
Electronic Notes in Theoretical Computer Science 44 No. 1 (2001)
URL: http://www.elsevier.nl/locate/entcs/volume44.html 18 pages

Algebras, Coalgebras, Monads and Comonads

Neil Ghani a,1 Christoph Lüth b,2 Federico de Marchi a,3,5

John Power c,4

a Department of Mathematics and Computer Science, University of Leicester
b FB 3 — Mathematik und Informatik, Universität Bremen

c Laboratory for Foundations of Computer Science, University of Edinburgh

Abstract

Whilst the relationship between initial algebras and monads is well-understood, the
relationship between final coalgebras and comonads is less well explored. This paper
shows that the problem is more subtle and that final coalgebras can just as easily
form monads as comonads and dually, that initial algebras form both monads and
comonads.

In developing these theories we strive to provide them with an associated notion of
syntax. In the case of initial algebras and monads this corresponds to the standard
notion of algebraic theories consisting of signatures and equations: models of such
algebraic theories are precisely the algebras of the representing monad. We attempt
to emulate this result for the coalgebraic case by defining a notion cosignature and
coequation and then proving the models of this syntax are precisely the coalgebras
of the representing comonad.

1 Introduction

While the theory of coalgebras for an endofunctor is well-developed, less atten-
tion has been given to comonads. We feel this is a pity since the corresponding
theory of monads on Set explains the key concepts of universal algebra such
as signature, variables, terms, substitution, equations etc. Moreover, applica-
tions to base categories other than Set has proven fruitful in many situations,
e.g. the study of multi-sorted algebraic theories as monads over SetA, order-
sorted theories as monads over Pos, the study of categories with structure

1 Email: ng13@mcs.le.ac.uk
2 Email: cxl@informatik.uni-bremen.de
3 Email: fdm2@mcs.le.ac.uk
4 Email: ajp@dcs.ed.ac.uk
5 Research supported by EPSRC grant GRM96230/01: Categorical Rewriting: Monads
and Modularity

c©2001 Published by Elsevier Science B. V.

128

Open access under CC BY-NC-ND license.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector

https://core.ac.uk/display/82270065?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://creativecommons.org/licenses/by-nc-nd/3.0/

Ghani, Lüth, de Marchi, Power

using monads over Graph or Cat [8], the study of rewriting using monads
over Pre or Cat [16,17] and the study of higher order abstract syntax using
monads over SetF [9] (where F is the skeleton of the category of finite sets).
We aim for a similar framework, based upon the theory of comonads, explain-
ing the relationship between the coalgebraic duals of the above concepts, and
laying the ground for applications in categories apart from Set. This paper is
a first step in this direction.

Traditionally, one begins with a signature Σ and then for each set of vari-
ables X, defines the term algebra TΣ(X). Next one defines substitution and
shows this associative with the variables acting as left and right units. Finally,
given equations E, one also defines the quotient algebra TΣ,E(X). Generalising
this treatment of universal algebra to cover not just sets with extra structure
but also algebraic structure over other mathematical objects can be achieved
using a categorical reformulation of these ideas. In this categorical framework
[14], one constructs from a signature Σ, an endofunctor FΣ (which can be
thought of as sending an object X of variables to the terms of depth 1 with
variables from X). The term algebra TΣ can then be characterised as the the
free monad over FΣ. Being a monad gives TΣ a well behaved notion of substi-
tution, while being free captures the inductive nature of the term algebra. By
interpreting the equations of an algebraic theory as pairs of monad morphisms
between two free monads, the quotient algebra induced by the equations is
modelled as their coequaliser. Crucially, the models of an algebraic theory are
isomorphic to the Eilenberg-Moore category of algebras of the monad repre-
senting the algebraic theory.

Our aim is to dualise this categorical treatment of universal algebra and
in particular derive coalgebraic duals of the key concepts described above.
We therefore need to dualise firstly the construction of an endofunctor over
a signature and secondly the free monad over an endofunctor. It turns out
there is more than one possible dualisation and this is the subject matter of
this paper. For example, given a finitary endofunctor F : A → A, one can
consider the mapping sending an object X to the underlying object of the
initial X + F -algebra, the mapping sending X to underlying object of the
final X + F -coalgebra, the mapping sending X to underlying object of the
initial X ×F -algebra and the mapping sending X to underlying object of the
final X ×F -coalgebra. Each of these four mappings form either a monad or a
comonad as described in Table 1. Thus, there is perhaps not one dualisation
at play, but two possible, and orthogonal, dualisations giving four concepts
worthy of our attention.

We do not claim that this paper provides complete answers to the questions
raised above. However we do feel that the questions we address will be of
fundamental importance to the CMCS audience and that our approach is
novel in being more abstract than most. In particular, we hope that our
notions of cosignature, coequations and the categorical representation of this
syntax via comonads will be of general interest and stimulate further research.

129

Ghani, Lüth, de Marchi, Power

Monads Comonads

Initial Algebras µY.X + FY µY.X × FY

Final Coalgebras νY.X + FY νY.X × FY

Table 1
Algebras and Coalgebras forming Monads and Comonads

The rest of this paper is structured as follows: Sect. 2 contains preliminary
definitions. In Sect. 3, we briefly review the presentation of finitary monads
which we seek to dualise in the rest of the paper (the upper left entry in
Table 1). Sections 4 and 5 explore the different possibilities of dualisation,
with Section 4 exploring the lower left of Table 1 and Section 5 containing our
proposed coalgebraic syntax with associated representation and correctness
results (the right side of Table 1).

