar as the complex analysis multiplier method he
uses does not necessarily allow to reach the optimal a� in Theorem 2.2.

The control transmutation method (cf. [10] for a survey on transmutations in other
contexts) introduced in Section 5 relates the null-controllability of the heat equation
to the exact controllability of the wave equation in a direct way (as opposed to
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Russell’s indirect complex analysis method). It is well-known that the geometry of

small time asymptotics for the homogeneous heat semigroup t/etD on L2ðMÞ can
be understood from the even homogeneous wave group t/WðtÞ (i.e. the group
defined by WðtÞw0 ¼ wðtÞ where w solves Eq. (53) with f ¼ 0 and Cauchy data
ðw; @twÞ ¼ ðw0; 0Þ at t ¼ 0) through Kannai’s formula (cf. [4,12], and Section 6.2 in
the book [24]):

etD ¼ 1ffiffiffiffiffiffiffi
4pt

p
Z

N

	N

e	s2=ð4tÞWðsÞ ds: ð6Þ

Our main idea is to replace the fundamental solution of the heat equation on the line

e	s2=ð4tÞ=
ffiffiffiffiffiffiffi
4pt

p
appearing in Kannai’s formula by some fundamental controlled

solution of the heat equation on the segment ½	L;L� controlled at both ends. We use
the one-dimensional Theorem 2.2 to construct this fundamental controlled solution
in Section 5.

2.4. Open problems

We shall now survey some questions raised by the results we have presented which
we have been unable to answer yet.

To improve the rate a� in Theorem 2.2 by a complex analysis method, one could
use the first method in [7], i.e. compute the null-controllability cost on the half-line
½0;þNÞ explicitly by Vandermonde determinants and prove a quantitative version
of Schwartz’s theorem in [20], i.e. estimate with respect to L the best constant cL in

the following statement: every u in the closed linear hull in L2ð0;þNÞ of the real

exponential sums t/e	k2t (kAN�) satisfies jjujjL2ð0;þNÞpcLjjujjL2ð0;LÞ:

Theorem 2.3 opens new tracks to improve the upper bound for the null-
controllability cost of (1) under the geodesics condition by methods which are not
complex analytical. To improve the rate a� in Theorem 2.2 (or in the multi-
dimensional case of Eq. (1) when O and M are star-shaped with respect to the same
point) one could adapt the variational techniques (e.g. the log convexity method) or
the Carleman’s inequalities devised to prove unique continuation theorems.

In the general case (without the geodesics condition), one could try to adapt the
null-controllability proofs which use Carleman inequalities with phases f to obtain
an upper bound similar to the lower bound in Theorem 2.1 in terms of the following
distance function d : dðx; yÞ ¼ supffðyÞ 	 fðxÞg; for all x and y in M; where the
supremum is taken over all Lipschitz functions f : M-R with jrfjp1 almost
everywhere. There is a more geometric characterization of d in terms of path of least
action (cf. Section 2 of Norris [17]).

3. Lower bound

The purpose of this section is to prove Theorem 2.1.
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As in Section 1, let O be an open set in the n-dimensional Riemannian manifold M

such that %OCM: Let ðojÞjAN� be a nondecreasing sequence of nonnegative real

numbers and ðejÞjAN� be an orthonormal basis of L2ðMÞ such that ej is an

eigenvector of 	D with eigenvalue o2
j : The heat kernel k can be defined for all t40

and ðx; yÞA %M2 by kðt; x; yÞ ¼
P

j expð	to2
j ÞejðyÞejðxÞ: Our main ingredient is

Varadhan’s formula which says that (cf. Theorem 1.1 in [17] for example):

lim
t-0

t ln kðt; x; yÞ ¼ 	dðx; yÞ2=4 uniformly on compact sets of %M2: ð7Þ

We shall also use Weyl’s asymptotics for eigenvalues

(W40; #f jAN� jojpogpWon ð8Þ

and the following consequence of Sobolev’s embedding theorem:

(E40; 8jAN�; jjejjjLNpEon=2
j ð9Þ

(cf. Section 17.5 in [11] for example). The unique continuation property for elliptic

operators implies that Y ¼ fyAM\ %O j e1ðyÞa0g is an open dense set in M\ %O; so that
the supremum in Theorem 2.1 can be taken over yAY instead of yAM:

Let yAY and aodðy; %OÞ2=4 be fixed from now on. To prove Theorem 2.1 we shall

find A40 and, for all TA�0; 1� small enough, some data uT
0 AL2ðMÞ such that

jjetDuT
0 jjL2ðð0;TÞ�OÞpAe	a=T jjeTDuT

0 jjL2ðMÞ: To give further insight into the problem,

we shall construct each uT
0 as a linear combination of a finite number of modes ej

only.

Let b be a real number such that aobodðy; %OÞ2=4: Since %O� fyg is compact in
%M2; Varadhan’s formula (7) yields real numbers B40 and %TA�0; 1� such that

8tA�0; %T�; 8xA %O; jkðt; x; yÞjpBe	b=t: ð10Þ

Let eA�0; 1� small enough as specified later. For all TA�0; %T=ð1 þ eÞ� consider the

data uT
0 ðxÞ ¼

P
ojpðeTÞ	1 expð	eTo2

j ÞejðyÞejðxÞ: To estimate the corresponding

solution

uT ðt; xÞ ¼ ðetDuT
0 ÞðxÞ ¼

X
ojpðeTÞ	1

expð	ðeT þ tÞo2
j ÞejðyÞejðxÞ;

we compare it with kðeT þ t; x; yÞ: Using that the heat semigroup is a contraction on

L2ðMÞ; Parseval’s identity and (9), we obtain

sup
tA�0;T �

jjkðeT þ t; x; yÞ 	 uTðt; xÞjjL2ðMÞpjjkðeT ; x; yÞ 	 uT
0 ðxÞjjL2ðMÞ

¼
X

oj4ðeTÞ	1

je	eTo2
j ejðyÞj2pE

X
ojXðeTÞ	1

e	ojon
j pE0

X
ojXðeTÞ	1

e	oj=2
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for some E040: But, Weyl’s law (8) yields, for cXc040 and gXg040;X
ojXc

e	goj ¼
X

kAN�

X
kcpojoðkþ1Þc

e	gojpW
X

kAN�
ððk þ 1ÞcÞn

e	kcg

pWg0

X
kAN�

e	kcgeðkþ1Þcg=4

¼Wg0
e	cg=2

X
kAN

e	3kcg=4pWc0;g0
e	cg=2;

where Wg0
and Wc0;g0

are positive real numbers which depend on their indices but not

on c and g: Hence, with c ¼ ðeTÞ	141 ¼ c0 and g ¼ g0 ¼ 1
2
; we obtain

(B040; 8tA�0;T � jjkðeT þ t; x; yÞ 	 uTðt; xÞjjL2ðMÞpB0e	1=ð4eTÞ:

Together with the estimate on kðeT þ t; x; yÞ which follows from (10), this estimate

yields by the triangle inequality, choosing eo1=ð4bÞ and setting B00 ¼ jOj1=2B þ B0;

jjuT jjL2ðð0;TÞ�OÞpðT jOjÞ1=2Be	b=ðð1þeÞTÞ þ T1=2B0e	1=ð4eTÞpB00e	b=ðð1þeÞTÞ:

But using Parseval’s identity and yAY ; we have

jjeTDuT
0 jjL2ðMÞ ¼

X
ojpðeTÞ	1

je	ð1þeÞTo2
j ejðyÞj2

0
@

1
A

1=2

Xe	2o2
1 je1ðyÞj40:

Hence, choosing e small enough so that aob=ð1 þ eÞ and setting A ¼ e	2o2
1 je1ðyÞjB00;

we have

8TA�0; %T=ð1 þ eÞ�; jjuT jjL2ðð0;TÞ�OÞpAe	a=T jjeTDuT
0 jjL2ðMÞ:

Since A does not depend on T ; this ends the proof of Theorem 2.1.

