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We show that there exists an absolute constant c such that any K,,,-free graph 
with the maximum degree A > cm(log tn)“’ is edge reconstructible. G 1990 Academic 

Press, Inc. 

We follow the basic notation and terminology of [7]. 
Let G be a finite simple graph. As usual, V(G) and E(G) denote the ver- 

tex set and the edge set, respectively, and G stands for the complement of 
G. We use b,(G) for the vertex independence number of G. Denote by ER 
the class of edge-reconstructivle graphs. All logarithms here are to base 2. 

Recently Ellingham, Pyber, and Yu Xing Xing established the edge- 
reconstruction conjecture for K,,, -free graphs [S]. Their proof is based on 
a very small upper bound, derived from the Nash-Williams lemma, for the 
maximum degree d of a hypothetical counterexample. They pointed out 
that their method yields that K,,, -free graphs with A 2 R(m), the Ramsey 
number, are edge reconstructible. Here we improve this inequality and 
show that GE ER whenever A > cm(log m) I” In particular, this yields that, . 
for an appropriate constant c, a K,,, -free graph with average degree 
d > 2 log m + log log m + c, is edge reconstructible. This is slightly sharper 
than a result obtained in [4, Theorem 2.51. 

Suppose G, and G, are spanning subgraphs of K,. Let S, denote the set 
of bijections 4 : V(K,) + V(K,). Then the set of embeddings of Gi into G2 
is 

Let G be a spanning subgraph of K,. Then an NW-family (in honour of 
Nash-Williams) for G is a set F of spanning subraphs of K,, such that: 
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(1) e(H) = e(G) for all HE F; 

(2) for any x E E(G) with 1x1 even there is an embedding Q E S, such 
that E(G)\E(&H))=x for some HE F. 

Note that by letting x = @ we see that F must contain a graph isomorphic 
to G. Let f(G) be the size of the smallest NW-family for G. 

NASH-WILLIAMS LEMMA [7]. ZfG$ER then f(G)= 1. 

In other words, the Nash-Williams lemma states that for a non- 
reconstructible graph G, 

Vxs E(G), 1x1 even, 3 y E E(G) such that (G\x) u y 2 G. 

The following lemma and its corollary are straightforward generaliza- 
tions of results of Lovasz (see [8]) and Muller [6], respectively. 

LEMMA 1. Let r and G be a spanning subgraphs of K, with rs G. Let 
F be an NW-family for G. Then 

Prooj: Take any x = E(G)\,?(T) with 1x1 even. Then for some HE F 
and q5~ S,, E(G)\E(T) =x. But then 4-l ET+ H. So for each of the 
2e(G)-e(r)-1 sets x we have a pair (H, 4) with HE F and 4-l E r + H. The 
result follows. 1 

COROLLARY 1. For any graph e < log(2fn ! ). 

Proof Choose E(T) = 0. 1 

For a vertex v E G we denote by N(u) the induced subgraph consisting of 
the vertices adjacent to v. The vertex v will be called the root of N(o). Con- 
sider the set R(G) = (N(v): deg u = A >. Let R, E R(G) be a graph with the 
minimal number of edges. We shall estimate f (R,) for a nonreconstructible 
graph. 

LEMMA 2. if G $ ER then f(R,) < (A2 + A + 2)/2. 

Proof. We apply the Nash-Williams lemma to G but choose only those 
x which are in E(R,). Let K, be the complete graph on the vertex set 
V(R,). For each xc E(R,), 1x1~0 (mod 2), fix y c E(G) such that 
dX: G -P G, = (G\x) u y is an isomorphism. Observe that G, z G implies 
y c E( K,), by the minimality of E(R,). 
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So, for each x let R, = R,\x u y. Clearly F= {R, > is an NW-family for 
R, since R\R, = x and e(R,) = e(R,) for each x. 

Now, when x is deleted from G and y is added to get G,, a neigh- 
bourhood isomorphic to R, is created. Since G r G,, a neighbourhood 
isomorphic to R, must have been destroyed first. This must be N(u) where 
u is u, adjacent to u, or adjacent to at least two vertices of N(v) = R,. The 
number of possible vertices u is therefore at most 1 + A + A(A - 1)/2 = 
(A* + A + 2)/2. Hence each element in F is isomorphic to one of at most 
(A* + A + 2)/2 graphs, and therefore f(Rm) d (A2 + A + 2)/2. 1 

MAIN THEOREM. Let G 4 ER be a K,,,-free graph, then A = 
O(m(log m)“2). 

ProojI Let G $ ER be a K, ,-free graph. We suppose that m is large 
enough to justify all approximations below. Moreover, we also assume that 
m = o(A). 

Define a covering path system of a graph as a spanning set of vertex- 
disjoint paths. We fix R, c G. Choose a covering path system PC R, with 
the minimal possible number of paths. Since j?,,(R,) < m it follows by the 
Gallai-Milgram theorem [3] that P contains less than m paths. Moreover, 
as is well known (see [ 1, p. 275]), & > n/(d + 1) for any graph with the 
average degree d. Thus, e = e(R,) > A2/4m for sufficiently large m. 

Observe that 1 P + R,] < ($,) 2”‘m! since for any q5 E P -+ R, there are at 
most (&,) choices for E(QI(P)) and at most 2”m! ways to embed P in any 
particular subgraph with e(P) edges. 

We have, by Lemmas 1 and 2, 

2e-e(P)-l< 2”m!. 

Using (z) < (3a/b)b, 2”m! < mm, and e(P) < A, we get, for sufficiently large 
A, 2’ < (6e/A)d mm. Finally, by Corollary 1, e < A log A and so, 

A2 
~<e<Alog(6logA)+mlogm, 

which implies A = O(m(log m)“‘). 1 

COROLLARY 2. For a suffciently large constant c any K,,,-free graph 
with average degree d > 2 log m + log log m + c is edge reconstructible. 

Proof: The graphs with d> 2 log 24 are known to be edge recon- 
structible (Caunter and Nash-Williams, see [2]). 1 
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