2 Preliminary Definitions and Notation

We assume the reader is familiar with standard category theory as can be
found in [18]. In order to abstract away from the category Set we have had
to employ certain constructions which some readers may not be completely
familiar with. We give a short definition of these here; more details can be
found in [18,3].

Locally Presentable and Accessible Categories: Let κ be a regular
cardinal. A diagram D is κ-filtered iff every subcategory with less than κ
objects and morphisms has a compatible cocone in D. An object X of a
category A is said to be κ-presentable iff the hom-functor A(X,) preserves
κ-filtered colimits. A category is locally κ-presentable (abbreviated as lκp) if
it is cocomplete and has, up to isomorphism, a set Nκ of κ-presentable objects
such that every object is a κ-filtered colimit of objects from Nκ. A category is
κ-accessible providing it is lκp except that it only has κ-filtered colimits rather
than all colimits. A functor is κ-accessible iff it preserves κ-filtered colimits;
we also say it has rank κ. The discrete category on Nκ is denoted Nκ. The full
subcategory of κ-presentable objects is denoted Aκ. The inclusion functors
are denoted Jκ : Nκ → Aκ and Iκ : Aκ → A. When A = Set, the set Nℵ0 can
be taken to be the natural numbers which we denote N.

Kan Extensions: Given a functor I : A → B and a category C, precom-
position with F defines a functor ◦ I : [B, C] → [A, C]. The problem of left
and right Kan extensions is the problem of finding left and right adjoints to
◦ I. More concretely, given a functor F : A → C, the left and right Kan

130

Ghani, Lüth, de Marchi, Power

extensions satisfy the natural isomorphisms

[B, C](LanIF,H) ∼= [A, C](F,H ◦ I) [B, C](H,RanIF) ∼= [A, C](H ◦ I, F).

Kan extensions can be given pointwise using using colimits and limits, or more
elegantly using ends and coends (see [18, Chapter X] for details).

3 Initial Algebras and Monads

We begin by recalling the well known equivalence between (finitary) monads
on the category Set and universal algebra and the generalisation of this equiv-
alence to locally presentable categories [14,21]. We illustrate these ideas with
a specific example using Set as the base category — examples over other base
categories can be found in [21,8].

A signature declares the operations from which the terms are constructed.
Usually, a signature is given as a set of operations and a function assigning
each operation an arity, but we can equivalently consider it as a function
Σ : N → Set, assigning to each arity the set of operations of that arity. In
order to abstract away from the category of Set, we need a notion of arity
appropriate for different categories. The key observation is that the usual
arities in Set, i.e. the natural numbers N, represent the finitely presentable
objects in Set. Hence a natural notion for arities in a lκp-category is the set
Nκ. Hence, a signature is a function Σ : Nκ → |A|, which is equivalent to a
functor Σ : Nκ → A:

Definition 3.1 (Signature) Let A be a lκp category. A signature is a func-

tor Σ : Nκ → A, and the object of e-ary operations of Σ is Σe
def
= Σ(e).

We now present two examples of such signatures, which we will later aug-
ment by the appropriate equations.

Example 3.2 (Monoids) The signature ΣM : N → Set for the theory of
monoids is defined as ΣM(0) = {e},ΣM(2) = {m},ΣM(n) = ∅ for all other
n ∈ N. Thus ΣM declares one operation e of arity 0 (a constant) and one
binary operation m.

Example 3.3 (Categories with �) Categories with a terminal object can
be seen as algebraic over Cat. The signature Σ� must declare the terminal
object and for each object X, the unique map !X : X → �. Since the terminal
object does not depend upon any data, its arity is the empty category 0. Since
the map !X depends upon an object, its arity is the one object category 1.
Thus Σ�(0) = 1, Σ�(1) = (◦ → ◦) (i.e. the category with two objects and one
arrow) while Σ�(c) = 0 for all other finitely presentable categories c.

We now turn to the construction of an endofunctor over a signature Σ.

131

Ghani, Lüth, de Marchi, Power

Working over Set, e.g. see [23], one defines a functor

FΣ(X) =
∐

f∈Σ(n)

Xn

which calculates the terms of depth 1 whose variables come from the set X.
For example, given the signature of example 3.2, the associated endofunctor is
FM(X) = 1+X2. Such polynomial endofunctors (i.e. built from products and
coproducts) are known to preserve all κ-filtered colimits — this is an impor-
tant property which later will ensure the free monad can be easily calculated.
Unfortunately, it is unclear how to generalise it to categories other than Set
and hence we take an alternative approach. Recall that by definition, left Kan
extension is left adjoint to restriction LanJκ � ◦ Jκ : [Nκ,A] → [Aκ,A] and
hence we define

FΣ(X) = (LanJκΣ)X (1)

The standard formula for left Kan extensions shows that, in the case A = Set,
both definitions of FΣ agree, as in Example 3.2:

(LanJℵ0
ΣM)X =

∐

n∈N

Setℵ0(n,X) × ΣM(n)

= Set(0, X) × 1 + Set(2, X) × 1

= 1 + X2

Notice that the domain of FΣ is Aκ and not A, and hence FΣ is not an
endofunctor. However, an endofunctor F : A → A is κ-accessible iff it is
(isomorphic to) the left Kan extension of its restriction to Aκ; hence there is
an equivalence (2) between κ-accessible endofunctors and functors Aκ → A
and we can regard FΣ as a κ-accessible endofunctor.

