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1. Introduction

In [1] Chai studied prime-to-p Hecke correspondences on Siegel moduli spaces in characteristic p
and proved a deep geometric result about ordinary �-adic Hecke orbits for any prime � �= p. Recently
Chai and Oort gave a complete answer to what this �-adic Hecke orbit can be; see [2]. In this paper
we study the arithmetic aspect of supersingular �-adic Hecke orbits in the Siegel moduli spaces, the
extreme situation opposite to the ordinary case. In the case of genus g = 2, we give a complete
answer to the size of supersingular Hecke orbits.

Let p be a rational prime number and g � 1 be a positive integer. Let N � 3 be a prime-to-p
positive integer. Choose a primitive Nth root of unity ζN ∈ Q ⊂ C and fix an embedding Q ↪→ Qp . Let
A g,1,N denote the moduli space over Fp of g-dimensional principally polarized abelian varieties with
a symplectic level-N structure with respect to ζN . Let k be an algebraically closed field of characteris-
tic p. For each point x = A0 = (A0, λ0, η0) in A g,1,N(k) and a prime number � �= p, the �-adic Hecke
orbit H�(x) is defined to be the countable subset of A g,1,N(k) that consists of points A such that
there is an �-quasi-isogeny from A to A0 that preserves the polarizations (see Section 2 for defini-
tions). It is proved in Chai [1, Proposition 1] that the �-adic Hecke orbit H�(x) is finite if and only if x
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is supersingular. Recall that an abelian variety A over k is supersingular if it is isogenous to a product
of supersingular elliptic curves; A is superspecial if it is isomorphic to a product of supersingular el-
liptic curves. A natural question is whether it is possible to calculate the size of a supersingular Hecke
orbit. The answer is affirmative, provided that we know its underlying p-divisible group structure ex-
plicitly, through the calculation of geometric mass formulas (see Section 2). This is the task of this
paper where we examine the p-divisible group structure of some non-superspecial abelian varieties.

Let x = (A0, λ0) be a g-dimensional supersingular principally polarized abelian varieties over k.
Let Λx denote the set of isomorphism classes of g-dimensional supersingular principally polarized
abelian varieties (A, λ) over k such that there exists an isomorphism (A, λ)[p∞] � (A0, λ0)[p∞] of the
attached quasi-polarized p-divisible groups; it is a finite set (see [7, Theorem 2.1 and Proposition 2.2]).
Define the mass Mass(Λx) of Λx as

Mass(Λx) :=
∑

(A,λ)∈Λx

1

|Aut(A, λ)| . (1.1)

The main result of this paper is computing the geometric mass Mass(Λx) for arbitrary x when g = 2.
Let Λ∗

2,p be the set of isomorphism classes of polarized superspecial abelian surfaces (A, λ) with

polarization degree degλ = p2 over Fp such that kerλ � αp × αp (see Section 3.1). For each member
(A1, λ1) in Λ∗

2,p , the space of degree-p isogenies ϕ : (A1, λ1) → (A, λ) with ϕ∗λ = λ1 over k is a

projective line P1 over k. Write P1
A1

to indicate the space of p-isogenies arising from A1. This family

is studied in Moret-Bailly [6], and also in Katsura and Oort [5]. One defines an Fp2 -structure on P1

using the W (Fp2 )-structure of M1 defined by F 2 = −p, where M1 is the covariant Dieudonné module
of A1 and F is the absolute Frobenius. For any supersingular principally polarized abelian surface
(A, λ) there exist an (A1, λ1) in Λ∗

2,p and a degree-p isogeny ϕ : (A1, λ1) → (A, λ) with ϕ∗λ = λ1.
The choice of (A1, λ1) and ϕ may not be unique. However, the degree [Fp2 (ξ) : Fp2 ] of the point

ξ ∈ P1
A1

(k) that corresponds to ϕ is well defined.
In this paper we prove

Theorem 1.1. Let x = (A, λ) be a supersingular principally polarized abelian surface over k. Suppose that
(A, λ) is represented by a pair (A1, ξ), where A1 ∈ Λ∗

2,p and ξ ∈ P1
A1

(k). Then

Mass(Λx) = Lp

5760
,

where

Lp =

⎧⎪⎨⎪⎩
(p − 1)(p2 + 1) if Fp2(ξ) = Fp2 ,

(p2 − 1)(p4 − p2) if [Fp2(ξ) : Fp2 ] = 2,

(p2 − 1)|PSL2(Fp2)| otherwise.

