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1. Introduction

It is well known (see [10,12]) that every n-dimensional compactum is weakly homotopy equivalent to an (n + 1)-
dimensional cell-like compactum (i.e. a compactum with the trivial shape). Therefore there exist nonaspherical cell-like
simply connected compacta in all dimensions � 3.

It was heretofore unknown whether such compacta also exist in dimension 2. In this paper we give the affirmative
answer to this question. We show that the space SC(S1) which we constructed in our earlier paper [9], is in fact, a nonas-
pherical cell-like 2-dimensional simply connected Peano continuum (i.e. locally connected continuum).

We also modify our original construction of the space SC(S1) and show that the modified construction gives a space
which has the homotopy type of the classical well-known space [11] from the 1950s, which is a non-simply connected
one-point union of two contractible spaces.

Our main result concerns SC(X) for a non-simply connected path-connected space X . To analyze the singular homology
H2(SC(X)), we use infinitary words and a result from [5]. Although infinitary words have already been introduced in [1],
they may not be a familiar notion. In the special case X = S1, we can prove the result only by using finitary words—we
present it at the end of Section 3. As a general reference for algebraic topology we refer the reader to [14].
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Fig. 1.

2. Preliminaries

We recall the construction of the space SC(S1) from [9]. Consider the so-called Topologist sine curve T and embed T into
the square I

2 = I × I as in Fig. 1, i.e. T is embedded as the union of A1 B1 A2 B2 . . . and AB . Let S1 be the circle and s0
any of its points which we consider as the base point. Consider the topological sum of I

2 and T × S1. The space SC(S1)

is now defined as the quotient space of this sum, obtained by identification of the points (t, s0) with t ∈ T ⊂ I
2, and by

identification of each set {t} × S1 with t , when t ∈ {0} × I. For an arbitrary compactum X , one defines the space SC(X) by
replacing S1 everywhere above by X . For the details of the definition of SC(X) we refer the reader to [9].

The subspace H = ⋃∞
m=1{(x, y): (x−1/m)2 + y2 = 1/m2} of the Euclidean plane R

2 is called the Hawaiian earring. Denote
θ = (0,0) ∈ H and let C(H) be the cone over H. We consider H as the subspace of C(H). A space G is then defined as the
one-point union of two copies of C(H), obtained by identifying two copies of θ at the point θ . This space is a well-known
example of a non-contractible space which is a one-point union of contractible spaces—Griffiths was the first to investigate
this kind of spaces [11, p. 190], where he also acknowledges ideas by James. The fact that G is aspherical was proved in [8].
For further information of this space and its generalizations we refer the reader to [4,6,7].

Throughout the paper, we shall denote the singular homology with integer coefficients by H∗().

3. On nonasphericity of SC(S1) and SC(X)

Obviously, SC(S1) is a cell-like Peano continuum. It was shown in [9] that this space is simply connected. Therefore it
suffices to show that SC(S1) is nonaspherical. In order to prove this it certainly suffices to verify that there exists a non-
trivial 2-dimensional singular cycle in SC(S1). We shall prove this as a corollary of the following general result—Theorem 3.1
below—in the sense of [9]. Our notation for SC(X) is the same as in [9].

Consider Fig. 1: the piecewise linear line A1 B1 A2 B2 . . . with the segment AB in this figure is the PL Topologist sine curve
which was used to build SC(X), i.e. along which we attached the “infinite tube”.

Theorem 3.1. Let X be any path-connected space. Then the following assertions hold:

(1) if X is not simply connected, then H2(SC(X)) is not trivial; and
(2) if π1(X) and π2(X) are trivial, then H2(SC(X)) is also trivial.

Corollary 3.2. The space SC(S1) is a nonaspherical cell-like 2-dimensional simply connected Peano continuum.

For the proof of Theorem 3.1, we recall a notion of the free σ -product of groups and a lemma from [5]. Let (Xi, xi) be
any family of pointed spaces such that Xi ∩ X j = ∅, for i �= j. The underlying set of a pointed space (

∨̃
i∈I (Xi, xi), x∗) is the

union of all Xi ’s obtained by identifying all xi to a point x∗ and the topology is defined by specifying the neighborhood
bases as follows:
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(1) If x ∈ Xi \ {xi}, then the neighborhood base of x in
∨̃

i∈I (Xi, xi) is the one of Xi ;
(2) The point x∗ has a neighborhood base, each element of which is of the form:

∨̃
i∈I\F (Xi, xi) ∨ ∨

j∈F U j , where F is
a finite subset of I and each U j is an open neighborhood of x j in X j for j ∈ F .

Lemma 3.3. (See [5, Theorem A.1].) Let Xi be locally simply-connected and first countable at xn for each i. Then

π1

(∨̃
i∈I

(Xi, xi), x∗
)


××σ
i∈Iπ1(Xi, xi).

In particular I = N,

π1

( ∨̃
n∈N

(Xn, xn), x∗
)


××n∈Nπ1(Xn, xn).

We also need basic descriptions of paths and loops. A loop f : I → X is a continuous map with f (0) = f (1). For a loop f ,
f − denotes the loop defined by: f −(t) = f (1 − t). For loops f , g with the same base point, the concatenation f g is a loop
defined by: f g(t) = f (2t) for 0 � t � 1/2 and f g(t) = g(2t − 1) for 1/2 � t � 1. We denote the homotopy class relative to
end points of a loop f by [ f ] and the homology class of f by [ f ]s .