[A,A]κ

◦ Iκ ✲
�✛

LanIκ

[Aκ,A] (2)

To recap, we have presented an abstract definition of signature Σ over an
lκp-category and a construction of the associated endofunctor FΣ over the
signature. In the case of Set, these definitions and constructions agree with
the usual definitions. The associated term algebra TΣ : A → A is then the
free monad over the endofunctor FΣ, constructed in a number of ways:

Lemma 3.4 Let F be a κ-accessible endofunctor over a lκp-category A. Then
the free monad T over F satisfies

(i) For every X in A, TX is the carrier of the initial X + F -algebra.

(ii) The forgetful functor U : F−Alg → A from the category of F -algebras to
A has a left adjoint L, and T ∼= UL

132

Ghani, Lüth, de Marchi, Power

(iii) T is colimit colimi<κSi of the sequence Si where

S0 = J Sn+1 = J + F � Sn Sλ = colim
i<λ

Si (3)

and the composition of F,E : Af → A is given as F � E
def
= (LanIF .E).

Proof. Most of the proofs are standard and can be found in [14,12]. However,
note that in the last of the claims, to calculate the free monad we start forming
the sequence of endofunctors Si and we do not need to go further than the
κ-filtered colimit colimi<κSi because F is κ-filtered. Hence T is κ-accessible
and thus shares the same rank as F . ✷

When we come to the dual of this construction in Sect. 5, a construction
like the above will not be possible since one would be interested in the limit
of co-chain, and there is no reason for an accessible endofunctor to preserve
such limits. The effect is that the rank of the cofree comonad over an acces-
sible endofunctor may increase. This change of rank underlies the technical
difficulties which will arise in Sect. 5.

We obtain the two adjunctions in (4) which compose to give an adjunction
F −−| U between signatures and monads.

[N ,A]

LanJκ ✲
⊥✛
◦ Jκ

[Aκ,A]

H ✲
⊥✛
V

Monκ(A) (4)

The sequence Si in (3) in Lemma 3.4 is called the free algebra sequence
[12] and can be seen as a uniform calculation of the initial X + F algebra.
As an example of this construction, consider the signature ΣM . As we have
seen LanJκΣM(X) = 1 + X2. The free algebra sequence then specialises to
S0X = X and

Sn+1(X) = X +
∐

e∈N

A(e, Sn(X)) × ΣM(e) = X + 1 + Sn(X)2

from which we can see Sn as defining the terms of depth at most n, e.g. S0(X)
contains the variables X, and S1(X) contains the variables X, the canonical
element of 1 representing the unit of the monoid and a pair of elements of
S0(X) which can be thought of as the multiplication of these elements.

Within this framework, to give equations is to give another signature E
and two natural transformations σ, τ : E → UFB. One should regard E as
giving the shape of the equations and σ′ and τ ′ as the actual equations.

Example 3.5 Given the monoids example, there are three equations we wish
to assert: left unit, right unit (both unary) and associativity (ternary). Hence
we set E(3) = {a}, E(1) = {l, r} and E(n) = ∅ for all other n.

133

Ghani, Lüth, de Marchi, Power

σ and τ define the left, and the right hand side of equations, respectively:

σ(l) = m(e, x) σ(r) = m(x, e) σ(a) = m(x,m(y, z))

τ(l) = x τ(r) = x τ(a) = m(m(x, y), z)

For example 3.3, one equation is needed to force the uniqueness of !X :
X → �, i.e. !Y .f =!X for all f : X → Y (see [8] for details).

The advantage of this definition of equations is that it allows an elegant
derivation of the representing monad for an algebraic theory: given such a
theory σ, τ : E → UFB, under adjunction (4) we have two monad morphisms
σ′, τ ′ whose coequaliser is the representing monad T . This construction makes
sense, because the category of models of the algebraic theory is isomorphic to
the Eilenberg-Moore-category of the representing monad.

In (4), both adjunctions are monadic and their composition is of descent
type, which means that each component of the counit εB : FUB ⇒ B is a
coequaliser. This means that every κ-accessible monad T = (T, η, µ) on A
is a coequaliser of two free monads over two signatures B,E : N → A in
the category of κ-accessible monads over A, or every monad is represented by
equations in this general sense.

4 Final Coalgebras and Monads

Given a signature Σ we have constructed an associated endofunctor FΣ, which
can be thought of as calculating the closed terms of depth 1. By closing FΣ

under composition, or more formally by considering the free monad over FΣ,
we get the term algebra TΣ. Concretely TΣX is the carrier of the initial X+FΣ-
algebra. In this section we investigate the map T∞

Σ sending an object X to
the carrier of the final X + FΣ-coalgebra, and apply our results to simplify
some recent developments is the semantics of lazy datatypes in functional
programming languages. A more general version of Lemma 4.2 appears in [1]
and is implicit in [20].

In comparing µY.X + FY with νY.X + FY , the first observation [5] is
that the final coalgebra of a Set-endofunctor can be regarded as a Cauchy
completion of the initial algebra. Thus, if F arises from a signature and hence
µY.X + FY is the usual term algebra, then νY.X + FY is the set of terms of
finite and infinite depth. This result was extended to lfp categories in [2]. The
goal of this section is to ascertain the structure possessed by the map sending
X to the carrier of the final X + FΣ-coalgebra. Our answer is that this map
also forms a monad. In proving this result we use the following result [2]:

Lemma 4.1 Assume that A is lfp, that the unique map ! : 0 → 1 is a strong
monomorphism, that F preserves monos and ωop-chains and that there is a
map p : 1 → F0. Then for each object X ∈ A, A(X,µF) and A(X, νF) are
metric spaces with the latter being the Cauchy completion of the former.