Theorem 1.1 calculates the cardinality of �-adic Hecke orbits H�(x), as one has (Corollary 2.3)∣∣H�(x)
∣∣ = ∣∣Sp2g(Z/NZ)

∣∣ · Mass(Λx).

We mention that the function field analogue of Theorem 1.1 where supersingular abelian surfaces are
replaced by supersingular Drinfeld modules is established in [10].

This paper is organized as follows. In Section 2 we describe the relationship between supersin-
gular �-adic Hecke orbits and mass formulas. We develop the mass formula for the orbits of certain
superspecial abelian varieties. In Section 3 we compute the endomorphism ring of any supersingular
abelian surface. The proof of the main theorem is given in the last section.
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2. Hecke orbits and mass formulas

Let g, p, N, �, A g,1,N ,k be as in the previous section. We work with a slightly bigger moduli
space in which the objects are not necessarily equipped with principal polarizations. It is indeed
more convenient to work in this setting. Let A g,p∗,N = ⋃

m�1 A g,pm,N be the moduli space over Fp

of g-dimensional abelian varieties together with a p-power degree polarization and a symplectic
level-N structure with respect to ζN . Write A g,p∗ for the moduli stack over Fp that parametrizes
g-dimensional p-power degree polarized abelian varieties. For any point x = A0 = (A0, λ0, η0)

in A g,p∗,N (k), the �-adic Hecke orbit H�(x) is defined to be the countable subset of A g,p∗,N (k) that
consists of points A such that there is an �-quasi-isogeny from A to A0 that preserves the polariza-
tions. An �-quasi-isogeny from A to A0 is an element ϕ ∈ Hom(A, A0) ⊗ Q such that �mϕ , for some
integer m � 0, is an isogeny of �-power degree.

2.1. Group theoretical interpretation

Assume that x is supersingular. Let Gx be the automorphism group scheme over Z associated
to A0; for any commutative ring R , the group of its R-valued points is defined by

Gx(R) = {
h ∈ (

Endk(A0) ⊗ R
)× ∣∣ h′h = 1

}
,

where h �→ h′ is the Rosati involution induced by λ0. Let Λx,N ⊂ A g,p∗,N(k) be the subset consisting of
objects (A, λ,η) such that there is an isomorphism εp: (A, λ)[p∞] � (A0, λ0)[p∞] of quasi-polarized
p-divisible groups. Since �-quasi-isogenies do not change the associated p-divisible group structure,
we have the inclusion H�(x) ⊂ Λx,N .

Proposition 2.1. Notations and assumptions as above.

(1) There is a natural isomorphism Λx,N � Gx(Q)\Gx(A f )/KN of pointed sets, where KN is the stabilizer
of η0 in Gx(Ẑ).

(2) One has H�(x) = Λx,N .

Proof. (1) This is a special case of [7, Theorem 2.1 and Proposition 2.2]. We sketch the proof for
the reader’s convenience. Let A be an element in Λx,N . As A is supersingular, there is a quasi-
isogeny ϕ : A0 → A such that ϕ∗λ = λ0. For each prime q (including p and �), choose an isomorphism
εq: A0[q∞] � A[q∞] of q-divisible groups compatible with polarizations and level structures. There is
an element φq ∈ Gx(Qq) such that ϕφq = εq for all q. The map A �→ [(φq)] gives a well-defined map
from Λx,N to Gx(Q)\Gx(A f )/KN . It is not hard to show that this is a bijection.

(2) The inclusion H�(x) ⊂ Λx,N under the isomorphism in (1) is given by[
Gx(Q) ∩ Gx

(
Ẑ(�)

)]∖[
Gx(Q�) × Gx

(
Ẑ(�)

)]/
KN ⊂ Gx(Q)\Gx(A f )/KN .