4. The segment controlled at one end

In this section, we prove Theorem 2.2 for a more general linear parabolic equation
on a segment controlled at one end (in particular, it proves that Theorem 2.2 is true
for the heat equation on a segment with any Riemannian metric). We follow [7] quite
closely.

For a positive a control time T ; we consider the following mixed Dirichlet-Cauchy
problem on the space segment ½0;X �:

@tu ¼ @xðpðxÞ@xuÞ þ qðxÞu for ðt; xÞA�0;T ½��0;X ½; ð11Þ

ða0 þ b0@xÞunx¼0 ¼ 0; ða1 þ b1@xÞunx¼X ¼ g; unt¼0 ¼ u0; ð12Þ
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a2
0 þ b2

0 ¼ a2
1 þ b2

1 ¼ 1; 0opAC2ð½0;X �Þ; qAC0ð½0;X �Þ: ð13Þ

With assumptions (13), the operator A on L2ð0;X Þ with domain DðAÞ defined by

ðAuÞðxÞ ¼ @xðpðxÞ@xuðxÞÞ þ qðxÞuðxÞ;

DðAÞ ¼H2ð0;XÞ-fða0 þ b0@xÞunx¼0 ¼ ða1 þ b1@xÞunx¼X ¼ 0g

is self-adjoint and has a sequence f	lngnAN� of increasing eigenvalues and an

orthonormal Hilbert basis fengnAN� in L2ð0;XÞ of corresponding eigenfunctions, i.e.

8nAN�; 	Aen ¼ lnen and lnolnþ1:

Moreover, (13) ensures the following eigenvalues asymptotics (cf. [7]):

(nAR; ln ¼ p2

L2
ðn þ nÞ2 þ Oð1Þ as n-N; where L ¼

Z X

0

ffiffiffiffiffiffiffiffiffi
pðxÞ

p
dx: ð14Þ

Theorem 4.1. For any a4a� defined by (4), there exists C40 such that, for any

coefficients (13), for all TA�0; infðp;LÞ2� and u0AL2ð0;XÞ there is a control

gAL2ð0;TÞ such that the solution uAC0ð½0;NÞ;L2ð0;X ÞÞ of (11) and (12) satisfies

u ¼ 0 at t ¼ T and jjgjjL2ð0;TÞpCeaL2=T jju0jjL2ð0;X Þ:

As in [7], the proof applies to the slightly more general eigenvalue asymptotics

ln ¼ p2

L2ðn þ nÞ þ oðnÞ: We divide the proof of this theorem in three steps.

4.1. Reduction to positive eigenvalues, to a segment of p-length L ¼ p; and to the

control window � 	 T=2;T=2½

As a first step, we reduce the problem to the case l140 by the multiplier

t/expðltÞ; to the case L ¼ p by the time rescaling t/st with s ¼ ðp=LÞ2; and to
the time interval ½	T=2;T=2� by the time translation t/t 	 T=2:

The function u satisfies @tu ¼ Au and ða1 þ b1@xÞunx¼X ¼ g if and only if ũðt; xÞ ¼
expðltÞuðt; xÞ satisfies @tũ ¼ Ãũ and ða1 þ b1@xÞũnx¼X ¼ g̃ with Ã ¼ A þ l and

g̃ðtÞ ¼ expðltÞgðtÞ: For any l4	 l1; the lowest eigenvalue of ÃXl1 þ l40 is

positive. In Ã; q is changed into q þ l and p is unchanged so that L is unchanged.

Moreover jjgjjL2ð0;TÞpexpðlT=2Þjjg̃jjL2ð0;TÞ so that jjg̃jjL2ð0;TÞpC̃eaL2=T jju0jjL2ð0;X Þ

implies the estimate in Theorem 4.1 with C ¼ C̃ expðlp=2Þ: This proves the
reduction to positive eigenvalues.

We now prove the second reduction. Assume the theorem is true when L takes the

value L̃ ¼ p: Given L40 and TA�0; infðp;LÞ2� we set T̃ ¼ s2TA�0; L̃2� and Ã ¼ s2A;

where s ¼ ðp=LÞ2: By applying the theorem to Ã on �0; T̃½; we obtain
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jjg̃jjL2ð0;T̃ÞpC̃e*aL̃2=T̃jju0jjL2ð0;X Þ: The function gðtÞ ¼ g̃ðstÞ is a control for the solution

uðt;xÞ ¼ ũðst; xÞ of @tu ¼ Au on �0;T ½ at the cost jjgjjL2ð0;TÞ ¼ jjg̃jjL2ð0;TÞL=p: Since

Tpp2 implies L=ppðL2=TÞ1=2; for all a4*a there is a C such that for all L40 and

TA �0; infðp;LÞ2�: C̃e*aL̃2=T̃L=ppCeaL2=T : Therefore g satisfies the estimate in
Theorem 4.1.

These two reductions allow us to assume from now on l140 and L ¼ p: Making a
weaker assumption on the remainder term in (14), we shall only use the following
spectral assumption:

8nAN�; 0olnolnþ1 and (nAR; ln ¼ ðn þ nÞ2 þ oðnÞ as n-N: ð15Þ

It is obvious that Theorem 4.1 is invariant by time translations and we shall prove it
for the control window � 	 T=2;T=2½ instead of �0;T ½:

4.2. Spectral reduction to a problem in complex analysis

In this second step, we recall that the control g in this theorem can be obtained

as a series expansion into a Riesz sequence fgngnAN� in L2ð	T=2;T=2Þ which

is bi-orthogonal to the sequence fexpð	lntÞgnAN� : We also recall how the

Paley–Wiener theorem reduces the construction of such biorthogonal functions
to the construction of entire functions with zeros and growth conditions (this
well-known method in complex analysis is the second method in [7] called the
Fourier transform method there). Our estimate on the control cost jjgjjL2ð	T=2;T=2Þ
relies on a good estimate of jjgnjjL2ð	T=2;T=2Þ as T tends to zero. This additional

difficulty was first taken care of by Seidman [22] for ln ¼ in2 and it was recently
overcome for more general sequences in [23]. Our contribution is a slight
improvement on the estimates of Seidman and his collaborators in our less general
setting.

