Note

A Note on the Edge-Reconstruction of $K_{1,m}$ -Free Graphs

I. KRASIKOV

School of Mathematical Sciences, Tel-Aviv University, Tel-Aviv, Israel

Communicated by the Editors

Received March 1, 1988

We show that there exists an absolute constant c such that any $K_{1,m}$ -free graph with the maximum degree $\Delta > cm(\log m)^{1/2}$ is edge reconstructible. \bigcirc 1990 Academic Press, Inc.

We follow the basic notation and terminology of [7].

Let G be a finite simple graph. As usual, V(G) and E(G) denote the vertex set and the edge set, respectively, and \overline{G} stands for the complement of G. We use $\beta_0(G)$ for the vertex independence number of G. Denote by ER the class of edge-reconstructive graphs. All logarithms here are to base 2.

Recently Ellingham, Pyber, and Yu Xing Xing established the edgereconstruction conjecture for $K_{1,3}$ -free graphs [5]. Their proof is based on a very small upper bound, derived from the Nash-Williams lemma, for the maximum degree Δ of a hypothetical counterexample. They pointed out that their method yields that $K_{1,m}$ -free graphs with $\Delta \ge R(m)$, the Ramsey number, are edge reconstructible. Here we improve this inequality and show that $G \in ER$ whenever $\Delta > cm(\log m)^{1/2}$. In particular, this yields that, for an appropriate constant c, a $K_{1,m}$ -free graph with average degree $d > 2 \log m + \log \log m + c$, is edge reconstructible. This is slightly sharper than a result obtained in [4, Theorem 2.5].

Suppose G_1 and G_2 are spanning subgraphs of K_n . Let S_n denote the set of bijections $\phi: V(K_n) \to V(K_n)$. Then the set of *embeddings* of G_1 into G_2 is

$$G_1 \to G_2 = \{ \phi \in S_n \colon \phi(G_1) \subseteq G_2 \}.$$

Let G be a spanning subgraph of K_n . Then an *NW-family* (in honour of Nash-Williams) for G is a set F of spanning subraphs of K_n such that:

(1) e(H) = e(G) for all $H \in F$;

(2) for any $x \subseteq E(G)$ with |x| even there is an embedding $\phi \in S_n$ such that $E(G) \setminus E(\phi(H)) = x$ for some $H \in F$.

Note that by letting $x = \emptyset$ we see that F must contain a graph isomorphic to G. Let f(G) be the size of the smallest NW-family for G.

NASH-WILLIAMS LEMMA [7]. If $G \notin ER$ then f(G) = 1.

In other words, the Nash-Williams lemma states that for a non-reconstructible graph G,

 $\forall x \subseteq E(G), |x| \text{ even, } \exists y \subseteq E(\overline{G}) \text{ such that } (G \setminus x) \cup y \cong G.$

The following lemma and its corollary are straightforward generalizations of results of Lovasz (see [8]) and Muller [6], respectively.

LEMMA 1. Let Γ and G be a spanning subgraphs of K_n with $\Gamma \subseteq G$. Let F be an NW-family for G. Then

$$\sum_{H \in F} |\Gamma \to H| \ge 2^{e(G) - e(\Gamma) - 1}.$$

Proof. Take any $x \subseteq E(G) \setminus E(\Gamma)$ with |x| even. Then for some $H \in F$ and $\phi \in S_n$, $E(G) \setminus E(\Gamma) = x$. But then $\phi^{-1} \in \Gamma \to H$. So for each of the $2^{e(G)-e(\Gamma)-1}$ sets x we have a pair (H, ϕ) with $H \in F$ and $\phi^{-1} \in \Gamma \to H$. The result follows.

COROLLARY 1. For any graph $e \leq \log(2fn!)$.

Proof. Choose $E(\Gamma) = \emptyset$.

For a vertex $v \in G$ we denote by N(v) the induced subgraph consisting of the vertices adjacent to v. The vertex v will be called the root of N(v). Consider the set $R(G) = \{N(v): \deg v = A\}$. Let $R_m \in R(G)$ be a graph with the minimal number of edges. We shall estimate $f(R_m)$ for a nonreconstructible graph.

LEMMA 2. If $G \notin ER$ then $f(R_m) \leq (\Delta^2 + \Delta + 2)/2$.

Proof. We apply the Nash-Williams lemma to G but choose only those x which are in $E(R_m)$. Let K_r be the complete graph on the vertex set $V(R_m)$. For each $x \subseteq E(R_m)$, $|x| \equiv 0 \pmod{2}$, fix $y \subset E(\overline{G})$ such that $\phi_x \colon G \to G_x = (G \setminus x) \cup y$ is an isomorphism. Observe that $G_x \cong G$ implies $y \subset E(K_r)$, by the minimality of $E(R_m)$.

