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We extend Carpi’s results by showing that Dejean’s conjecture holds for n ≥ 30.
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1. Introduction

Repetitions in words have been studied starting with Thue [10,11] at the beginning of the previous century. Much study
has also been conducted on repetitionswith fractional exponent [1–6]. If n > 1 is an integer, then an n-power is a non-empty
word xn, i.e., word x repeated n times in a row. For rational r > 1, a fractional r-power is a non-empty word w = xbrcx′
such that x′ is the prefix of x of length (r −brc)|x|. For example, 01010 is a 5/2-power. A basic problem is that of identifying
the repetitive threshold for each alphabet size n > 1:

What is the infimum of r such that an infinite sequence on n letters exists, not containing any factor of exponent
greater than r?

We call this infimum the repetitive threshold of an n-letter alphabet, denoted by RT (n). Dejean’s conjecture [3] is that

RT (n) =

{7/4, n = 3
7/5, n = 4
n/(n− 1) n 6= 3, 4

The values RT (2), RT (3), RT (4)were established by Thue, Dejean and Pansiot, respectively [11,3,9]. Moulin-Ollagnier [8]
verified Dejean’s conjecture for 5 ≤ n ≤ 11, while Mohammad-Noori and Currie [7] proved the conjecture for 12 ≤ n ≤ 14.
An exciting new development has recently occurred with the work of Carpi [2], who showed that Dejean’s conjecture

holds for n ≥ 33. Verification of the conjecture is now only lacking for a finite number of values. In the present paper, we
sharpen Carpi’s methods to show that Dejean’s conjecture holds for n ≥ 30.

2. Preliminaries

The following definitions are from Sections 8 and 9 of [2]: Fix n ≥ 30. Let m = b(n − 3)/6c. Let Am = {1, 2, . . . ,m}.
Let ker ψ = {v ∈ A∗m | ∀a ∈ Am, 4 divides |v|a}. (In fact, this is not Carpi’s definition of ker ψ , but rather the assertion of
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his Lemma 9.1.) A word v ∈ A+m is a ψ-kernel repetition if it has period q and a prefix v
′ of length q such that v′ ∈ ker ψ ,

(n− 1)(|v| + 1) ≥ nq− 3.
It will be convenient to have the following new definition: If v has period q and its prefix v′ of length q is in ker ψ , we

say that q is a kernel period of v.
As Carpi states at the beginning of section 9 of [2]:

By the results of the previous sections, at least in the case n ≥ 30, in order to construct an infinite word on n letters
avoiding factors of any exponent larger than n/(n − 1), it is sufficient to find an infinite word on the alphabet Am
avoiding ψ-kernel repetitions.

For m = 5, Carpi produces such an infinite word, based on a paper-folding construction. He thus establishes Dejean’s
conjecture for n ≥ 33. In the present paper, we give an infinite word on the alphabet A4 avoiding ψ-kernel repetitions.
We thus establish Dejean’s conjecture for n ≥ 30.

Definition 1. Let f : A∗4 → A∗4 be defined by f (1) = 121, f (2) = 123, f (3) = 141, f (4) = 142. Letw be the fixed point of f .

It is useful to note that the frequency matrix of f , i.e.,

[|f (i)|j]4×4 =

2 1 0 0
1 1 1 0
2 0 0 1
1 1 0 1


has an inverse modulo 4.

Remark 1. Let q be a non-negative integer, q ≤ 1966. Fix n = 32.

R1: Wordw contains no ψ-kernel repetition v with kernel period q.
R2: Wordw contains no factor v with kernel period q such that |v|/q ≥ 35/34.

The defining condition on ψ-kernel repetitions, namely that

(n− 1)(|v| + 1) ≥ nq− 3,

can be rewritten as

|v|

q
≥

n
n− 1

−
n+ 2
q(n− 1)

. (1)

Note that 3231 −
34
31q =

35
34 when q =

342
3 = 385

1
3 , so neither piece of the remark implies the other. One verifies that

35
34
+

9
2(1967)

≤
32
31
−
34
31q

for q ≥ 1967. Since the right-hand side of (1) decreases with n, once the remark is established, it will remain true if n is
replaced by 30 or 31. To show thatw contains noψ-kernel repetitions for n = 30, 31, 32, it thus suffices to verify R1 and to
show that wordw contains no factor v with kernel period q ≥ 1967 such that

|v|/q ≥ 35/34+ 9/2(1967). (2)

