Dejean's conjecture holds for $n \geq 30$

James Currie*, Narad Rampersad
Department of Mathematics and Statistics, University of Winnipeg, 515 Portage Ave., Winnipeg, MB R3B 2E9, Canada

A R TICLE INFO

To Juhani Karhumäki on the occasion of his 60th birthday

Keywords:

Repetitive threshold
Fractional power
Dejean's conjecture

A B S TRACT
We extend Carpi's results by showing that Dejean's conjecture holds for $n \geq 30$.
© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Repetitions in words have been studied starting with Thue [10,11] at the beginning of the previous century. Much study has also been conducted on repetitions with fractional exponent [1-6]. If $n>1$ is an integer, then an n-power is a non-empty word x^{n}, i.e., word x repeated n times in a row. For rational $r>1$, a fractional r-power is a non-empty word $w=x^{\lfloor r\rfloor} x^{\prime}$ such that x^{\prime} is the prefix of x of length $(r-\lfloor r\rfloor)|x|$. For example, 01010 is a $5 / 2$-power. A basic problem is that of identifying the repetitive threshold for each alphabet size $n>1$:

What is the infimum of r such that an infinite sequence on n letters exists, not containing any factor of exponent greater than r ?

We call this infimum the repetitive threshold of an n-letter alphabet, denoted by $R T(n)$. Dejean's conjecture [3] is that

$$
R T(n)= \begin{cases}7 / 4, & n=3 \\ 7 / 5, & n=4 \\ n /(n-1) & n \neq 3,4\end{cases}
$$

The values $R T$ (2), $R T$ (3), $R T$ (4) were established by Thue, Dejean and Pansiot, respectively [11,3,9]. Moulin-Ollagnier [8] verified Dejean's conjecture for $5 \leq n \leq 11$, while Mohammad-Noori and Currie [7] proved the conjecture for $12 \leq n \leq 14$.

An exciting new development has recently occurred with the work of Carpi [2], who showed that Dejean's conjecture holds for $n \geq 33$. Verification of the conjecture is now only lacking for a finite number of values. In the present paper, we sharpen Carpi's methods to show that Dejean's conjecture holds for $n \geq 30$.

2. Preliminaries

The following definitions are from Sections 8 and 9 of [2]: Fix $n \geq 30$. Let $m=\lfloor(n-3) / 6\rfloor$. Let $A_{m}=\{1,2, \ldots, m\}$. Let ker $\psi=\left\{v \in A_{m}^{*} \mid \forall a \in A_{m}, 4\right.$ divides $\left.|v|_{a}\right\}$. (In fact, this is not Carpi's definition of ker ψ, but rather the assertion of

[^0]his Lemma 9.1.) A word $v \in A_{m}^{+}$is a ψ-kernel repetition if it has period q and a prefix v^{\prime} of length q such that $v^{\prime} \in \operatorname{ker} \psi$, $(n-1)(|v|+1) \geq n q-3$.

It will be convenient to have the following new definition: If v has period q and its prefix v^{\prime} of length q is in ker ψ, we say that q is a kernel period of v.

As Carpi states at the beginning of section 9 of [2]:
By the results of the previous sections, at least in the case $n \geq 30$, in order to construct an infinite word on n letters avoiding factors of any exponent larger than $n /(n-1)$, it is sufficient to find an infinite word on the alphabet A_{m} avoiding ψ-kernel repetitions.

For $m=5$, Carpi produces such an infinite word, based on a paper-folding construction. He thus establishes Dejean's conjecture for $n \geq 33$. In the present paper, we give an infinite word on the alphabet A_{4} avoiding ψ-kernel repetitions. We thus establish Dejean's conjecture for $n \geq 30$.

Definition 1. Let $f: A_{4}^{*} \rightarrow A_{4}^{*}$ be defined by $f(1)=121, f(2)=123, f(3)=141, f(4)=142$. Let w be the fixed point of f. It is useful to note that the frequency matrix of f, i.e.,

$$
\left[|f(i)|_{j}\right]_{4 \times 4}=\left[\begin{array}{cccc}
2 & 1 & 0 & 0 \\
1 & 1 & 1 & 0 \\
2 & 0 & 0 & 1 \\
1 & 1 & 0 & 1
\end{array}\right]
$$

has an inverse modulo 4.
Remark 1. Let q be a non-negative integer, $q \leq 1966$. Fix $n=32$.
R1: Word w contains no ψ-kernel repetition v with kernel period q.
R2: Word w contains no factor v with kernel period q such that $|v| / q \geq 35 / 34$.
The defining condition on ψ-kernel repetitions, namely that

$$
(n-1)(|v|+1) \geq n q-3,
$$

can be rewritten as

$$
\begin{equation*}
\frac{|v|}{q} \geq \frac{n}{n-1}-\frac{n+2}{q(n-1)} \tag{1}
\end{equation*}
$$