Since the group Gx is semi-simple and simply-connected, the strong approximation shows that

Gx(Q) ⊂ Gx(A
(�)

f ) is dense. The equality then follows immediately. �
Corollary 2.2. Let A i = (Ai, λi, ηi), i = 1,2, be two supersingular points in A g,p∗,N(k). Suppose that there
is an isomorphism of the associated quasi-polarized p-divisible groups. Then for any prime � � pN there is an
�-quasi-isogeny ϕ : A1 → A2 which preserves the polarizations and level structures.

Proof. This follows from the strong approximation property for Gx that any element φ in the double
space Gx(Q)\Gx(A f )/KN can be represented by an element in Gx(Q�) × K (�)

N , where K (�)
N ⊂ Gx(Ẑ

(�))

is the prime-to-� component of KN . �
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Recall that we denote by Λx the set of isomorphism classes of g-dimensional supersingu-
lar p-power degree polarized abelian varieties (A, λ) over k such that there is an isomorphism
(A, λ)[p∞] � (A0, λ0)[p∞], and define the mass Mass(Λx) of Λx as

Mass(Λx) :=
∑

(A,λ)∈Λx

1

|Aut(A, λ)| .

Similarly, we define

Mass(Λx,N) :=
∑

(A,λ,η)∈Λx,N

1

|Aut(A, λ,η)| .

Corollary 2.3. One has |H�(x)| = |Sp2g(Z/NZ)| · Mass(Λx).

Proof. This follows from∣∣H�(x)
∣∣ = |Λx,N | = Mass(Λx,N) = ∣∣Gx(Z/NZ)

∣∣ · Mass(Λx)

and |Gx(Z/NZ)| = |Sp2g(Z/NZ)|. �
2.2. Relative indices

Write G ′ for the automorphism group scheme associated to a principally polarized superspecial
point x0. The group G ′

Q
is unique up to isomorphism. This is an inner form of Sp2g which is “twisted

at p and ∞” (cf. Section 3.1 below). For any supersingular point x ∈ A g,p∗(k), we can regard Gx(Zp)

as an open compact subgroup of G ′(Qp) through a choice of a quasi-isogeny of polarized abelian va-
rieties between x0 and x. Another choice of quasi-isogeny gives rise to a subgroup which differs from
the previous one by the conjugation of an element in G ′(Qp). For any two open compact subgroups
U1, U2 of G ′(Qp), we put

μ(U1/U2) := [U1: U1 ∩ U2][U2: U1 ∩ U2]−1.

Proposition 2.4. Let x1, x2 be two supersingular points in A g,p∗ (k). Then one has

Mass(Λx2) = Mass(Λx1) · μ(
Gx1(Zp)/Gx2(Zp)

)
.

Proof. See Theorem 2.7 of [7]. �
2.3. The superspecial case

Let Λg denote the set of isomorphism classes of g-dimensional principally polarized superspecial
abelian varieties over Fp . When g = 2D > 0 is even, we denote by Λ∗

g,pD the set of isomorphism

classes of g-dimensional polarized superspecial abelian varieties (A, λ) of degree p2D over Fp satis-
fying kerλ = A[F ], where F : A → A(p) is the relative Frobenius morphism on A. Write

Mg :=
∑

(A,λ)∈Λg

1

|Aut(A, λ)| , M∗
g :=

∑
(A,λ)∈Λ∗

g,pD

1

|Aut(A, λ)|

for the mass attached to the finite sets Λg and Λ∗
D , respectively.
g,p
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Theorem 2.5. Notations as above.

(1) For any positive integer g, one has

Mg = (−1)g(g+1)/2

2g

{ g∏
k=1

ζ(1 − 2k)

}
·

g∏
k=1

{
pk + (−1)k},

where ζ(s) is the Riemann zeta function.
(2) For any positive even integer g = 2D, one has

M∗
g = (−1)g(g+1)/2

2g

{ g∏
k=1

ζ(1 − 2k)

}
·

D∏
k=1

(
p4k−2 − 1

)
.

Proof. (1) This is due to Ekedahl and Hashimoto and Ibukiyama (see [3, p. 159] and [4, Proposition 9],
also cf. [8, Section 3]).

