

Contents lists available at ScienceDirect

Theoretical Computer Science

© 2009 Elsevier B.V. All rights reserved.

journal homepage: www.elsevier.com/locate/tcs

Dejean's conjecture holds for $n \ge 30$

James Currie*, Narad Rampersad

Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Ave., Winnipeg, MB R3B 2E9, Canada

ARTICLE INFO

ABSTRACT

To Juhani Karhumäki on the occasion of his 60th birthday

Keywords: Repetitive threshold Fractional power Dejean's conjecture

1. Introduction

Repetitions in words have been studied starting with Thue [10,11] at the beginning of the previous century. Much study has also been conducted on repetitions with fractional exponent [1–6]. If n > 1 is an integer, then an *n*-power is a non-empty word x^n , i.e., word x repeated n times in a row. For rational r > 1, a **fractional** r-power is a non-empty word $w = x^{\lfloor r \rfloor} x'$ such that x' is the prefix of x of length $(r - \lfloor r \rfloor)|x|$. For example, 01010 is a 5/2-power. A basic problem is that of identifying the repetitive threshold for each alphabet size n > 1:

What is the infimum of r such that an infinite sequence on n letters exists, not containing any factor of exponent greater than r?

We extend Carpi's results by showing that Dejean's conjecture holds for $n \ge 30$.

We call this infimum the **repetitive threshold** of an n-letter alphabet, denoted by RT(n). Dejean's conjecture [3] is that

$$RT(n) = \begin{cases} 7/4, & n = 3\\ 7/5, & n = 4\\ n/(n-1) & n \neq 3, 4 \end{cases}$$

The values RT(2), RT(3), RT(4) were established by Thue, Dejean and Pansiot, respectively [11,3,9]. Moulin-Ollagnier [8] verified Dejean's conjecture for $5 \le n \le 11$, while Mohammad-Noori and Currie [7] proved the conjecture for $12 \le n \le 14$.

An exciting new development has recently occurred with the work of Carpi [2], who showed that Dejean's conjecture holds for $n \ge 33$. Verification of the conjecture is now only lacking for a finite number of values. In the present paper, we sharpen Carpi's methods to show that Dejean's conjecture holds for $n \ge 30$.

2. Preliminaries

The following definitions are from Sections 8 and 9 of [2]: Fix $n \ge 30$. Let $m = \lfloor (n-3)/6 \rfloor$. Let $A_m = \{1, 2, ..., m\}$. Let ker $\psi = \{v \in A_m^* \mid \forall a \in A_m, 4 \text{ divides } |v|_a\}$. (In fact, this is not Carpi's *definition* of ker ψ , but rather the assertion of

* Corresponding author. E-mail addresses: j.currie@uwinnipeg.ca (J. Currie), n.rampersad@uwinnipeg.ca (N. Rampersad).

^{0304-3975/\$ –} see front matter 0 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.tcs.2009.01.026

his Lemma 9.1.) A word $v \in A_m^+$ is a ψ -kernel repetition if it has period q and a prefix v' of length q such that $v' \in \ker \psi$, $(n-1)(|v|+1) \ge nq-3$.

It will be convenient to have the following new definition: If v has period q and its prefix v' of length q is in ker ψ , we say that q is a **kernel period** of v.

As Carpi states at the beginning of section 9 of [2]:

By the results of the previous sections, at least in the case $n \ge 30$, in order to construct an infinite word on n letters avoiding factors of any exponent larger than n/(n - 1), it is sufficient to find an infinite word on the alphabet A_m avoiding ψ -kernel repetitions.

For m = 5, Carpi produces such an infinite word, based on a paper-folding construction. He thus establishes Dejean's conjecture for $n \ge 33$. In the present paper, we give an infinite word on the alphabet A_4 avoiding ψ -kernel repetitions. We thus establish Dejean's conjecture for $n \ge 30$.

Definition 1. Let $f : A_4^* \to A_4^*$ be defined by f(1) = 121, f(2) = 123, f(3) = 141, f(4) = 142. Let *w* be the fixed point of *f*.