296

So, for each x let $R_x = R_m \setminus x \cup y$. Clearly $F = \{R_x\}$ is an NW-family for R, since $R \setminus R_x = x$ and $e(R_x) = e(R_m)$ for each x.

Now, when x is deleted from G and y is added to get G_x , a neighbourhood isomorphic to R_x is created. Since $G \cong G_x$, a neighbourhood isomorphic to R_x must have been destroyed first. This must be N(u) where u is v, adjacent to v, or adjacent to at least two vertices of $N(v) = R_m$. The number of possible vertices u is therefore at most $1 + \Delta + \Delta(\Delta - 1)/2 = (\Delta^2 + \Delta + 2)/2$. Hence each element in F is isomorphic to one of at most $(\Delta^2 + \Delta + 2)/2$ graphs, and therefore $f(R_m) \leq (\Delta^2 + \Delta + 2)/2$.

MAIN THEOREM. Let $G \notin ER$ be a $K_{1,m}$ -free graph, then $\Delta = O(m(\log m)^{1/2})$.

Proof. Let $G \notin ER$ be a $K_{1,m}$ -free graph. We suppose that m is large enough to justify all approximations below. Moreover, we also assume that $m = o(\Delta)$.

Define a covering path system of a graph as a spanning set of vertexdisjoint paths. We fix $R_m \subset G$. Choose a covering path system $P \subset R_m$ with the minimal possible number of paths. Since $\beta_0(R_m) < m$ it follows by the Gallai-Milgram theorem [3] that P contains less than m paths. Moreover, as is well known (see [1, p. 275]), $\beta_0 \ge n/(d+1)$ for any graph with the average degree d. Thus, $e = e(R_m) > d^2/4m$ for sufficiently large m.

Observe that $|P \to R_m| < \binom{e}{(e(P))} 2^m m!$ since for any $\phi \in P \to R_m$ there are at most $\binom{e}{e(P)}$ choices for $E(\phi(P))$ and at most $2^m m!$ ways to embed P in any particular subgraph with e(P) edges.

We have, by Lemmas 1 and 2,

$$2^{e-e(P)-1} < \frac{\Delta^2 + \Delta + 2}{2} {e \choose e(P)} 2^m m!.$$

Using $\binom{a}{b} < (3a/b)^{b}$, $2^{m}m! < m^{m}$, and $e(P) < \Delta$, we get, for sufficiently large Δ , $2^{e} < (6e/\Delta)^{\Delta}m^{m}$. Finally, by Corollary 1, $e < \Delta \log \Delta$ and so,

$$\frac{\Delta^2}{40} < e < \Delta \log(6 \log \Delta) + m \log m,$$

which implies $\Delta = O(m(\log m)^{1/2})$.

COROLLARY 2. For a suffciently large constant c any $K_{1,m}$ -free graph with average degree $d > 2 \log m + \log \log m + c$ is edge reconstructible.

Proof. The graphs with $d > 2 \log 2\Delta$ are known to be edge reconstructible (Caunter and Nash-Williams, see [2]).

I. KRASIKOV

ACKNOWLEDGMENT

I express my thanks to L. Pyber for his suggestion to use a covering path system which enabled me to improve an estimate on Δ originally obtained by the author.

References

- 1. B. BOLLOBAS, "Random Graphs," Academic Press, Orlando, FL, 1985.
- 2. J. A. BONDY, The reconstruction of graphs, preprint.
- 3. T. GALLAI AND A. N. MILGRAM, Verallgemeinerung eines Graphen theoretischen Satzes von Redei, Acta Sci. Math. 21 (1960), 181–186.
- 4. Y. CARO, J. KRASIKOV, AND Y. RODITTY, Spanning trees and some edge-reconstructible graphs, Ars Combin. 20-A (1985), 109-118.
- 5. M. N. ELLINGHAM, L. PYBER, AND YU XING, Claw-free graphs are edge-reconstructible, J. Graph Theory, in press.
- 6. V. MULLER, The edge-reconstruction hypothesis is true for graphs with more than $n \log_2 n$ edges, J. Combin. Theory Ser. B 22 (1977), 281-283.
- C. ST. J. A. NASH-WILLIAMS, The reconstruction problem, in "Selected Topics in Graph Theory," pp. 205–236, Academic Press, London, 1978.
- 8. L. PYBER, The edge reconstruction of hamiltonian graphs, J. Graph Theory, in press.