(2) See Theorem 6.6 of [8]. �
Corollary 2.6. One has

M2 = (p − 1)(p2 + 1)

5760
and M∗

2 = (p2 − 1)

5760
.

Proof. This follows from Theorem 2.5 and the basic fact ζ(−1) = −1
12 and ζ(−3) = 1

120 . This is also
obtained in Katsura and Oort [5, Theorem 5.1 and Theorem 5.2] by a method different from above. �
Remark 2.7. Proposition 2.1 is generalized to the moduli spaces of PEL-type in [9], with modification
due to the failure of the Hasse principle.

3. Endomorphism rings

In this section we treat the endomorphism rings of supersingular abelian surfaces.

3.1. Basic setting

For any abelian variety A over k, the a-number a(A) of A is defined by

a(A) := dimk Hom(αp, A).

Here αp is the kernel of the Frobenius morphism F : Ga → Ga on the additive group. Denote by D M
the category of Dieudonné modules over k. If M is the (covariant) Dieudonné module of A, then

a(A) = a(M) := dimk M/(F , V )M.

Let B p,∞ denote the quaternion algebra over Q which is ramified exactly at {p,∞}. Let D be the
division quaternion algebra over Qp and O D be the maximal order. Let W = W (k) be the ring of
Witt vectors over k, B(k) := Frac(W (k)) the fraction field, and σ the Frobenius map on W (k). We also
write Qp2 and Zp2 for B(Fp2 ) and W (Fp2 ), respectively.

Let A be an abelian variety (over any field). The endomorphism ring End(A) is an order of the
semi-simple algebra End(A) ⊗ Q. Determining End(A) is equivalent to determining the semi-simple
algebra End(A)⊗Q and all local orders End(A)⊗Z� . Suppose that A is a supersingular abelian variety
over k. We know that
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• End(A) ⊗ Q = Mg(B p,∞), and
• End(A) ⊗ Z� = M2g(Z�) for all primes � �= p.

Therefore, it is sufficient to determine the local endomorphism ring End(A)⊗Zp = EndD M(M), which
is an order of the simple algebra Mg(D).

3.2. The surface case

Let A be a supersingular abelian surface over k. There is a superspecial abelian surface A1 and an
isogeny ϕ : A1 → A of degree p. Let M1 and M be the covariant Dieudonné modules of A1 and A,
respectively. One regards M1 as a submodule of M through the injective map ϕ∗ . Let N be the
Dieudonné submodule in M1 ⊗ Qp such that V N = M1. If a(M) = 1, then M1 = (F , V )M and hence it
is determined by M . If a(M) = 2, or equivalently M is superspecial, then there are p2 + 1 superspecial
submodules M1 ⊂ M such that dimk M/M1 = 1.

Now we fix a rank 4 superspecial Dieudonné module N (and hence fix M1) and consider the
space X of Dieudonné submodules M with M1 ⊂ M ⊂ N and dimk N/M = 1. It is clear that X is
isomorphic to the projective line P1 over k. Let Ñ ⊂ N be the W (Fp2 )-submodule defined by F 2 = −p.

This gives an Fp2 -structure on P1. It is easy to show the following.

Lemma 3.1. Let ξ ∈ P1(k) be the point corresponding to a Dieudonné module M in X . Then M is superspecial
if and only if ξ ∈ P1(Fp2 ).

Choose a W -basis e1, e2, e3, e4 for N such that

F e1 = e2, F e2 = −pe1, F e3 = e4, F e4 = −pe3.

Note that this is a W (Fp2 )-basis for Ñ . Write ξ = [a : b] ∈ P1(k). The corresponding Dieudonné mod-
ule M is given by

M = Span〈pe1, pe3, e2, e4, v〉,
where v = a′e1 + b′e3 and a′,b′ ∈ W are any liftings of a,b respectively.

Case (i): ξ ∈ P1(Fp2 )ξ ∈ P1(Fp2 )ξ ∈ P1(Fp2 ). In this case M is superspecial. We have EndD M(M) = M2(O D).

Assume that ξ /∈ P1(Fp2 ). In this case a(M) = 1. If φ ∈ EndD M(M), then φ ∈ EndD M(N). Therefore,

EndD M(M) = {
φ ∈ EndD M(N); φ(M) ⊂ M

}
.