In terms of the coordinates c ¼ ðcjÞjAN� of u0 in the Hilbert basis ðejÞjAN� ; the

controllability problem in Theorem 4.1 is equivalent to the following moment
problem (by straightforward integration by parts, cf. [7]):

Z T=2

	T=2

e	lnðT=2	tÞgngðtÞ dt ¼ 	e	lnT cn;

where gn ¼ enðX ÞpðX Þ=b1 if b1a0 and gn ¼ 	en
0ðX ÞpðXÞ=a1 if b1 ¼ 0: In both cases,

the asymptotic expansion of en yields that ðjgnjÞ is bounded from below by some

positive constant g: If fgngnAN� in L2ð	T=2;T=2Þ is a sequence which is bi-

orthogonal to the sequence fexpð	lntÞgnAN� ; i.e.

Z T=2

	T=2

gnðtÞe	lnt dt ¼ 1 and 8kAN�; kan;

Z T=2

	T=2

gnðtÞe	lkt dt ¼ 0; ð16Þ
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then gðtÞ ¼ 	
P

N

n¼1
cn

gn
e	lnT=2gnð	tÞ is a formal solution to this moment problem. The

following theorem in complex analysis allows to construct a bi-orthogonal sequence
such that this series converges and yields a good estimate of jjgjjL2ð	T=2;T=2Þ as T

tends to zero.

Theorem 4.2. Let a� be defined by (4). Let flngnAN� be a sequence of real numbers

satisfying (15). For all e40 there is a Ce40 such that, for all tA�0; 1� and nAN�; there

is an entire function Gn satisfying

Gn is of exponential type t; i:e: lim sup
r-þN

r	1 sup
jzj¼r

lnjGnðzÞjpt; ð17Þ

GnðilnÞ ¼ 1 and 8kAN�; kan; GnðilkÞ ¼ 0; ð18Þ

jjGnjjL2 ¼
Z þN

	N

jGnðxÞj2 dx

� �1=2

pCee
e
ffiffiffiffi
ln

p
ea�ðpþ2eÞ2=ð2tÞ: ð19Þ

According to the Paley–Wiener theorem (1934), (17) implies that the function

x/GnðxÞ is the unitary Fourier transform of a function t/gnðtÞ in L2ðRÞ supported
in ½	t; t�: With t ¼ T=2; this yields

GnðxÞ ¼
1ffiffiffiffiffiffi
2p

p
Z T=2

	T=2

gnðtÞe	itx dt and jjgnjjL2 ¼ jjGnjjL2 : ð20Þ

Hence (18) implies (16) and (19) implies that the series defining g converges with

jjgjjL2p
XN
n¼1

cn

gn

����
����e	lnT=2jjgnjjL2pjju0jjL2

Ce

g
ea�ðpþeÞ2=T

XN
n¼1

e	lnT e2e
ffiffiffiffi
ln

p
 !1=2

:

Since as T-0 we have

XN
n¼1

e	lnT e2e
ffiffiffiffi
ln

p
pe2e2=T

XN
n¼1

e	lnT=2Be2e2=TðT=2Þ	1=2Gð1=2Þ=25C0
ee

3e2=T ;

this implies jjgjjL2ð	T=2;T=2ÞpCaeap
2=T jju0jjL2ð0;XÞ; with a ¼ a�ð1 þ 2e=pÞ2 þ 3e2=p2

and Ca ¼ CeC
0
e=g: Since a-a� as e-0; this completes the proof that Theorem 4.2

implies Theorem 4.1.

4.3. Complex analysis multipliers

In this subsection, we shall prove Theorem 4.2 by the following classical method in
complex analysis (cf. Section 14 in [18] for a concise account with references, and the
two volumes [13] for an extensive monograph on multipliers): for all nAN� and small
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t40; we shall form an infinite product Fn normalized by FnðilnÞ ¼ 1 with zeros at ilk

for every positive integer kan; and construct a multiplier Mn of exponential type t
with fast decay at infinity on the real axis so that Gn ¼ MnFn is in L2 on the real axis.
At infinity, it is well known that the growth of z/ lnjFnðzÞj can be bounded from

above by a power of jzj which is inverse to that of n/jilnjBn2 (cf. Theorem 2.9.5 in

[2]) we prove that our ln Fn is essentially bounded by z/p
ffiffiffiffiffi
jzj

p
þ oð

ffiffiffiffiffi
ln

p
Þ where the

constant p is optimal (cf. Remark 4.5). Therefore Mn has to be essentially bounded

by CnðtÞexpð	p
ffiffiffiffiffiffi
jxj

p
Þ on the real axis, for some constant CnðtÞ40: The key point (as

in [21], Theorem 1 in [22] and Theorem 2 in [23]) is to construct a multiplier Mn such
that CnðtÞ has the smallest growth as t tends to 0: The following two lemmas give the
key to the construction of Fn and Mn respectively.

Lemma 4.3. Let flngnAN� be a sequence of real numbers satisfying (15). For all e40

there is a Ae40 such that, for all nAN�; the entire function fn defined by fnðzÞ ¼Q
kan 1 	 z

lk

� �
satisfies

lnj fnðzÞjpðpþ eÞ
ffiffiffiffiffi
jzj

p
þ Ae; ð21Þ

jlnj fnðlnÞjjpe
ffiffiffiffiffi
ln

p
þ Ae: ð22Þ

Proof. For every nAN�; we introduce the counting function of the sequence
flkgkAN�

\fng

NnðrÞ ¼ #fkAN�
\fng j lkprg:

From (15) we have N0 	 1pNnpN0 and
ffiffiffiffiffi
ln

p
¼ n þ nþ oð1Þ: Since lkprolkþ1

implies
ffiffiffiffiffi
lk

p
	 kp

ffiffi
r

p
	 N0ðrÞp

ffiffiffiffiffiffiffiffiffi
lkþ1

p
	 ðk þ 1Þ þ 1; we deduce j

ffiffi
r

p
	 NnðrÞ 	

njp2 þ oð1Þ: The proof uses assumption (15) through the estimates of the increments

Ln :¼ lnþ1 	 ln and Dn :¼
ffiffiffiffiffiffiffiffiffi
lnþ1

p
	

ffiffiffiffiffi
ln

p
and their increments:

ln ¼ n2 þ 2nn þ oðnÞ; Ln ¼ 2n þ oðnÞ; Ln 	 Ln	1 ¼ oðnÞ; ð23Þ

ffiffiffiffiffi
ln

p
¼ n þ nþ oð1Þ; Dn ¼ 1 þ oð1Þ; Dn 	 Dn	1 ¼ oð1Þ; ð24Þ

8rA�0; l1½;NnðrÞ ¼ 0; (A40; 8r; j
ffiffi
r

p
	 NnðrÞjpA: ð25Þ

We shall use repeatedly that for any real sequence frngnAN�

rn ¼ oð1Þ ) ln 1 þ rn

1 þ oð1Þ

� �����
���� ¼ jrnjð1 þ oð1ÞÞ: ð26Þ
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To prove (21), we estimate the left-hand side in terms of Nn:

lnj fnðzÞjp
X
kan

ln 1 þ jzj
lk

� �
¼
Z

N

0

ln 1 þ jzj
r

� �
dNnðrÞ

¼
Z

N

0

NnðrÞ
jzj

jzj þ r

dr

r
¼
Z

N

0

NnðjzjsÞ
1 þ s

ds

s
:

To estimate this last integral we use (25) and the integral computations:

Z
N

0

ffiffi
s

p

1 þ s

ds

s
¼
Z

N

0

2 dr

1 þ r2
¼ p;

Z
N

l1

jzj

ds

sð1 þ sÞ ¼ ln
s

1 þ s

����
����

� �
N

l1

jzj

¼ ln 1 þ jzj
l1

� �
:

Thus we obtain lnj fnðzÞjpp
ffiffiffiffiffi
jzj

p
þ A lnð1 þ jzj

l1
Þ; so that, for all e40 there is a A0

e40

such that lnj fnðzÞjpðpþ eÞ
ffiffiffiffiffi
jzj

p
þ A0

e:

To prove (22), we estimate the left-hand side in terms of Nn:

lnj fnðlnÞj ¼
X
kon

ln
ln

lk

	 1

� �
þ
X
k4n

ln 1 	 ln

lk

� �

¼
Z lþ

n	1

l	1

ln
ln

r
	 1

� �
dNnðrÞ þ

Z
N

l	nþ1

ln 1 	 ln

r

� �
dNnðrÞ:

Integrating by parts yields lnj fnðlnÞj ¼ In þ Bn with

In ¼
Z lþ

n	1

l	1

NnðrÞ
ln

ln 	 r

dr

r
þ
Z

N

l	nþ1

NnðrÞ
ln

ln 	 r

dr

r
;

Bn ¼ NnðrÞln
ln

r
	 1

� �� �lþ
n	1

l	1

þ NnðrÞln 1 	 ln

r

� �� �
N

l	nþ1

:

To estimate the boundary term Bn; we first simplify its expression using Nnðl	1 Þ ¼ 0

and Nnðlþn	1Þ ¼ Nnðl	nþ1Þ ¼ n 	 1; then we sort out the increments Ln ¼ lnþ1 	 ln;

and finally we use (23) and (26)

Bn ¼ðn 	 1Þ ln
ln

ln	1
	 1

� �
	 ln 1 	 ln

lnþ1

� �� �

¼ðn 	 1Þ ln 1 	 Ln 	 Ln	1

Ln

� �
þ ln 1 þ Ln þ Ln	1

ln	1

� �� �

¼ðn 	 1Þ oðnÞ
2n

ð1 þ oð1ÞÞ þ 4n þ oðnÞ
n2

ð1 þ oð1ÞÞ
� �

¼ oð1Þ:
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Now we estimate the integral term In: Performing the change of variable r ¼ lns and

using (25) yields: jIn 	
ffiffiffiffiffi
ln

p
JnjpAKn with

Jn ¼
Z lþ

n	1

ln

l	1
ln

ds

ð1 	 sÞ
ffiffi
s

p þ
Z

N

l	nþ1

ln

ds

ð1 	 sÞ
ffiffi
s

p ;

Kn ¼
Z lþn	1

ln

l	1
ln

ds

ð1 	 sÞs þ
Z

N

l	nþ1

ln

ds

ðs 	 1Þs:

The term Kn is readily computed and estimated using (23)

Kn ¼ ln
s

1 	 s

h ilþn	1

ln

l	1
ln

þ ln
s 	 1

s

� �
N

l	nþ1

ln

¼ ln
lnþ1

Ln

þ ln
ln	1

Ln	1
þ ln ln

1

l1
þ 1

ln

� �� �

¼ 2 ln
n2 þ OðnÞ
2n þ oðnÞ þ 2 ln

ffiffiffiffiffi
ln

p
þ Oð1Þ ¼ oð

ffiffiffiffiffi
ln

p
Þ:

We compute Jn after a change of variable, and estimate it by (24) and (26) after

sorting out the increments Dn ¼
ffiffiffiffiffiffiffiffiffi
lnþ1

p
	

ffiffiffiffiffi
ln

p

Jn ¼
Z ffiffiffiffiffiffiffi

ln	1

p þffiffiffiffi
ln

pffiffiffiffi
l1

p 	ffiffiffiffi
ln

p

2 dr

r2 	 1
þ
Z

Nffiffiffiffiffiffiffi
lnþ1

p 	ffiffiffiffi
ln

p

2 dr

r2 	 1
¼ ln

1 	 r

r þ 1

� � ffiffiffiffiffiffiffiln	1

p þffiffiffiffi
ln

pffiffiffiffi
l1

p 	ffiffiffiffi
ln

p
þ ln

r 	 1

r þ 1

� �
Nffiffiffiffiffiffiffi

lnþ1

p 	ffiffiffiffi
ln

p

¼ ln
Dn	1

Dn

� �
þ ln

ffiffiffiffiffiffiffiffiffi
lnþ1

p
þ

ffiffiffiffiffi
ln

pffiffiffiffiffi
ln

p
þ

ffiffiffiffiffiffiffiffiffi
ln	1

p
� �

	 ln

ffiffiffiffiffi
ln

p
	

ffiffiffiffiffi
l1

pffiffiffiffiffi
ln

p
þ

ffiffiffiffiffi
l1

p
� �

¼ ln 1 	 Dn 	 Dn	1

Dn

� �
þ ln 1 þ Dn þ Dn	1ffiffiffiffiffi

ln

p
þ

ffiffiffiffiffiffiffiffiffi
ln	1

p
� �

	 ln 1 	 2
ffiffiffiffiffi
l1

pffiffiffiffiffi
ln

p
þ

ffiffiffiffiffi
l1

p
� �

¼ oð1Þð1 þ oð1ÞÞ þ 2 þ oð1Þ
2n

ð1 þ oð1ÞÞ þ Oð1Þ
n

ð1 þ oð1ÞÞ ¼ oð1Þ:

Plugging the estimates Kn ¼ oð
ffiffiffiffiffi
ln

p
Þ and Jn ¼ oð1Þ into jIn 	

ffiffiffiffiffi
ln

p
JnjpAKn yields

In ¼ oð
ffiffiffiffiffi
ln

p
Þ: Plugging this estimate and Bn ¼ oð1Þ into lnj fnðlnÞj ¼ In þ Bn yields

lnj fnðlnÞj ¼ oð
ffiffiffiffiffi
ln

p
Þ; which completes the proof of (22). &

Lemma 4.4. Let a� be defined by (4). For all d40 there is a D40 such that

for all t40; there is an even entire function M of exponential type t satisfying: Mð0Þ ¼
1 and

8x40; lnjMðxÞjpa�d2

2t
þ D 	 d

ffiffiffi
x

p
and jMðixÞjX1: ð27Þ

Proof. Following Ingham and many others since 1934 (cf. Section 14 in [18] for
theorems and references) we seek a multiplier M of small exponential type decaying
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rapidly along the real axis in the following form:

MðzÞ ¼
Y
nAN

sinc
z

an

� �
where sincð0Þ ¼ 1; 8zAC�; sincðzÞ ¼ sinðzÞ

z
ð28Þ

and where fangnAN is a non decreasing sequence of positive real numbers such that

tM ¼
P

nAN
1
an
oN: Since the cardinal sine function sinc is an even entire function of

exponential type 1 satisfying sincð0Þ ¼ 1 and sincðixÞ ¼ sinhðxÞ=xX1 for all x40;
(28) defines an even entire function M of exponential type tM satisfying Mð0Þ ¼ 1
and jMðixÞjX1 for all x40:

We define fangnAN by the slope A of its counting function N and its first term a0

(to be chosen large enough)

NðrÞ :¼
X
janjpr

1 ¼ ½A
ffiffiffi
u

p
� for rX2 and a0XA	2;

where ½x� denotes as usual the greatest integer smaller or equal to the real number x:
The exponential type tM of M is easily bounded from above by t ¼ 2A=

ffiffiffiffiffi
a0

p

tM :¼
X
nAN

1

an

¼
Z

N

0

dNðrÞ
r

¼
Z

N

0

NðrÞ
r2

drp
Z

N

a0

A
ffiffi
r

p

r2
dr ¼ 2Affiffiffiffiffi

a0
p ¼: t

and we are left with estimating the decay of

lnjMðxÞj ¼
Z

N

a	
0

f
x

r

� �
dNðrÞ where f ðyÞ ¼ ln sincðyÞ ¼ ln

sinðyÞ
y

: ð29Þ

We shall choose A such that, for all a0XA	2; lnjMðxÞjp	 d
ffiffiffi
x

p
þ Oð1Þ as x-þ

N; and then prove that: lnjMðxÞjpa�d2=ð2tÞ 	 d
ffiffiffi
x

p
þ Oð1Þ as t-0 (equivalently

a0-þN) uniformly in x40:
For x4a0 we take advantage of the boundedness of sine through

the estimate f ðyÞp	 lnjyj for jyjp1; by splitting the integral in (29) into the two
terms:

I ¼
Z x

a	
0

f
x

r

� �
dNðrÞp

Z x

a	
0

ln
r

x

��� ��� dNðrÞ ¼ 	
Z x

a0

NðrÞdr

r

J ¼
Z

N

x

f
x

r

� �
dNðrÞ ¼

Z 1

0

f 0ðyÞN x

y

� �
dy	 f ð1ÞNðxÞ

where right-hand sides were integrated by parts and y ¼ x=r: Now we plug in

the basic estimate on N: A
ffiffi
r

p
	 1pNðrÞpA

ffiffi
r

p
for rX2: The first term is now

estimated by

Ip	 A

Z x

a0

drffiffi
r

p þ
Z x

a0

dr

r
¼ 	2A

ffiffiffi
x

p
	 ffiffiffiffiffi

a0

p� �
þ ln x 	 ln a0: ð30Þ
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To estimate the second term, we first observe that the Hadamard factorization of the

cardinal sine function sincðpzÞ ¼
Q

nAN� 1 	 z2

n2

� �
and the Taylor expansion of the

logarithm at 1 imply

f ðyÞ ¼ 	
X

kAN�

zð2kÞ
k

y
p

� �2k

for jyjo1; where zðsÞ ¼
X
nAN�

1

ns
:

The second term is now estimated by

Jp
Z 1

0

f 0ðyÞ A
ffiffiffi
x

pffiffiffi
y

p 	 1

� �
dy	 f ð1ÞA

ffiffiffi
x

p

¼A
ffiffiffi
x

p Z 1

0

f 0ðyÞdyffiffiffi
y

p 	 f ð1Þ
� �

	 f ð1Þ

¼ 	 A
ffiffiffi
x

p X
kAN�

2k

2k 	 1
2

	 1

 !
zð2kÞ
kp2k

	 f ð1Þ ¼ 	AS� ffiffiffi
x

p
	 f ð1Þ; ð31Þ

where the series for f was differentiated, multiplied and integrated term by term, and

S� ¼
P

kAN�
1

kð4k	1Þ
zð2kÞ
p2k : Putting (30) and (31) together yields

8x4a0; lnjMðxÞjp	 ð2 þ S�ÞA
ffiffiffi
x

p
þ ln x 	 f ð1Þ þ 2A

ffiffiffiffiffi
a0

p
;

so that, for all d4ð2 þ S�ÞA there is a D1 such that

8d4ð2 þ S�ÞA; (D140; 8x4a0; lnjMðxÞjp2A
ffiffiffiffiffi
a0

p 	 d
ffiffiffi
x

p
þ D1: ð32Þ

Since jsincj is bounded by 1: for all x; lnjMðxÞjp0: Moreover d42A; so that (32)
implies

8a0XA	2; 8x40; lnjMðxÞjpd
ffiffiffiffiffi
a0

p 	 d
ffiffiffi
x

p
þ D1: ð33Þ

Since d4ð2 þ S�ÞA and t ¼ 2A=
ffiffiffiffiffi
a0

p
; this proves

8tp2A2; 8x40; lnjMðxÞjpa1d2

2t
	 d

ffiffiffi
x

p
þ D1 ð34Þ

with a1 ¼ 4=ð2 þ S�Þ:
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For xoa0; we can also use the better estimate

lnjMðxÞjp
Z

N

a0

f
x

r

� �
dNðrÞ ¼

Z x=a0

0

f 0ðyÞN x

y

� �
dy

pA
ffiffiffi
x

p Z x=a0

0

f 0ðyÞdyffiffiffi
y

p 	 f
x

a0

� �

p 	 A
ffiffiffiffiffi
a0

p X
kAN�

4kzð2kÞ
kð4k 	 1Þ

x

a0p

� �2k

	f ð1Þ: ð35Þ

If we keep only the first term (i.e. k ¼ 1) of the series in (32) and (35), we get that for

all d4ð2 þ 1
3
zð2Þ
p2 ÞA there is a D2 such that

8x4a0; lnjMðxÞjp2A
ffiffiffiffiffi
a0

p 	 d
ffiffiffi
x

p
þ D2;

8xoa0; lnjMðxÞjp	 A
ffiffiffiffiffi
a0

p 4zð2Þ
3p2

x

a0

� �2

	f ð1Þ: ð36Þ

Now, for all xoa0

lnjMðxÞj 	 2A
ffiffiffiffiffi
a0

p þ d
ffiffiffi
x

p
pA

ffiffiffiffiffi
a0

p
F

x

a0

� �

with FðXÞ ¼ 	2 þ ð2 þ eÞ
ffiffiffiffi
X

p
þ 1

3
zð2Þ
p2 ð

ffiffiffiffi
X

p
	 4X 2Þ ¼ 	2 þ ð37=18 þ eÞ

ffiffiffiffi
X

p
	 2X 2=9

and e ¼ d=A 	 ð2 þ 1
3
zð2Þ
p2 Þ40: Since F is increasing on ½0; 1� and Fð1Þ ¼ e	 1

6
;

choosing A so that eo1
6
; yields that lnjMðxÞj 	 2A

ffiffiffiffiffi
a0

p þ d
ffiffiffi
x

p
p0; for all xoa0:

Together with (36), this proves

8x40; lnjMðxÞjp2A
ffiffiffiffiffi
a0

p 	 d
ffiffiffi
x

p
þ D2: ð37Þ

Since d4ð2 þ 1
3
zð2Þ
p2 ÞA ¼ 37A=18 and t ¼ 2A=

ffiffiffiffiffi
a0

p
; this proves

8tp2A2; 8x40; lnjMðxÞjpa2d2

2t
	 d

ffiffiffi
x

p
þ D2 ð38Þ

with a2 ¼ 2ð36=37Þ2:
Eqs. (34) and (38) complete the proof of the Lemma 4.4 with a� ¼ minfa1; a2g:

Since we have checked on a computer that a14a2; we decided to state the lemma
with a� ¼ a2; i.e. (4). &

To prove Theorem 4.2, we use Lemmas 4.3 and 4.4 with d ¼ pþ 2e and define

Gn ¼ FnMn with FnðzÞ ¼ fnð	izÞ=fnðlnÞ and MnðzÞ ¼ MðzÞ=MðilnÞ:
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Thanks to Lemma 4.3, the entire function Fn satisfies

FnðilnÞ ¼ 1 and 8kAN�; kan; FnðilkÞ ¼ 0; ð39Þ

lnjFnðzÞjpðpþ eÞ
ffiffiffiffiffi
jzj

p
þ e

ffiffiffiffiffi
ln

p
þ 2Ae; ð40Þ

where (39) is an obvious consequence of the definitions of fn and Fn; and (40) is a
consequence of estimates (21) and (22).

Thanks to Lemma 4.4, there is a De40 such that the entire function Mn is of
exponential type t and satisfies

MnðilnÞ ¼ 1; ð41Þ

8xAR; lnjMnðxÞjp
a�d2

2t
þ De 	 d

ffiffiffiffiffiffi
jxj

p
; ð42Þ

where (41) is an obvious consequence of the definitions of M and Mn; and (42) is a
consequence of (27) since M is even.

The entire function Gn has the same exponential type as Mn since (40) implies that
the exponential type of Fn is 0: Hence (17) holds. Putting (39) and (41) together yields
(18). Since d ¼ pþ 2e; (40) and (42) imply

8xAR; lnjGnðxÞjpDe þ 2Ae 	 e
ffiffiffiffiffiffi
jxj

p
þ e

ffiffiffiffiffi
ln

p
þ a�d2

2t
:

Hence (19) holds with Ce ¼ eDeþ2Ae
RþN

	N
e	2e

ffiffiffiffi
jxj

p
dx

� �1=2

: Theorem 4.2 is

proved. &

Remark 4.5. Under assumption (15), Lemma 3 in [23] (which applies to much more

general sequences) proves that FnðzÞ ¼
Q

kan 1 	 z	ln

lk	ln

� �2
� �

satisfies (39)

and lnjFnðln þ zÞjp2p
ffiffiffiffiffi
jzj

p
; hence lnjFnðzÞjp2p

ffiffiffiffiffi
jzj

p
þ Oð

ffiffiffiffiffi
ln

p
Þ: In (40), the estimate

Oð
ffiffiffiffiffi
ln

p
Þ improves to oð

ffiffiffiffiffi
ln

p
Þ and the constant 2p improves to the optimal p

(optimality can be deduced from Theorem 4.1.1 in [2]).
Seidman obtained Lemma 4.4 for a� ¼ b� with b�E42:86 in the proof of Theorem

3.1 in [21]. His later Theorem 1 in [22] improves the rate to a� ¼ 2b� with b�E4:17:
Theorem 2 in [23], which applies to much more general spectral sequences, yields
Lemma 4.4 for a� ¼ 24: The argument used in Section 3 can be used to prove that

Lemma 4.4 does not hold for a�o1
4: It would be interesting to determine the smallest

value of a� for which it holds.
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5. Upper bound under the geodesics condition

In this section, we prove Theorem 2.3 in three steps. D0ðOÞ denotes the space of
distributions on the open set O endowed with the weak topology and MðOÞ denotes
the subspace of Radon measures on O:

5.1. The segment controlled at both ends

In a first step, we prove that the upper bound for the null-controllability cost of
the heat equation on the segment ½0;L� controlled at one end is the same as the null-
controllability cost of the heat equation on the twofold segment ½	L;L� controlled at
both ends.

Given a time T40 and a length L40; we denote by D (respectively, N) some

continuous operator from L2ð0;LÞ to L2ð0;TÞ allowing to control to zero in time T

the heat equation on ½0;L� with zero Dirichlet (respectively, Neumann) condition at

0 by a Dirichlet control at L: More precisely, for all u0AL2ð0;LÞ the solution

uAC0ð½0;NÞ;L2ð0;LÞÞ; denoted by u ¼ SDu0 (respectively u ¼ SNu0), of the Cauchy
problem in Theorem 2.2 with B ¼ 1 (respectively B ¼ @s) and g ¼ Du0 (respectively
g ¼ Nu0) satisfies u ¼ 0 at t ¼ T :

Proposition 5.1. For any time T40 and any length L40; there is a continuous

operator K from L2ð	L;LÞ to L2ð0;TÞ2 allowing to control to zero in time T the heat

equation on ½	L;L� by Dirichlet controls at both ends at the same cost as D and N; i.e.

for all v0AL2ð	L;LÞ the solution vAC0ð½0;NÞ;L2ð	L;LÞÞ of

@tv 	 @2
s v ¼ 0 in �0;T ½�� 	 L;L½; ðvns¼	L; vns¼LÞ ¼ Kv0; vnt¼0 ¼ v0 ð43Þ

satisfies v ¼ 0 at t ¼ T and jjK jjpsupðjjDjj; jjNjjÞ:

Proof. Given v0AL2ð	L;LÞ; we decompose it in odd and even parts: v0 ¼ v0;odd þ
v0;even: We denote by u0;odd and u0;even the restrictions of v0;odd and v0;even to ½0;L�: We

denote by f ¼ Du0;odd and g ¼ Nu0;even the corresponding controls. We denote by

uodd ¼ SDu0;odd and ueven ¼ SNu0;even the corresponding solutions.

We define vAL2ð½0;T � � ½	L;L�Þ by vðt;7sÞ ¼ uevenðt; sÞ7uoddðt; sÞ for sX0:
Since

ð@t 	 @2
s Þueven ¼ ð@t 	 @2

s Þuodd ¼ 0 in D0ð�0;T ½��0;L½Þ;

we have, denoting the Dirac mass at s ¼ 0 by dsAD0ðRÞ;

ð@t 	 @2
s Þv ¼ 2uoddðt; 0Þ#ds

0ð0Þ þ 2@suevenðt; 0Þ#dsð0Þ:

But uoddðt; 0Þ ¼ @suevenðt; 0Þ ¼ 0 by the definition of D and N: Hence ð@t 	 @2
s Þv ¼ 0:

Moreover vð0; sÞ ¼ v0ðsÞ; vðT ; sÞ ¼ 0; vðt;LÞ ¼ gðtÞ þ f ðtÞ; vðt;	LÞ ¼ gðtÞ 	 f ðtÞ:
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Therefore, setting Kv0 ¼ ðg 	 f ; g þ f Þ yields an operator K satisfying the null-
controllability property required.