134

Ghani, Lüth, de Marchi, Power

We use this result to prove our main lemma:

Lemma 4.2 Let F be a polynomial endofunctor and A satisfy the premises
of lemma 4.1. Then the map T∞ assigning an object X to the carrier of the
final X + F -coalgebra carries the structure of a monad.

Proof. We actually prove the lemma for the case A = Set since the general
case involves slightly clumsy reasoning with hom-sets but is entirely analogous.
We prove that T∞ is a monad by constructing a Kleisli structure for it, namely
by defining the following operations: i) for each object X, an arrow η∞X : X →
T∞X; ii) for each pair of objects X, Y a function sX,Y : A(X,T∞Y) →
A(T∞X,T∞Y) such that

sX,X(η∞X) = 1T∞X sX,Z(sY,Zg ◦ f) = sY,Zg ◦ sX,Y f sX,Y (f) ◦ η∞X = f

Firstly define η∞X = εX ◦ ηX where η is the unit of the free monad on F and
εX is the unique comparison map between the initial X + F -algebra and the
final X + F -coalgebra. 6 Next define sX,Y (f) as follows

X
ηX ✲ TX

εX ✲ T ∞X

T ∞Y

![f,h]
❄

✛
s(f) =!∗[f,h]

f
✲

where h : FT∞Y → T∞Y is the obvious map derived from the structure
map of T∞Y . Then [f, h] : X + FT∞Y → T∞Y endows T∞Y with an
X + F -algebra structure and hence induces a unique map ![f,h] : TX → T∞Y
from the initial X +F -algebra. Diagram chasing shows that ![f,h] is uniformly
continuous with respect to the relevant metrics and hence by lemma 4.1 there
is an extension !∗[f,h] which can be taken to be sX,Y (f). The first equation
follows since by uniqueness ![η∞

X ,h] = εX and the extension of εX is the identity.
The equation sX,Z(sY,Zg ◦ f) = sY,Zg ◦ sX,Y f holds if their restrictions via
εX are the same which in turn holds if they arise from the same algebra
structure on T∞Z. This holds because the two algebra structures are both
inherited from the map sY,Z(g) ◦ f : X → T∞Z. The last equation follows
since sX,Y (f) ◦ η∞X = sX,Y (f) ◦ εX ◦ ηX =![f,h] ◦ ηX = f ✷

Unlike the monad T , the monad T∞ has a larger rank than F :

Lemma 4.3 Let F be a polynomial endofunctor on Set. Then the monad
T∞

Σ has rank ℵ1.

Proof. The lemma can be proven directly using an interchange law between
limits and filtered colimits. ✷

6 Actually applying Lemma 4.1 requires that X +F0 be non empty which is the case when
X �= 0. Thus the maps η∞

0 and s0,Y and their properties must be established separately,
but this all follows trivially from the initiality of 0

135

Ghani, Lüth, de Marchi, Power

Notice that lemma 4.2 indicates that there is no need to develop a new
syntax for the monad T∞

Σ since the canonical syntax should be the finite and
infinite depth terms of the associated monad TΣ. We finish this section with
an application of this result to reasoning in functional programming.

4.1 The Generic Approximation Lemma

The generic approximation lemma [10] is a proof principle for reasoning about
functions in a lazy functional programming language (such as Haskell). The
approximation lemma itself pertains to lists and states that given a function

approx (n+1) [] = []

approx (n+1) (x:xs) = x:(approx n xs)

two lists xs and ys are equal iff ∀n.approx n xs = approx n ys. Note the
lack of a base case: approx 0 x is ⊥ (i.e., the denotation of undefined) in the
denotational model, but because of non-strictness, approx n x (with n > 0)
is defined. This principle can be applied to other datatypes such as trees:

data Tree a = Leaf a | Node Tree a Tree

approx (n+1) (Leaf x) = Leaf x

approx (n+1) (Node l x r) = Node (approx n l) x (approx n r)

Two trees t1 and t2 are equal iff ∀n. approx n t1 = approx n t2. [10]
proves the generic approximation lemma using the standard denotational se-
mantics of functional programming languages, where types are interpreted as
cpo’s, programs as continuous functions and recursive datatypes as least fixed
points of functors. That is, the correctness of the proof principle depends
upon the semantic category chosen; we have already seen the implicit use of
⊥ in the definition of approx.

We propose an alternative and, we believe, more natural derivation of
the approximation lemma which is independent of the particular denotational
model chosen. The definition of a polymorphic datatype is usually interpreted
as the free monad TΣ over its signature Σ. However, this does not capture
laziness, since TΣ consists of only finite terms. Instead, we model such a
datatype by the monad T∞

Σ . Since T∞
Σ (X) is the final X + Σ-coalgebra and

since FΣ is a polynomial endofunctor, T∞
Σ (X) can be calculated as the limit

of the following ωop-chain 1 ← (X + F)1 ← (X + F)21 ← · · · . The universal
property of the limit states that two elements x and y of this limit will be
equal iff for each n, πn(x) = πn(y) where πn is the n-th projection. But these
projections are precisely the approximation function for the datatype. Notice
how the categorical argument replaces the semantic dependency on ⊥ with use
of a co-chain beginning with 1. This establishes the correctness of the generic
approximation lemma independently of any specific denotational model. More
generally, a lazy functional language like Haskell combines aspects appropri-
ately modelled by a monad (being finitely generated), while others are more
appropriately captured by final semantics (laziness and non-termination).