We have EndD M(N) = EndD M(Ñ) = M2(O D). The induced map

π : EndD M(Ñ) → EndD M(Ñ/V Ñ) (3.1)

is surjective. Put

V 0 := Ñ/V Ñ = Fp2 e1 ⊕ Fp2 e3 and B0 := EndFp2 (V 0).

We have

EndD M(Ñ/V Ñ) = EndFp2 (V 0) = M2(Fp2).

Put

B ′
0 := {

T ∈ B0; T (v) ∈ k · v
}
,
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where v = ae1 + be3 ∈ V 0 ⊗Fp2 k. Therefore, EndD M(M) = π−1(B ′
0). Since ξ /∈ P1(Fp2 ), a �= 0. We

write ξ = [1 : b], v = e1 + be3, and we have Fp2 (ξ) = Fp2 (b). Write T = ( a11 a12
a21 a22

) ∈ B0, where aij ∈ Fp2 .
From T (v) ∈ kv , we get the condition

a12b2 + (a11 − a22)b − a21 = 0. (3.2)

Case (ii): Fp2 (ξ)/Fp2Fp2 (ξ)/Fp2Fp2 (ξ)/Fp2 is quadratic. Write ξ = [1 : b]. Suppose b satisfies b2 = αb + β , where α,β ∈
Fp2 . Plugging this in (3.2), we get

a11 − a12 + a12α = 0 and a12β = a21.

This shows

B ′
0 =

{
t1 I + t2

(
0 1
β α

)
; t1, t2 ∈ Fp2

}
� Fp2(ξ), (3.3)

where X2 − αX − β is the minimal polynomial of b.
Case (iii): ξ /∈ P1(Fp2 )ξ /∈ P1(Fp2 )ξ /∈ P1(Fp2 ) and Fp2 (ξ)/Fp2Fp2 (ξ)/Fp2Fp2 (ξ)/Fp2 is not quadratic. In this case a12 = a21 = 0 and a11 = a22. We

have

B ′
0 =

{(
a 0
0 a

)
; a ∈ Fp2

}
.

We conclude

Proposition 3.2. Let A be a supersingular surface over k and M be the associated covariant Dieudonné module.
Suppose that A is represented by a pair (A1, ξ), where A1 is a superspecial abelian surface and ξ ∈ P1

A1
(k). Let

π : M2(O D) → M2(Fp2 ) be the natural projection.

(1) If Fp2 (ξ) = Fp2 , then EndD M(M) = M2(O D).
(2) If [Fp2 (ξ) : Fp2 ] = 2, then

EndD M(M) � {
φ ∈ M2(O D); π(φ) ∈ B ′

0

}
,

where B ′
0 ⊂ M2(Fp2 ) is a subalgebra isomorphic to Fp2 (ξ).

(3) If it is neither in the case (1) nor (2), then

EndD M(M) �
{
φ ∈ M2(O D); π(φ) =

(
a 0
0 a

)
, a ∈ Fp2

}
.

4. Proof of Theorem 1.1

4.1. The automorphism groups

Let x = (A, λ) be a supersingular principally polarized abelian surfaces over k. Let x1 = (A1, λ1) be
an element in Λ∗

2,p such that there is a degree-p isogeny ϕ : (A1, λ1) → (A, λ) of polarized abelian va-

rieties. Write ξ = [a : b] ∈ P1(k) the point corresponding to the isogeny ϕ . We choose an Fp2 -structure

on P1 as in Section 3.2. Let (M1, 〈 , 〉) ⊂ (M, 〈 , 〉) be the covariant Dieudonné modules associated to
ϕ : (A1, λ1) → (A, λ). Let N be the submodule in M1 ⊗ Qp such that V N = M1, and put 〈 , 〉N = p〈 , 〉.
One has an isomorphism (N, 〈 , 〉N ) � (M1, 〈 , 〉) of quasi-polarized Dieudonné modules. Put
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Ux := Gx(Zp) = AutD M
(
M, 〈 , 〉),

Ux1 := Gx1(Zp) = AutD M
(
M1, 〈 , 〉) = AutD M

(
N, 〈 , 〉N

)
.