To finish the proof we estimate its cost jjK jj: Taking the Euclidean norm for

Kv0 ¼ ðg 	 f ; g þ f Þ; we have jjKv0jj2L2ð0;TÞ2 ¼ 2jj f jj2L2ð0;TÞ þ 2jjgjj2L2ð0;TÞ: Since f ¼
Du0;odd and g ¼ Nu0;even; setting C ¼ supðjjDjj; jjNjjÞ we have

jjKv0jj2L2ð0;TÞ2p2C2ðjju0;oddjj2L2ð0;LÞ þ jju0;evenjj2L2ð0;LÞÞ: ð44Þ

Moreover, since 2u0;oddðsÞ ¼ v0ðsÞ 	 v0ð	sÞ and 2u0;evenðsÞ ¼ v0ðsÞ þ v0ð	sÞ for

sA½0;L�; we have

jj2u0;oddjj2L2ð0;LÞ ¼ jjv0jj2L2ð	L;LÞ 	 2

Z L

0

v0ðsÞv0ð	sÞ ds; ð45Þ

jj2u0;evenjj2L2ð0;LÞ ¼ jjv0jj2L2ð	L;LÞ þ 2

Z L

0

v0ðsÞv0ð	sÞ ds: ð46Þ

Eqs. (44)–(46) imply jjKv0jjL2ð0;TÞ2pCjjv0jjL2ð	L;LÞ: &

5.2. The fundamental controlled solution

In a second step we construct a ‘‘fundamental controlled solution’’ v of the heat
equation on the segment controlled by Dirichlet conditions at both ends.

Proposition 5.2. If Theorem 2.2 holds for some rate a�; then for any a4a�; there

exists A40 such that for all L40 and TA�0; infðp=2;LÞ2� there is a

vAC0ð½0;T �;Mð� 	 L;L½ÞÞ satisfying

@tv 	 @2
s v ¼ 0 in D0ð�0;T ½�� 	 L;L½Þ; ð47Þ

vnt¼0 ¼ d and vnt¼T ¼ 0; ð48Þ

jjvjjL2ð�0;T ½��	L;L½ÞpAeaL2=T : ð49Þ

We shall sometimes refer to a function v satisfying the above requirements as a
fundamental controlled solution on �0;T ½�� 	 L;L½ at cost ðA; aÞ:

Proof. We first reduce the problem to the case L ¼ p=2 using the rescaling

ðt; sÞ/ðs2t; ssÞ; s40 with s ¼ p=ð2LÞ: Given L40 and TA �0; infðp=2;LÞ2�; we set

L̃ ¼ p=2 and T̃ ¼ s2TA�0; L̃2�: Let ṽ be a fundamental controlled solution on

�0; T̃½�� 	 L̃; L̃½ at cost ðÃ; *aÞ: Setting vðt; sÞ ¼ sṽðs2t; ssÞ defines a fundamental
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controlled solution v on �0;T ½�� 	 L;L½ at cost ðÃ=
ffiffiffi
s

p
; *aÞ: Since TpL̃2; we have

Ã=
ffiffiffi
s

p
pÃðL2=TÞ1=4: Hence for all a4*a there is an A40 such that v is also a

fundamental controlled solution on �0;T ½�� 	 L;L½ at cost ðA; aÞ: Therefore, it is
enough to prove Proposition 5.2 in the particular case L ¼ p=2:

We assume Theorem 2.2 holds for some rate a�: Let *a4*a�4a�; L ¼ L̃ ¼ p=2 and

T̃A�0; L̃2� be fixed from now on. We set a ¼ ð1 	 eÞ*a� and T ¼ ð1 	 eÞT̃ where eA�0; 1½
is chosen such that a4a�: Applying Theorem 2.2 once with B ¼ 1 and once with

B ¼ @s; and then applying Proposition 5.1 yields a C40 independent of T̃ such that

jjKjjpsupðjjDjj; jjNjjÞpCeaL2=T ¼ Ce*a�L̃2=T̃: ð50Þ

We define ṽAC0ð½0; T̃�;Mð� 	 L̃; L̃½ÞÞ as the solution of

@tṽ 	 @2
s ṽ ¼ 0 in �0; T̃½�� 	 L̃; L̃½; ðṽns¼	L̃; ṽns¼L̃Þ ¼ b; ṽnt¼0 ¼ d;

where the control bAL2ð0; T̃Þ2 is defined by bðtÞ ¼ 0 for tpeT̃ and by bðeT̃ þ t0Þ ¼
Kðṽnt¼eTÞðt0Þ for t0A�0;T ½: Note that v0 ¼ ṽnt¼eT is just the Dirac mass at the origin

smoothed out by the homogeneous heat semigroup during a time eT̃; so that

v0AL2ð	L;LÞ: Moreover eT̃ þ T ¼ T̃ and vðt; sÞ ¼ ṽðeT̃ þ t; sÞ is the solution of (43),
so that ṽnt¼T̃ ¼ vnt¼T ¼ 0:

To finish the proof that ṽ is a fundamental controlled solution on �0; T̃½�� 	 L̃; L̃½;
we estimate its L2ð�0; T̃½�� 	 L̃; L̃½Þ norm which we abbreviate as jjṽjjT̃;L̃: Setting

ejðsÞ ¼ sinð jðs þ p=2ÞÞ=
ffiffiffiffiffiffiffiffi
2=p

p
defines an orthonormal basis ðejÞjAN� of L2ð� 	 L̃; L̃½Þ

such that ej is an eigenvector of 	Ds with eigenvalue j2: In the weak topology, the

Dirac mass can be decomposed in this basis as dðsÞ ¼
P

j ejð0ÞejðsÞ: Note that the

sequence ðejð0ÞÞjAN� is bounded. For tA�0; T̃�; we introduce the coordinates ðṽjðtÞÞjAN�

of ṽðt; �ÞAL2ð� 	 L̃; L̃½Þ in the Hilbert basis ðejÞjAN� : Using these coordinates and

abbreviating the L2ð�0; T̃½Þ norm as jj � jjT̃; the function ṽ and its norm write

ṽðt; sÞ ¼
X

j

ṽjðtÞejðsÞ and jjṽjj2T̃;L̃ ¼
Z T̃

0

X
j

jṽjðtÞj2 dt ¼
X

j

jjṽj jj2T̃: ð51Þ

As in [7], these coordinates can be computed by ṽjð0Þ ¼ ejð0Þ and

ṽjðtÞ ¼ e	j2tṽjð0Þ þ
Z t

0

e	j2ðt	t0Þðe0jð	L̃Þṽðt0;	L̃Þ 	 e0jðL̃Þṽðt0; L̃ÞÞ dt0: ð52Þ

Using Young’s inequality to estimate the second term of the right-hand side, we have