136

Ghani, Lüth, de Marchi, Power

5 Final Coalgebras and Comonads

We now turn to another possible dualisation of Sect. 3 based upon the idea
of mapping an object X to the carrier of the final X × F -coalgebra for some
κ-accessible functor F . The elegance of the monadic approach to algebraic
theories suggests that we can apply these techniques to the development of
coalgebraic syntax by dualising them apropriately.

5.1 Cosignatures and their Coalgebras

Recall that the heart of the categorical approach to universal algebra is ad-
junction (4). The dualisation outlined in this section can be summed up as
replacing the left adjoint to U with a right adjoint and the replacement of
monads with comonads. As a result, the definition of a cosignature turns out
to be formally the same as that of a signature.

Definition 5.1 (Cosignature) Let A be a lκp-category with arities Nκ. A
κ-cosignature is a functor B : Nκ → A.

Recall that in Section 3, we constructed a κ-accessible endofunctor from
a signature by first taking a left Kan extension, and then used equivalence
(2) to get a κ-accessible endofunctor. Therefore, in this section we take the
right Kan extension of a cosignature B to obtain a functor RanJκB : Aκ → A,
followed by the same equivalence to obtain a κ-accessible endofunctor on A.
The standard formula for the right Kan extension gives us

(RanJκB)(X) =
∏

c∈Nκ

A(X, c) � Bc

where U � B is the U -fold product of B, or more formally the representing
object for the functor [U,A(, B)] : A → Set. When A = Set, then this
operation is simply exponentiation, i.e. U � B = [U,B].

Thus, although signatures and cosignatures are formally the same, the
endofunctors they generate are very different. For example, note that while
the default value for signatures is 0, if there is a single arity c such that
B(c) = 0, then (RanJκB)(X) = 0. In fact, the default value for cosignatures
is 1 since U � 1 = 1 and hence if c is an arity such that B(c) = 1, then
this arity will contribute nothing to the right Kan extension. Here are two
example cosignatures which we will explore further below:

Example 5.2 Define the cosignature Bp by Bp(2) = 2 and Bp(c) = 1 for all
other arities. Then RanJκBp(X) = [Set(X, 2), 2] = [[X, 2], 2].

Define the cosignature Bpω(2) = ω and Bpω(c) = 1 for all other arities.
Then (RanJκBpω)(X) = [Set(X, 2), ω] = [[X, 2], ω].

Recall that in order to turn a functor Aκ → A into a κ-accessible end-
ofunctor, one takes its left Kan extension. Given a cosignature B, we can
thus consider coalgebras of the endofunctor LanIκRanJκB. The following is

137

Ghani, Lüth, de Marchi, Power

an important result from [11]:

Lemma 5.3 Let F : A → A be an accessible endofunctor on a locally pre-
sentable category. Then F−coalg is locally presentable and the κ-presentable
objects of F−coalg are simply those coalgebras whose underlying object is κ-
presentable in A.

Proof. The proof uses the fact that the category of all (small) accessible
categories has all weighted limits [19, Theorem 5.1.6]. Then the category
F−coalg can be constructed as such a limit, namely the inserter [13] of

C
1 ✲

F
✲ C

The second part of the lemma follows from the fact that colimits in F−coalg
are formed pointwise. ✷

This result allows us to consider κ-presentable LanIκRanJκB-coalgebras:

Lemma 5.4 Let B be a κ-cosignature. A κ-presentable LanIκRanJκB-coal-
gebra consists of a κ presentable object X together with for every arity c, a
function hc : A(X, c) → A(X,Bc).

Proof. Given any κ-accessible endofunctor F , and κ-presentable object X,
LanIκF (X) = F (X). Hence coalgebras of the form mentioned are

A(X, (RanJκB)(X)) ∼= A(X,
∏

c∈Nκ
A(X, c) � Bc)

∼=
∏

c∈Nκ
A(X,A(X, c) � Bc) ∼=

∏
c∈Nκ

[A(X, c),A(X,Bc)]

In the theory of monads, a crucial result states that the models of an
algebraic presentation are isomorphic to the category of algebras of the theories
representing monad. In order to emulate this result we require a notion of
model (or co-model if you like) for a κ-cosignature B, and Lemma 5.4 suggests
this be LanIκRanJκB-coalgebra.

Example 5.5 A model of the cosignature Bp is given by a finite set X together
with a function Set(X, 2) → Set(X, 2). If we regard a map f : X → 2 as a
subset of X, or a predicate over X, then such a model can be regarded as a
map between predicates.

Similarly, a model for the cosignature Bpω consists of a finite set X and
a function Set(X, 2) → Set(X,ω). This is clearly related to the previous
example if we think of it as mapping binary partitions of X to ω-ary partitions.

5.2 The Representing Comonad of a Cosignature

Recall that in the algebraic case one starts with a signature, constructs an
endofunctor, and then considers the free monad over the endofunctor. The
second part of the dualisation is to consider the cofree comonad over an end-
ofunctor. The following pair of results from [11] provides the framework for

138

Ghani, Lüth, de Marchi, Power

this discussion:

Lemma 5.6 The following conditions on a functor F : A → A are equivalent:

(i) There is a cofree comonad on F .

(ii) The forgetful functor F−coalg → A is comonadic.

(iii) The forgetful functor F−coalg → A has a right adjoint

(iv) (If A has products) For every object X, the functor X × F has a final
coalgebra.

Similar to the monadic case, only accessible endofunctors have a cofree
comonad. For example, there is no final coalgebra for the powerset functor
P : Set → Set, as such a coalgebra would be an isomorphism X ∼= PX. The
important result from [19,11] is the following:

Lemma 5.7 If A is locally presentable and F is accessible, then F−coalg is
locally presentable and there is a cofree comonad over F .