It is useful to note that the frequency matrix of *f*, i.e.,

$$[|f(i)|_{j}]_{4\times4} = \begin{bmatrix} 2 & 1 & 0 & 0 \\ 1 & 1 & 1 & 0 \\ 2 & 0 & 0 & 1 \\ 1 & 1 & 0 & 1 \end{bmatrix}$$

has an inverse modulo 4.

Remark 1. Let *q* be a non-negative integer, $q \le 1966$. Fix n = 32.

- R1: Word *w* contains no ψ -kernel repetition *v* with kernel period *q*.
- R2: Word *w* contains no factor *v* with kernel period *q* such that $|v|/q \ge 35/34$.

The defining condition on ψ -kernel repetitions, namely that

 $(n-1)(|v|+1) \ge nq-3,$

can be rewritten as

$$\frac{|v|}{q} \ge \frac{n}{n-1} - \frac{n+2}{q(n-1)}.$$
(1)

Note that $\frac{32}{31} - \frac{34}{31q} = \frac{35}{34}$ when $q = \frac{34^2}{3} = 385\frac{1}{3}$, so neither piece of the remark implies the other. One verifies that

35	9	32	34
34	2(1967)	31	31q

for $q \ge 1967$. Since the right-hand side of (1) decreases with *n*, once the remark is established, it will remain true if *n* is replaced by 30 or 31. To show that *w* contains no ψ -kernel repetitions for n = 30, 31, 32, it thus suffices to verify R1 and to show that word *w* contains no factor *v* with kernel period $q \ge 1967$ such that

$$|v|/q \ge 35/34 + 9/2(1967).$$

(2)

The remarks R1 and R2 are verified by computer search, so we will consider the second part of this attack. Fix $q \ge 1967$, and suppose that v is a factor of w with kernel period q, and $|v|/q \ge 35/34$. Since w is not ultimately periodic, without loss of generality, suppose that no extension of v has period q. Write v = sf(u)p where s (resp. p) is a suffix (resp. prefix) of the image of a letter, and |s| (resp. $|p|) \le 2$.

If $|v| \le q + 2$, then $35/34 \le (q + 2)/q$ and $1/34 \le 2/q$, forcing $q \le 68$. This contradicts R2. We will therefore assume that $|v| \ge q + 3$.

Suppose |s| = 2. Since $|v| \ge q+3$, write v = s1zs1v', where |s1z| = q. Examining f, we see that the letter a_s preceding any occurrence of s1 in w is uniquely determined if |s| = 2. It follows that a_sv is a factor of w with kernel period q, contradicting the maximality of v. We conclude that $|s| \le 1$.

Again considering f, we see that if t is any factor of w of length 3, and u_1t , u_2t are prefixes of w, then $|u_1| \equiv |u_2| \pmod{3}$. Since $|v| \ge q + 3$, we conclude that 3 divides q. Write $q = 3q_0$. Since $|s| \le 1$, $|p| \le 2$ and $|v| \ge q + 3$, we see that $|f(u)| \ge q$. Thus f(u) has a prefix of length $q = 3q_0$ which is in ker ψ . As the frequency matrix of f is invertible modulo 4, the prefix of u of length q_0 is in ker ψ . We see that

$$\frac{|v|}{q} \le \frac{3|u|+3}{3q_0} = \frac{|u|}{q_0} + \frac{1}{q_0}.$$

Lemma 2. Let s be a non-negative integer. If factor v of w has kernel period q, where $q \leq 1966(3^{\circ})$, then

$$\frac{|v|}{q} < \frac{35}{34} + \frac{3}{1966} \sum_{j=0}^{s-1} 3^{-j}.$$

Proof. If s = 0, this is implied by R2. Suppose t > 0 and the result holds for s < t. Suppose that $1966(3^{t-1}) < q \le 1966(3^t)$ and there is a factor v of w such that v has kernel period q. Suppose that $|v|/q \ge 35/34$. Without loss of generality, suppose that no extension of v has period q. We have seen that there is a factor u of w with kernel period $q_0 = q/3$, $1966(3^{t-2}) < q_0 \le 1966(3^{t-1})$ such that