(since T̃o4; je0jð7L̃Þj ¼ jṽjð0Þj ¼
ffiffiffiffiffiffiffiffi
2=p

p
o1)

jjṽj jjT̃p jṽjð0Þjjje	j2tjjT̃ þ jje	j2tjjL1ð�0;T̃½Þðje0jð	L̃Þjjjṽðt0;	L̃ÞjjT̃ þ je0jðL̃Þjjjṽðt0; L̃ÞjjT̃Þ

p
4

j
ð1 þ jjṽðt0;	L̃ÞjjT̃ þ jjṽðt0; %LÞjjT̃Þ:
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Hence Eq. (51) implies

jjṽjj2T̃;L̃p ð1 þ jjṽðt0;	L̃Þjj2T̃ þ jjṽðt0; L̃Þjj2T̃Þ
X

j

43

j2

¼ 43p2

6
1 þ jjKv0jj2L2ð�0;T̃½Þ

� �
:

But there is an A040 independent of eT̃o1 such that:

jjv0jj2L2ð�	L̃;L̃½Þ ¼
X

j

jṽjðeT̃Þj2p
X

j

e	2j2eT̃p
A0ffiffiffiffiffiffi
eT̃

p :

Hence Eq. (50) yields a C040 independent of T̃ such that

jjṽjjT̃;L̃p
8pffiffiffi

6
p ð1 þ 2

ffiffiffi
p

p
jjK jj jjv0jjL̃Þp

C0ffiffiffiffĩ
T

p e*a�L̃2=T̃:

Since *a4*a�; there is an Ã40 independent of T̃ such that: jjṽjj2T̃;L̃pÃe*a�L̃2=T̃: This

completes the proof that ṽ is a fundamental controlled solution on �0; T̃½�� 	 L̃; L̃½ at

cost ðÃ; *aÞ: &

5.3. The transmutation of waves into heat

In a third step, we perform a transmutation of an exact control for the wave
equation into a null-control for the heat equation. Our transmutation formula can be

regarded as the analogue of Kannai’s formula (6) where the kernel e	s2=ð4tÞ=
ffiffiffiffiffiffiffi
4pt

p
;

which is the fundamental solution of the heat equation on the line, is replaced by the
fundamental controlled solution that we have constructed in the previous step. To
ensure existence of an exact control for the wave equation we use the geodesics
condition of Bardos–Lebeau–Rauch (already mentioned above Theorem 2.3):

Theorem 5.3 (Bardos et al. [1]). If L4LO then for all ðw0;w1ÞAH1
0 ðMÞ � L2ðMÞ and

all ðw2;w3ÞAH1
0 ðMÞ � L2ðMÞ there is a control function fAL2ðRþ � MÞ such that the

solution wAC0ðRþ;H1
0 ðMÞÞ-C1ðRþ;L2ðMÞÞ of the mixed Dirichlet–Cauchy problem

(n.b. the time variable is denoted by s here)

@2
s w 	 Dw ¼ 1�0;L½�O f in Rþ � M; w ¼ 0 on Rþ � @M; ð53Þ

with Cauchy data ðw; @swÞ ¼ ðw0;w1Þ at s ¼ 0; satisfies ðw; @swÞ ¼ ðw2;w3Þ at s ¼ L:

Moreover, the operator SW : H1
0 ðMÞ � L2ðMÞ

� �2
-L2ðRþ � MÞ defined by

SW ððw0;w1Þ; ðw2;w3ÞÞ ¼ f is continuous.

We assume that Theorem 2.2 holds for some rate a�: Let a4a�; TA�0; infð1;L2
OÞ½

and L4LO be fixed from now on. Let A40 and vAL2ð�0;T ½�� 	 L;L½Þ be the
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corresponding constant and fundamental controlled solution given by Proposition

5.2. We define
%
vAL2ðR2Þ as the extension of v by zero, i.e.

%
vðt; sÞ ¼ vðt; sÞ on

�0;T ½�� 	 L;L½ and
%
v is zero everywhere else. It inherits from v the following

properties:

@t
%
v 	 @2

s
%
v ¼ 0 in D0ð�0;þN½�� 	 L;L½Þ; ð54Þ

%
vnt¼0 ¼ d and

%
vnt¼T ¼ 0; ð55Þ

jj
%
vjjL2ð�0;þN½�RÞpAeaL2=T : ð56Þ

Let u0AH1
0 ðMÞ be an initial data for the heat equation (1). Let w and f be the

corresponding solution and control function for the wave equation obtained by
applying Theorem 5.3 with w0 ¼ u0 and w1 ¼ w2 ¼ w3 ¼ 0: We define

%
wAL2ðR;H1

0 ðMÞÞ and
%
fAL2ðR� MÞ as the extensions of w and f by reflection with

respect to s ¼ 0; i.e.
%
wðs; xÞ ¼ wðs; xÞ ¼

%
wð	s; xÞ and

%
fðs; xÞ ¼ f ðs; xÞ ¼

%
fð	s; xÞ on

Rþ � M: Since w1 ¼ 0; Eq. (53) imply

@2
s
%
w 	 D

%
w ¼ 1�	L;L½�O

%
f in D0ðR� MÞ;

%
w ¼ 0 on R� @M: ð57Þ

The main idea of our proof is to use
%
v as a kernel to transmute

%
w and

%
f into a solution

u and a control g for (1). Since
%
vAL2ðR2Þ;

%
wAL2ðR;H1

0 ðMÞÞ and
%
fAL2ðR� MÞ; the

transmutation formulas

uðt; xÞ ¼
Z
R %

vðt; sÞ
%
wðs; xÞ ds and gðt; xÞ ¼

Z
R %

vðt; sÞ
%
fðs; xÞ ds; ð58Þ

define functions uAL2ðR;H1
0 ðMÞÞ and gAL2ðR� MÞ: Since

%
wðs; xÞ ¼ @s

%
wðs; xÞ ¼ 0

for jsj ¼ L; Eqs. (57) and (54) imply

@tu 	 Du ¼ 1
�0;T ½�O

g in D0ð�0;þN½�MÞ and u ¼ 0 on �0;T ½�@M: ð59Þ

The property (55) of
%
v implies

unt¼0 ¼ u0 and unt¼T ¼ 0: ð60Þ

Setting C ¼
ffiffiffi
2

p
AjjSW jj; Cauchy–Schwarz inequality with respect to s; estimate (56)

and jj
%
fjj2L2ðR�MÞ ¼ 2jjSW ððu0; 0Þ; ð0; 0ÞÞÞjj2L2ðRþ�MÞ imply

jjgjjL2ðR�MÞpjj
%
vjjL2ðR2Þjj

%
fjjL2ðR�MÞpCeaL2=T jju0jjH1

0
ðMÞ: ð61Þ

We have proved that for all a4a� there is a C40 such that for all u0AH1
0 ðMÞ;

TA�0;minf1;L2
Og½ and L4LO; there is a control g which solves the null-

controllability problem (59), (60), at a cost so estimated in (61). The same property
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holds for the space of data L2ðMÞ instead of H1
0 ðMÞ; since

jjeeTDu0jjH1
0
ðMÞpjju0jjL2ðMÞC0=

ffiffiffiffiffiffi
eT

p
with eA�0; 1½ and C0 ¼ jjð1 þ lÞe	2

ffiffi
l

p
jj1=2

LNðRÞ:

Therefore lim supT-0 T ln CT ;OpaL2: Letting a and L tend, respectively, to a� and

LO in this estimate completes the proof of (5).
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