Proof. Recall from lemma 5.3 that F−coalg is accessible. Cocompleteness
of F−coalg follows since the forgetful functor creates colimits and A is co-
complete. Since the forgetful functor is a colimit-preserving functor between
locally presentable categories, it follows from the Special Adjoint Functor The-
orem [18, Theorem V.8.1] that the forgetful functor has a right adjoint. By
lemma 5.6, there is a cofree comonad over F . ✷

Let Comκ(A) be the category of κ-accessible comonads on A, and fur-
ther ACom(A) be the category of accessible comonads on A. For every κ,
Comκ(A) is a full subcategory of ACom(A). Similarly, let [A,A]κ be the cat-
egory of endofunctors with rank κ, and AEnd(A) be the category of accessible
endofunctors. Piecing together the above results we have the following:

Lemma 5.8 The forgetful functor V : ACom(A) → AEnd(A) has a right
adjoint R.

Proof. Given an accessible endofunctor F , let the right adjoint of the forgetful
functor UF : F−coalg → A be KF . Then choosing R(F) to be UFKF we can
deduce that R(F) is accessible because UF is accessible (as a left adjoint, it
preserves all colimits) and KF is accessible by [3, Proposition 1.66 on p. 52].

The action of the right adjoint on accessible endofunctors has already been
given. Given a natural transformation α : F1 ⇒ F2, this induces a functor
α∗ : F1−coalg → F2−coalg which commutes with the respective forgetful
functors. Using the dual of [6, Theorem 3 on p. 128] and the comonadicity of
these categories of coalgebras, this in turn induces a natural transformation
R(α) : R(F1) ⇒ R(F2). This defines the functor R : AEnd(A) → ACom(A).
The fact that it is right adjoint to V is easily verified. ✷

As opposed to the monadic case, the cofree comonad RM on an endofunc-
tor M : A → A of rank λ need not have rank λ; as a simple counterexample,

consider the endofunctor M : Set → Set defined as MX
def
= A × X for a

139

Ghani, Lüth, de Marchi, Power

fixed set A, which clearly is finitary (has rank ℵ0). We know that the value
of RM for a set X is given by RM(X) = νY.X × MY = νY.X × A × Y
which is the set of all infinite streams of elements of X × A. Now consider
a countably infinite set Y , then RM(Y) contains a sequence with infinitely
many different elements from Y . This sequence can not be given from any of
the finite subsets Y0 ⊆ Y , which shows that RM has a rank larger than ℵ0. As
we saw in Sect. 4, in general calculating coalgebras of accessible endofunctors
invariably seems to increase their rank — see [24] for an investigation of this
phenomenon.

Using the equivalence between [Aκ,A] and [A,A]κ, we now have the follow-
ing functors, where ◦ Jκ is the precomposition with Jκ and V is the forgetful
U for comonads of rank κ:

[Nκ,A]

RanJκ ✲
�✛
◦ Jκ

[Aκ,A] ∼= [A,A]κ ✛
V

Comκ(A)

AEnd(A)
❄

∩

R ✲
�✛
V

ACom(A)
❄

∩

(5)

We further define the composite functors

Vκ : Comκ(A) → [Nκ,A] Vκ
def
= (◦ Jκ).V

Rκ : [Nκ,A] → ACom(A) Rκ
def
= R.RanJκ

As we have seen, the rank of RκB may be greater than the rank of B, and
hence the codomain of Rκ is not the domain of Vκ, but rather ACom(A). So
although Rκ and Vκ can not be adjoint, there is the following isomorphism:

Lemma 5.9 For any κ-accessible comonad G and κ-cosignature B : Nκ → A
there is an isomorphism

[Nκ,A](VκG,B) ∼= ACom(A)(G,RκB) (6)

which is natural in G and B.

Proof. The isomorphism is shown by the following chain of natural isomor-
phisms provided by the two adjunctions in (5) and the full and faithful em-
bedding of [A,A]κ into AEnd(A):

[Nκ,A](VκG,B)∼= [Nκ,A](◦ JκV G,B)
∼= [Aκ, A](V G,RanJκB)
∼= AEnd(A)(V G,RanJκB)
∼= ACom(A)(G,RRanJκB)
∼= ACom(A)(G,RκB)

✷

140

Ghani, Lüth, de Marchi, Power

So given a κ-cosignature B we have constructed its representing comonad
RκB. Note that by lemma 5.6, the category of coalgebras RκB−Coalg is
isomorphic to the category LanIκRanJκB−coalg. Restricting ourselves to
κ-presentable coalgebras, we have that the κ-presentable coalgebras of the
representing comonad RκB are isomorphic to the κ-presentable models of the
cosignature B as defined earlier. This is our partial dualisation of the result
stating that the models of a signature are isomorphic to the Eilenberg-Moore
category of the representing monad.

5.3 Coequational Presentations and their Representing Comonad

In this section, we continue the dualisation by defining coequational presenta-
tions, deriving a representing comonad for such a coequational presentation,
and relating the coalgebras of the representing comonad to the models of the
presentation. As we have seen above, equations are interpreted as a pair
of monad morphisms between free monads; the representing monad for an
equational presentation is then defined to be the coequaliser of these monad
morphisms. Dualising this requires a coequational presentation to form a pair
of comonad morphisms between cofree comonads and taking the represent-
ing comonad for the coequational presentation to be the equaliser of these
comonad morphisms.