Note that $\frac{32}{31}-\frac{34}{31 q}=\frac{35}{34}$ when $q=\frac{34^{2}}{3}=385 \frac{1}{3}$, so neither piece of the remark implies the other. One verifies that

$$
\frac{35}{34}+\frac{9}{2(1967)} \leq \frac{32}{31}-\frac{34}{31 q}
$$

for $q \geq 1967$. Since the right-hand side of (1) decreases with n, once the remark is established, it will remain true if n is replaced by 30 or 31 . To show that w contains no ψ-kernel repetitions for $n=30,31,32$, it thus suffices to verify R1 and to show that word w contains no factor v with kernel period $q \geq 1967$ such that

$$
\begin{equation*}
|v| / q \geq 35 / 34+9 / 2(1967) \tag{2}
\end{equation*}
$$

The remarks R1 and R2 are verified by computer search, so we will consider the second part of this attack. Fix $q \geq 1967$, and suppose that v is a factor of w with kernel period q, and $|v| / q \geq 35 / 34$. Since w is not ultimately periodic, without loss of generality, suppose that no extension of v has period q. Write $v=s f(u) p$ where s (resp. p) is a suffix (resp. prefix) of the image of a letter, and $|s|($ resp. $|p|) \leq 2$.

If $|v| \leq q+2$, then $35 / 34 \leq(q+2) / q$ and $1 / 34 \leq 2 / q$, forcing $q \leq 68$. This contradicts R2. We will therefore assume that $|v| \geq q+3$.

Suppose $|s|=2$. Since $|v| \geq q+3$, write $v=s 1 z s 1 v^{\prime}$, where $|s 1 z|=q$. Examining f, we see that the letter a_{s} preceding any occurrence of $s 1$ in w is uniquely determined if $|s|=2$. It follows that $a_{s} v$ is a factor of w with kernel period q, contradicting the maximality of v. We conclude that $|s| \leq 1$.

Again considering f, we see that if t is any factor of w of length 3 , and $u_{1} t, u_{2} t$ are prefixes of w, then $\left|u_{1}\right| \equiv\left|u_{2}\right|(\bmod 3)$. Since $|v| \geq q+3$, we conclude that 3 divides q. Write $q=3 q_{0}$. Since $|s| \leq 1,|p| \leq 2$ and $|v| \geq q+3$, we see that $|f(u)| \geq q$. Thus $f(u)$ has a prefix of length $q=3 q_{0}$ which is in ker ψ. As the frequency matrix of f is invertible modulo 4 , the prefix of u of length q_{0} is in ker ψ. We see that

$$
\frac{|v|}{q} \leq \frac{3|u|+3}{3 q_{0}}=\frac{|u|}{q_{0}}+\frac{1}{q_{0}}
$$

Lemma 2. Let s be a non-negative integer. If factor v of w has kernel period q, where $q \leq 1966\left(3^{s}\right)$, then

$$
\frac{|v|}{q}<\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{s-1} 3^{-j}
$$

Proof. If $s=0$, this is implied by R2. Suppose $t>0$ and the result holds for $s<t$. Suppose that 1966($\left.3^{t-1}\right)<q \leq 1966\left(3^{t}\right)$ and there is a factor v of w such that v has kernel period q. Suppose that $|v| / q \geq 35 / 34$. Without loss of generality, suppose that no extension of v has period q. We have seen that there is a factor u of w with kernel period $q_{0}=q / 3$, $1966\left(3^{t-2}\right)<q_{0} \leq 1966\left(3^{t-1}\right)$ such that

$$
\begin{aligned}
|v| / q & \leq|u| / q_{0}+1 / q_{0} \\
& <\left(\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j}\right)+\frac{1}{q_{0}} \quad \text { (by the induction hypothesis) } \\
& <\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j}+\frac{1}{1966\left(3^{t-2}\right)} \\
& =\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{t-2} 3^{-j}+\frac{3}{1966\left(3^{t-1}\right)} \\
& =\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{t-1} 3^{-j} .
\end{aligned}
$$