Choose a W -basis e1, e2, e3, e4 for N such that

F e1 = e2, F e2 = −pe1, F e3 = e4, F e4 = −pe3,

〈e1, e3〉N = −〈e3, e1〉N = 1, 〈e2, e4〉N = −〈e4, e2〉N = p,

and 〈ei, e j〉 = 0 for all remaining i, j. The Dieudonné module M is given by

M = Span〈pe1, pe3, e2, e4, v〉,
where v = a′e1 + b′e3 and a′,b′ ∈ W are any liftings of a,b respectively.

Case (i): ξ ∈ P1(Fp2 )ξ ∈ P1(Fp2 )ξ ∈ P1(Fp2 ). In this case A is superspecial. One has Λx = Λ2 and, by Corollary 2.6,

Mass(Λx) = (p − 1)(p2 + 1)

5760
.

In the remaining of this section, we treat the case ξ /∈ P1(Fp2 ). One has

Ux = {
φ ∈ Ux1; φ(M) = M

}
,

and, by Proposition 2.4 and Corollary 2.6,

Mass(Λx) = Mass(Λx1) · μ(Ux1/Ux) = p2 − 1

5760
[Ux1 : Ux]. (4.1)

Recall that V 0 = Ñ/V Ñ , which is equipped with the non-degenerate alternating pairing 〈 , 〉 : V 0 ×
V 0 → Fp2 induced from 〈 , 〉N . The map (3.1) induces a group homomorphism

π : Ux1 → Aut
(

V 0, 〈 , 〉) = SL2(Fp2).

Proposition 4.1. The map π above is surjective.

The proof is given in Section 4.2.

Lemma 4.2. One has kerπ ⊂ Ux.

Proof. Let φ ∈ kerπ . Write φ(e1) = e1 + f1, φ(e3) = e3 + f3, where f1, f3 ∈ V N . Since M is generated
by V N and v , it suffices to check φ(v) = v + a′ f1 + b′ f3 ∈ M; this is clear. �

Case (ii): [Fp2 (ξ) : Fp2 ] = 2[Fp2 (ξ) : Fp2 ] = 2[Fp2 (ξ) : Fp2 ] = 2. By Proposition 3.2 and Lemma 4.2, we have π : Ux1/Ux � SL2(Fp2 )/

Fp2 (ξ)×1 , where

Fp2(ξ)×1 = Fp2(ξ) ∩ SL2(Fp2)

via the identification (3.3). This shows

[Ux1 : Ux] = (
p4 − p2).
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Case (iii): [Fp2 (ξ) : Fp2 ] � 3[Fp2 (ξ) : Fp2 ] � 3[Fp2 (ξ) : Fp2 ] � 3. By Proposition 3.2 and Lemma 4.2, we have π : Ux1/Ux � SL2(Fp2 )/

{±1}. This shows

[Ux1 : Ux] = ∣∣PSL2(Fp2)
∣∣.

From cases (i)–(iii) above and Eq. (4.1), Theorem 1.1 is proved.

4.2. Proof of Proposition 4.1

Write

O D = W (Fp2)[Π], Π2 = −p, Πa = aσ Π, ∀a ∈ W (Fp2).

The canonical involution is given by (a + bΠ)∗ = aσ − bΠ . With the basis 1,Π , we have the embed-
ding

O D ⊂ M2
(
W (Fp2)

)
, a + bΠ =

(
a −pbσ

b aσ

)
.

Note that this embedding is compatible with the canonical involutions. With respect to the basis
e1, e2, e3, e4, an element φ ∈ EndD M(N) can be written as

T = (Tij) ∈ M2(O D) ⊂ M4
(
W (Fp2)

)
, Tij = aij + bijΠ =

(
aij −pbσ

i j
bi j aσ

i j

)
.

Since φ preserves the pairing 〈 , 〉N , we get the condition in M4(Qp2 ):

T t
(

J
− J

)
T =

(
J

− J

)
, J =

(
1

p

)
. (4.2)

Note that

w0T ∗
ji w−1

0 = T t
ji, w0 =

( −1
1

)
∈ M2(Zp2).