Definition 5.10 (Coequational Presentations) A coequational presenta-
tion is given by two cosignatures B :Nκ → A and E :Nλ → A (where RκB is
λ-accessible), and two comonad morphisms σ, τ : RκB → RλE.

Under (6) the maps σ, τ : RκB → RλE are given by maps σ′, τ ′ : VλRκB →
E, which in turn are families σ′

c, τ
′
c : RκBc → Ec of maps for c ∈ Nλ. So, as

opposed to the monadic case where an equation is given by a pair of terms, a
coequation consists of two partitionings of the coterms; for example, if E(n) =
2, each of σ and τ partition RκB(n) into two subsets.

As mentioned above, given a coequational presentation, our intention is to
define its representing comonad to be the equaliser of the comonad morphisms:

G ✲ RκB
σ ✲

τ
✲ RλE (7)

Proving that these equalisers exist is made easier by our abstract categorical
setting which provides us with an alternative definition of the coalgebras of
a comonad. Recall that such coalgebras are given by an object x ∈ A and
a map α : x → Gx which commutes with the unit and counit of G. First,
observe that an object x of A is given by a map X : 1 → A (where 1 is the
one-object category). Further, the functor category [1,A] is isomorphic to A,
and we have

A(x,Gx) ∼= [1,A](X,G ◦X) ∼= [A,A](LanXX,G), (8)

141

Ghani, Lüth, de Marchi, Power

so to give a map x → Gx is equivalent to giving a natural transformation from
LanXX ⇒ G. In fact. LanXX is a comonad:

Lemma 5.11 LanXX is a comonad. If X is κ-presentable, then LanXX is
κ-accessible.

Proof. Using the standard formula for left Kan extensions, LanXX(a) =
A(X, a) ⊗ X (where ⊗ is the tensor ; e.g. in Set, it is given by the usual
product). If X is κ-presentable, then A(X,−) preserves all κ-filtered colimits,
as does −⊗X; hence LanXX is κ-accessible.

To have a comonad structure, we need natural transformations LanXX ⇒
1 and LanXX ⇒ LanXX ◦ LanXX which satisfy the comonad laws. The
first of these is given by the image of the identity transformation on X
under the isomorphism [1,A](X,X) ∼= [A,A](LanXX, 1A). The second is
given by the image under the isomorphism [1,A](X,LanXX ◦ LanXX ◦X) ∼=
[A,A](LanXX,LanXX ◦ LanXX) of the transformation

X
ε

=⇒ LanXX ◦X
LanXXε

=⇒ LanXX ◦ LanXX ◦X

where ε is the canonical transformation X ⇒ LanXX ◦ X. That the counit
and comultiplication obey the comonad laws is easily verified. ✷

The fact that LanXX is a comonad allows us to strengthen equation (8)
to obtain the promised characterisation of the coalgebras of a comonad.

Proposition 5.12 A coalgebra for a comonad G is given by an object X of
A and a map LanXX ⇒ G in ACom(A).

Proof. We have already seen that the structure map of the coalgebra is pre-
cisely a natural transformation between the two functors. It is then routine
to verify that the properties of the structure map of a coalgebra correspond
to the laws of a comonad morphism. ✷

With Proposition 5.12, we can show the existence of equalisers:

Lemma 5.13 The category of accessible comonads ACom(A) has all equalis-
ers.

Proof. Consider two comonad morphisms M
σ✲

τ
✲ E. We define the cate-

gory (M,E)−Coalg to be given by coalgebras α : LanXX → M of M such
that σ.α = τ .α. Recall from the proof of lemma 5.4 how we constructed the
category of coalgebras as a weighted limit; using a similar diagram called an
equifier, we can construct (M,E)−Coalg as a weighted limit as well, making
it accessible. With (M,E)−Coalg, M and E accessible, the forgetful functor
from (M,E)−Coalg to A has a right adjoint; and post-composition of this
right adjoint with the forgetful functor gives the equaliser of M and E. ✷

142

Ghani, Lüth, de Marchi, Power

We finish by relating the models of a coequational presentation to the
coalgebras of its representing comonad. If G is the representing comonad of
the coequational presentation σ, τ : RκB → RλE, then a G-coalgebra is a
map α : LanXX → G which by the universal property of equalisers is a map
α′ : LanXX → RκB such that σ.α = τ .α, or in other words a coalgebra for B
which equalises σ and τ . In this case, we say that the coalgebra LanXX →
RκB satisfies the coequational presentation σ, τ : RκB → RλE. Following the
calculations above, if X is κ-presentable the map α : LanXX → RκB, gives
us two RλE-coalgebras, which by Lemma 5.4 are families σ′′ : A(X, c) →
A(X,Ec) and τ ′′ : A(X, c) → A(X,Ec) of maps for all c ∈ Nλ, which have to
be equal if α : LanXX → RκB satisfies the presentation σ, τ : RκB → RλE.

6 Conclusions, Related and Further Work

This paper set out to analyse the essence of the categorical approach to uni-
versal algebra based upon the theory of accessible monads and then derive
their coalgebraic counterparts. While still only work in progress, we feel we
have made a definite contribution which will be of interest to the general
coalgebra community. In particular, the derivation of the infinitary monad
corresponding to the collection of final X +F -coalgebras seems to have ready
applications in lazy functional programming. In addition, the derivation of
the cofree comonad representing a cosignature and the interpretation of a co-
equational presentation as an equaliser of cofree comonads are dualisations
of the corresponding results in the standard theory. We have also related
the coalgebras of the representing comonad to the models of the coequational
presentations.