The remarks R1 and R2 are verified by computer search, so we will consider the second part of this attack. Fix q ≥ 1967,
and suppose that v is a factor ofw with kernel period q, and |v|/q ≥ 35/34. Sincew is not ultimately periodic, without loss
of generality, suppose that no extension of v has period q. Write v = sf (u)pwhere s (resp. p) is a suffix (resp. prefix) of the
image of a letter, and |s| ( resp. |p|)≤ 2.
If |v| ≤ q + 2, then 35/34 ≤ (q + 2)/q and 1/34 ≤ 2/q, forcing q ≤ 68. This contradicts R2. We will therefore assume

that |v| ≥ q+ 3.
Suppose |s| = 2. Since |v| ≥ q+3,write v = s1zs1v′, where |s1z| = q. Examining f , we see that the letter as preceding any

occurrence of s1 inw is uniquely determined if |s| = 2. It follows that asv is a factor ofwwith kernel period q, contradicting
the maximality of v. We conclude that |s| ≤ 1.
Again considering f , we see that if t is any factor ofw of length 3, and u1t , u2t are prefixes ofw, then |u1| ≡ |u2| (mod 3).

Since |v| ≥ q+3, we conclude that 3 divides q. Write q = 3q0. Since |s| ≤ 1, |p| ≤ 2 and |v| ≥ q+3, we see that |f (u)| ≥ q.
Thus f (u) has a prefix of length q = 3q0 which is in ker ψ . As the frequency matrix of f is invertible modulo 4, the prefix of
u of length q0 is in ker ψ . We see that

|v|

q
≤
3|u| + 3
3q0

=
|u|
q0
+
1
q0
.
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Lemma 2. Let s be a non-negative integer. If factor v ofw has kernel period q, where q ≤ 1966(3s), then

|v|

q
<
35
34
+

3
1966

s−1∑
j=0

3−j.

Proof. If s = 0, this is implied by R2. Suppose t > 0 and the result holds for s < t . Suppose that 1966(3t−1) < q ≤ 1966(3t)
and there is a factor v of w such that v has kernel period q. Suppose that |v|/q ≥ 35/34. Without loss of generality,
suppose that no extension of v has period q. We have seen that there is a factor u of w with kernel period q0 = q/3,
1966(3t−2) < q0 ≤ 1966(3t−1) such that

|v|/q ≤ |u|/q0 + 1/q0

<

(
35
34
+

3
1966

t−2∑
j=0

3−j
)
+
1
q0

(by the induction hypothesis)

<
35
34
+

3
1966

t−2∑
j=0

3−j +
1

1966(3t−2)

=
35
34
+

3
1966

t−2∑
j=0

3−j +
3

1966(3t−1)

=
35
34
+

3
1966

t−1∑
j=0

3−j. �

Theorem 3. Wordw contains no factor v with kernel period q such that
|v|/q ≥ 35/34+ 9/2(1966).

Proof. Suppose that factor v ofw has kernel period q such that (2) holds. By Remark 1, we have q ≥ 1966. By the previous
lemma, for some non-negative s,

|v|/q <
35
34
+

3
1966

s−1∑
j=0

3−j <
35
34
+

3
1966

∞∑
j=0

3−j =
35
34
+

9
2(1966)

. �

Wemay now build on Carpi’s result, here restated as a theorem:

Theorem 4. Fix n ≥ 30. To show that there is an infinite word on n letters avoiding factors of any exponent larger than n/(n−1),
it is sufficient to find an infinite word on the alphabet Am avoiding ψ-kernel repetitions.

Corollary 5. Dejean’s conjecture holds for n = 30, 31, 32.

The restriction n ≥ 30 in the theorem results from Carpi’s approach to avoiding the so-called ‘short repetitions’. (See
[8].) Therefore, our result in some sense optimizes his construction.
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Appendix. Computer search

Suppose that some factor v of w has kernel period q ≤ 1966 and either 31(|v| + 1) ≥ 32q − 3 or |v|/q ≥
35/34+ 9/2(1967).Without loss of generality, taking such a v as short as possible, we may assume that

|v| ≤

⌈
32(1966)− 3

31
− 1

⌉
= 2029.

(We also have
⌈
(1966)

(
35
34
+

9
2(1967)

)⌉
= 2029.)

If |v| > 3, v is a factor of f (u) for some factoru ofwwith |u| ≤ (|v|+4)/3. For a non-negative integer r , let g(r) = b(r+4)/3c.
Since g7(2029) = 2 < 3, (here the exponent denotes iterated function composition) word v must be a factor of f 7(u) for
some factor u ofw, |u| = 2.
The word u0 = 23141121142 contains all 8 factors of w which have length 2. To establish R1 and R2, one thus checks

that they hold for the single word f 7(u0) (which is of length 24,057).
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Note added in proof

We have now improved the result to n ≥ 27, as will appear in a forthcoming paper.
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