The condition (4.2) becomes(
w0

w0

)
T ∗

(
w−1

0

w−1
0

)(
J

− J

)
T =

(
J

− J

)
. (4.3)

Since (
w−1

0

w−1
0

)(
J

− J

)
=

( −Π

Π

)
= Π

( −1
1

)
∈ M2(O D),

we have

Lemma 4.3. The group Ux1 is the group of O D -linear automorphisms on the standard O D -lattice O D ⊕ O D

which preserve that quaternion hermitian form
( 0 −Π)

.

Π 0
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We also write (4.3) as

Π−1T ∗Π wT = w, w =
( −1

1

)
∈ M2(O D). (4.4)

Notation. For an element T ∈ Mm(D) and n ∈ Z, write T (n) = Πn T Π−n . In particular, if T = (Tij) ∈
Mm(Qp2 ) ⊂ Mm(D), then T (n) = (T σn

i j ). If T ∈ Mm(O D), denote by T ∈ Mm(Fp2 ) the reduction of
T mod Π .

Suppose φ̄ ∈ SL2(Fp2 ) is given. Then we must find an element T ∈ M2(O D) satisfying (4.4). We
show that there is a sequence of elements Tn ∈ M2(O D) for n � 0 satisfying the conditions(

T ∗
n

)(1)
wTn ≡ w

(
mod Πn+1), Tn+1 ≡ Tn

(
mod Πn+1) and T 0 = φ̄. (4.5)

Suppose there is already an element Tn ∈ M2(O D) for some n � 0 that satisfies(
T ∗

n

)(1)
wTn ≡ w

(
mod Πn+1).

Put Tn+1 := Tn + BnΠn+1, where Bn ∈ M2(O D), and put Xn := (T ∗
n )(1)wTn . Suppose Xn ≡ w + CnΠn+1

(mod Πn+2). One computes that

Xn+1 ≡ T ∗(1)
n wTn + T ∗(1)

n w BnΠ
n+1 + (

Πn+1)∗
B∗(1)

n wTn
(
mod Πn+2)

≡ w + CnΠ
n+1 + T ∗(1)

n w BnΠ
n+1 + (−1)n+1 B∗(n)

n wT (n+1)
n Πn+1 (

mod Πn+2).
Therefore, we require an element Bn ∈ M2(O D) satisfying

Cn + T t
n w Bn + (−1)n+1 B t(n+1)

n wT (n+1)
n = 0.

Put Y n := T t
n w Bn . As Y t

n = −B t
n wT n , we need to solve the equation

Cn + Y n + (−1)nY t(n+1)
n = 0,

or equivalently the equation {
Cn + Y n + Y t(1)

n = 0, if n is even,

Cn + Y n − Y t
n = 0, if n is odd.

It is easy to compute that X∗
n = −X (1)

n . From this it follows that

(−1)n+1C∗(n+1)
n Πn+1 ≡ −C (1)

n Πn+1 (
mod Πn+2),

or simply (−1)nC t(n)
n = C (1)

n . This gives the condition{
C t

n = C (1)
n , if n is even,

−C t
n = Cn, if n is odd.

By the following lemma, we prove the existence of {Tn} satisfying (4.5). Therefore, Proposition 4.1
is proved.
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Lemma 4.4. Let C be an element in the matrix algebra Mm(Fp2 ).

(1) If Ct = C (1) , then there is an element Y ∈ Mm(Fp2 ) such that C + Y + Y t(1) = 0.
(2) If −Ct = C, then there is an element Y ∈ Mm(Fp2 ) such that C + Y − Y t = 0.

Proof. The proof is elementary and hence omitted. �
Remark 4.5. Theorem 1.1 also provides another way to look at the supersingular locus S2 of the Siegel
threefold. We used to divide it into two parts: superspecial locus and non-superspecial locus. Consider
the mass function

M : S2 → Q, x �→ Mass(Λx).

Then the function M divides the supersingular locus S2 into 3 locally closed subsets that refine the
previous one. More generally, we can consider the same function M on the supersingular locus S g

of the Siegel modular variety of genus g . The situation definitely becomes much more complicated.
However, it is worth knowing whether the following question has the affirmative answer.

(Question): Is the map M : S g → Q a constructible function?
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