$$|v|/q \le |u|/q_0 + 1/q_0$$

$$< \left(\frac{35}{34} + \frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j}\right) + \frac{1}{q_0} \quad \text{(by the induction hypothesis)}$$

$$< \frac{35}{34} + \frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j} + \frac{1}{1966(3^{t-2})}$$

$$= \frac{35}{34} + \frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j} + \frac{3}{1966(3^{t-1})}$$

$$= \frac{35}{34} + \frac{3}{1966} \sum_{j=0}^{t-1} 3^{-j}. \square$$

Theorem 3. Word w contains no factor v with kernel period q such that

$$v|/q \ge 35/34 + 9/2(1966).$$

Proof. Suppose that factor v of w has kernel period q such that (2) holds. By Remark 1, we have $q \ge 1966$. By the previous lemma, for some non-negative s,

$$|v|/q < \frac{35}{34} + \frac{3}{1966} \sum_{i=0}^{s-1} 3^{-j} < \frac{35}{34} + \frac{3}{1966} \sum_{i=0}^{\infty} 3^{-j} = \frac{35}{34} + \frac{9}{2(1966)}.$$

We may now build on Carpi's result, here restated as a theorem:

Theorem 4. Fix $n \ge 30$. To show that there is an infinite word on n letters avoiding factors of any exponent larger than n/(n-1), it is sufficient to find an infinite word on the alphabet A_m avoiding ψ -kernel repetitions.

Corollary 5. *Dejean's conjecture holds for* n = 30, 31, 32*.*

The restriction $n \ge 30$ in the theorem results from Carpi's approach to avoiding the so-called 'short repetitions'. (See [8].) Therefore, our result in some sense optimizes his construction.

Acknowledgements

The first author is supported by an NSERC Discovery Grant. The second author is supported by an NSERC Postdoctoral Fellowship.

Appendix. Computer search

Suppose that some factor v of w has kernel period $q \le 1966$ and either $31(|v| + 1) \ge 32q - 3$ or $|v|/q \ge 35/34 + 9/2(1967)$. Without loss of generality, taking such a v as short as possible, we may assume that

$$|v| \le \left\lceil \frac{32(1966) - 3}{31} - 1 \right\rceil = 2029.$$

(We also have $\left\lceil (1966) \left(\frac{35}{34} + \frac{9}{2(1967)} \right) \right\rceil = 2029.$)

If |v| > 3, v is a factor of f(u) for some factor u of w with $|u| \le (|v|+4)/3$. For a non-negative integer r, let $g(r) = \lfloor (r+4)/3 \rfloor$. Since $g^7(2029) = 2 < 3$, (here the exponent denotes iterated function composition) word v must be a factor of $f^7(u)$ for some factor u of w, |u| = 2.

The word $u_0 = 23141121142$ contains all 8 factors of w which have length 2. To establish R1 and R2, one thus checks that they hold for the single word $f^7(u_0)$ (which is of length 24,057).

Note added in proof

We have now improved the result to $n \ge 27$, as will appear in a forthcoming paper.

References

- [1] F.J. Brandenburg, Uniformly growing k-th powerfree homomorphisms, Theoret. Comput. Sci. 23 (1983) 69-82.
- [2] A. Carpi, On Dejean's conjecture over large alphabets, Theoret. Comput. Sci. 385 (2007) 137-151.
- [3] F. Dejean, Sur un théorème de Thue, J. Combin. Theory Ser. A 13 (1972) 90-99.
- [4] L. Ilie, P. Ochem, J Shallit, A generalization of repetition threshold, Theoret, Comput. Sci. 345 (2005) 359-369.
- [6] D. Krieger, On critical exponents in fixed points of non-erasing morphisms, Theoret. Comput. Sci. 376 (2007) 70–88.
 [6] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992) 199–204.
- [7] M. Mohammad-Noori, J.D. Currie, Dejean's conjecture and Sturmian words, European J. Combin. 28 (2007) 876–890.
- [8] J. Moulin-Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95 (1992) 187-205.
- [9] J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Discrete Appl. Math. 7 (1984) 297-311.
- [10] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1–22.
- [11] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1–67.