The major technical challenge was caused by the increase in rank when
passing from a cosignature to its representing comonad. For example, this
meant that the characterisation of coalgebras only holds for coalgebras up to
a certain rank. In addition, this increase in rank makes it unlikely that every
accessible comonad can be given as a coequational presentation (i.e. as an
equaliser of cofree comonads), as is possible for finitary monads.

Of course there remains much to be done. Our approach has been very
abstract and perhaps the most important next step is to make precise the
relationship between our approach and others pursued in the community.

For example, Cirstea [7] defines an abstract cosignature as a functor F :
C → C where C has all finite limits and limits of ωop-chains, and F preserves
pullbacks and such limits. Then, an observer is given by a functor K : C → C
and a natural transformation c : U → K.U , and a coequation by two ob-
servers (K, l) and (K, r). Thus, an observer is a family β : C → KC of maps
for all F -coalgebras α : X → FX. This notion corresponds roughly with a
comonad morphism RκB ⇒ RλE, since we always have the cofree coalgebra
RκBX → RκBRκBX. However, the difference is the stronger assumption
that the abstract cosignature F preserves limits of ωop, which allows the con-

143

Ghani, Lüth, de Marchi, Power

struction of a final coalgebra, and reasoning about it; in our more abstract
setting all we have is the existence of a right adjoint and the corresponding
weaker properties.

We have not as yet developed the logical calculus underlying the categorical
constructions of the comonadic semantics. It seems this underlying logic will
have a modal flavour, and hence research in this area, e.g. by Kurz [15],
seems relevant. Finally the use of coequations in recent work on co-Birkhoff
theorems [4,22] should be compared with our coequations.

References

[1] P. Aczel, J. Adamek, and J. Velebil. Iteration monads. In U. Montanari, editor,
Proceedings CMCS’01, volume 44, 2001.

[2] J. Adamek. On final coalgebras of continuous functors. To appear.

[3] J. Adamek and J. Rosický. Locally Presentable and Accessible Categories.
Number 189 in London Mathematical Society Lecture Note Series. Cambridge
University Press, 1994.

[4] S. Awodey and J. Hughes. The coalgebraic dual of birkhoffs variety theorem.
http://www.contrib.andrew.cmu.edu/user/jesse/papers/CoBirkhoff.ps.gz,
2000.

[5] M. Barr. Terminal algebras in well-founded set theory. Theoretical Computer
Science, 114:299– 315, 1993.

[6] M. Barr and C. Wells. Toposes, Triples and Theories. Number 278 in
Grundlehren der mathematischen Wissenschaften. Springer Verlag, 1985.

[7] C. Cirstea. An algebra-coalgebra framework for system specification. In
Proceedings CMCS 2000, volume 33 of Electronic Notes in Theoretical Computer
Science, 2000.

[8] E. J. Dubuc and G. M. Kelly. A presentation of topoi as algebraic relative to
categories or graphs. Journal for Algebra, 81:420–433, 1983.

[9] M. Fiore, G. Plotkin, and D. Turi. Abstract syntax and variable binding. In
Proc. LICS’99, 1999.

[10] G. Hutton and J. Gibbons. The generic approximation lemma. Information
Processing Letters, 2001. To appear.

[11] P. T. Johnstone, A. J. Power, T. Tsjujushita, H. Watanabe, and J. Worrell.
The structure of categories of coalgebras, 1998.

[12] G. M. Kelly. A unified treatment of transfinite constructions for free algebras,
free monoids, colimits, associated sheaves and so on. Bulletins of the Australian
Mathematical Society, 22:1– 83, 1980.

144

Ghani, Lüth, de Marchi, Power

[13] G. M. Kelly. Elementary observations on 2-categorical limits. Bulletins of the
Australian Mathematical Society, 39:301–317, 1989.

[14] G. M. Kelly and A. J. Power. Adjunctions whose counits are coequalizers,
and presentations of finitary monads. Journal for Pure and Applied Algebra,
89:163– 179, 1993.

[15] A. Kurz. Logics for Coalgebra and Applications to Computer Science.
Dissertation, Ludwig-Maximilans-Universtität München, 2000.

[16] C. Lüth. Compositional term rewriting: An algebraic proof of Toyama’s
theorem. In H. Ganzinger, editor, Rewriting Techniques and Applications,
7th International Conference, number 1103 in LNCS, pages 261– 275. Springer
Verlag, July 1996.

[17] C. Lüth and N. Ghani. Monads and modular term rewriting. In Category
Theory in Computer Science CTCS’97, number 1290 in LNCS, pages 69– 86.
Springer Verlag, September 1997.

[18] S. Mac Lane. Categories for the Working Mathematician, volume 5 of Graduate
Texts in Mathematics. Springer Verlag, 1971.

[19] M. Makkai and R. Paré. Accessible Categories: The Foundations of Categorical
Model Theory, volume 104 of Contemporary Mathematics. American
Mathematical Society, 1989.

[20] L. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–317,
1999.

[21] E. Robinson. Variations on algebra: monadicity and generalisations of
equational theories. Technical Report 6/94, Sussex Computer Science Technical
Report, 1994.

[22] G. Rosu. Equational axiomatisability for coalgebra. Theoretical Computer
Science, 260(1), 2000.

[23] D. Turi. Functorial Operational Semantics and its Denotational Dual. PhD
thesis, Free University, Amsterdam, 1996.

[24] J. Worrell. Terminal sequences for accessible endofunctors. In Electronic Notes
in Theoretical Computer Science, volume 19, 1999. Proceedings CMCS ’99.

145