Theorem 3. Word w contains no factor v with kernel period q such that

$$
|v| / q \geq 35 / 34+9 / 2(1966)
$$

Proof. Suppose that factor v of w has kernel period q such that (2) holds. By Remark 1, we have $q \geq 1966$. By the previous lemma, for some non-negative s,

$$
|v| / q<\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{s-1} 3^{-j}<\frac{35}{34}+\frac{3}{1966} \sum_{j=0}^{\infty} 3^{-j}=\frac{35}{34}+\frac{9}{2(1966)}
$$

We may now build on Carpi's result, here restated as a theorem:
Theorem 4. Fix $n \geq 30$. To show that there is an infinite word on n letters avoiding factors of any exponent larger than $n /(n-1)$, it is sufficient to find an infinite word on the alphabet A_{m} avoiding ψ-kernel repetitions.
Corollary 5. Dejean's conjecture holds for $n=30,31,32$.
The restriction $n \geq 30$ in the theorem results from Carpi's approach to avoiding the so-called 'short repetitions'. (See [8].) Therefore, our result in some sense optimizes his construction.

Acknowledgements

The first author is supported by an NSERC Discovery Grant. The second author is supported by an NSERC Postdoctoral Fellowship.

Appendix. Computer search

Suppose that some factor v of w has kernel period $q \leq 1966$ and either $31(|v|+1) \geq 32 q-3$ or $|v| / q \geq$ $35 / 34+9 / 2(1967)$. Without loss of generality, taking such a v as short as possible, we may assume that

$$
|v| \leq\left\lceil\frac{32(1966)-3}{31}-1\right\rceil=2029
$$

(We also have $\left\lceil(1966)\left(\frac{35}{34}+\frac{9}{2(1967)}\right)\right\rceil=2029$.)
If $|v|>3, v$ is a factor of $f(u)$ for some factor u of w with $|u| \leq(|v|+4) / 3$. For a non-negative integer r, let $g(r)=\lfloor(r+4) / 3\rfloor$. Since $g^{7}(2029)=2<3$, (here the exponent denotes iterated function composition) word v must be a factor of $f^{7}(u)$ for some factor u of $w,|u|=2$.

The word $u_{0}=23141121142$ contains all 8 factors of w which have length 2 . To establish R1 and R2, one thus checks that they hold for the single word $f^{7}\left(u_{0}\right)$ (which is of length 24,057).

Note added in proof

We have now improved the result to $n \geq 27$, as will appear in a forthcoming paper.

References

[1] F.J. Brandenburg, Uniformly growing k-th powerfree homomorphisms, Theoret. Comput. Sci. 23 (1983) 69-82.
[2] A. Carpi, On Dejean's conjecture over large alphabets, Theoret. Comput. Sci. 385 (2007) 137-151.
[3] F. Dejean, Sur un théorème de Thue, J. Combin. Theory Ser. A 13 (1972) 90-99.
[4] L. Ilie, P. Ochem, J Shallit, A generalization of repetition threshold, Theoret. Comput. Sci. 345 (2005) 359-369.
[5] D. Krieger, On critical exponents in fixed points of non-erasing morphisms, Theoret. Comput. Sci. 376 (2007) 70-88.
[6] F. Mignosi, G. Pirillo, Repetitions in the Fibonacci infinite word, RAIRO Inform. Théor. Appl. 26 (1992) 199-204.
[7] M. Mohammad-Noori, J.D. Currie, Dejean's conjecture and Sturmian words, European J. Combin. 28 (2007) 876-890.
[8] J. Moulin-Ollagnier, Proof of Dejean's conjecture for alphabets with 5, 6, 7, 8, 9, 10 and 11 letters, Theoret. Comput. Sci. 95 (1992) 187-205.
[9] J.-J. Pansiot, A propos d'une conjecture de F. Dejean sur les répétitions dans les mots, Discrete Appl. Math. 7 (1984) 297-311.
[10] A. Thue, Über unendliche Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 7 (1906) 1-22.
[11] A. Thue, Über die gegenseitige Lage gleicher Teile gewisser Zeichenreihen, Norske Vid. Selsk. Skr. I. Mat. Nat. Kl. Christiana 1 (1912) 1-67.

[^0]: * Corresponding author.

 E-mail addresses: j.currie@uwinnipeg.ca (J. Currie), n.rampersad@uwinnipeg.ca (N. Rampersad).
 0304-3975/\$ - see front matter © 2009 Elsevier B.V. All rights reserved.
 doi:10.1016/j.tcs.2009.01.026