Proof of Theorem 3.1. Let p be the natural projection of SC(X) onto I
2 which we consider as a subspace of the plane R

2.
Let Y0 = p−1(I × [0,2/3)) and Y1 = p−1(I × (1/3,1]). Then SC(X) = Y0 ∪ Y1 and Y0 ∩ Y1 is open in SC(X).
Consider the following Mayer–Vietoris homology exact sequence:

H2
(
SC(X)

) ∂−→ H1(Y0 ∩ Y1)
h−→ H1(Y0) ⊕ H1(Y1).

We let i0 : Y0 ∩ Y1 → Y0 and i1 : Y0 ∩ Y1 → Y1 be the inclusion maps. Then h = i0∗ − i1∗ .
We now present the proof of property (1) above. We first observe that non-injectivity of h implies that H2(SC(X)) is

non-trivial.
Since p−1(I × {0}), p−1(I × {1/2}), p−1(I × {1}) are strong deformation retracts of Y0, Y0 ∩ Y1 and Y1 respectively, the

homotopy types of Y0, Y1 and Y0 ∩ Y1 have the same homotopy type as p−1(I×{0}). We denote the deformation retractions
by r0 : Y0 → p−1(I × {0}) and r1 : Y1 → p−1(I × {1}).

Choose a point x# ∈ X and form a one-point union (X, x#)∨ (I,0) under the identification of x# and 0. Let Xn ’s be copies
of (X, x#)∨(I,0) and xn ’s copies of 1 ∈ I. Then the space p−1(I×{0}) has the same homotopy type Y = ∨̃

n∈N
(Xn, xn). Hence

(Xn, xn) is locally simply-connected and first countable at xn . Lemma 3.3 implies that π1(Y ) 
××n∈Nπ1(Xn, xn).
Since X is not simply connected, we can find an essential loop f in X whose base point is x#. Observe that p−1({P }) is

a copy of X for each point P on A1 B1 A2 B2 . . . . A point P on A1 B1 A2 B2 . . . is written as P = (x, y) for x, y ∈ I. Define

f P (t) =
{

(3xt, y), for 0 � t � 1/3,

(P , f (3(t − 1/3))), for 1/3 � t � 2/3,

(3(1 − t)x, y), for 2/3 � t � 1.

Then for n � 1, f An is a loop in p−1(I × {0}) ⊆ Y0 with the base point A and f Bn one in p−1(I × {1}) ⊆ Y1 with the base
point B and fCn one in p−1(I×{1/2}) ⊆ Y0 ∩ Y1 with the base point C respectively. Since the images of fCn ’s converge to C ,
we have two loops g0 = fC1 f −

C2
fC3 f −

C4
. . . and g1 = f −

C1
fC2 f −

C3
fC4 . . . in Y0 ∩ Y1. (These infinite concatenations make sense,

since the ranges of loops converge to C .)
Observe that r0∗ ◦ i0∗([ fC1 ]) = [ f A1 ], r1∗ ◦ i1∗([ fC1 ]) = [ f B1 ], r0∗ ◦ i0∗([ fC2n ]) = [ f An+1 ] = r0∗ ◦ i0∗([ fC2n+1 ]) and r1∗ ◦

i1∗([ fC2n−1 ]) = [Bn] = r1∗ ◦ i1∗([ fC2n ]) for each natural number n.
Since we have homotopies from f −

An+1
f An+1 to the constant A and the images of the homotopies converge to A, it follows

that r0∗ ◦ i0∗([g1]) = [ f A1 ] and r0∗ ◦ i0∗([g2]) = [ f −
A1

]. Hence i0∗([g0 g1]) = e. Similarly, r1∗ ◦ i1∗([g0]) = e and r1∗ ◦ i1∗([g1]) = e
and hence r1∗ ◦ i1∗([g0 g1]) = e. Now we have i0∗([g0 g1]s) = 0 and i1∗([g0 g1]s) = 0, i.e. h([g0 g1]s) = 0.

It suffices to show that [g0 g1]s is non-zero, i.e. that [g0 g1] does not belong to the commutator subgroup of π1(Y0 ∩ Y1).
The isomorphism from π1(Y0 ∩ Y1) to

∨̃
n∈N

(Xn, xn) maps [g0 g1] to c1c−1
2 c3c−1

4 . . . c−1
1 c2c−1

3 c4 . . ., where cn is the let-

ter corresponding to [ fCn ]. To show the conclusion by contradiction, suppose that c1c−1
2 c3c−1

4 . . . c−1
1 c2c−1

3 c4 . . . belongs
to the commutator subgroup. Then, by [5, Lemma 4.11] there exist non-empty reduced words U1, . . . , U2m such that
c1c−1

2 c3c−1
4 . . . c−1

1 c2c−1
3 c4 . . . = U1 . . . U2m , where U1, . . . , U2m is of the canonical commutator form, i.e. there are jl , kl such

that { j1, . . . , jm} ∪ {k1, . . . ,km} = {1, . . . ,2m}, U jl = U−1
kl

and the reduced word c1c−1
2 c3c−1

4 . . . c−1
1 c2c−1

3 c4 . . . is obtained by
multiplying the rightmost elements Ui and the leftmost elements of Ui+1 at most (2m − 1)-times. Therefore, W2m is of
infinite length and is well ordered from the left to the right, and hence there exists Ui which is of infinite length and is
well ordered from the right to the left. But this is impossible, because c1c−1

2 c3c−1
4 . . . c−1

1 c2c−1
3 c4 . . . is well ordered from the

left to the right.
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Next we show the second statement (2). Suppose that π1(X) and π2(X) are trivial. Consider another part of the Mayer–
Vietoris sequence:

H2(Y0) ⊕ H2(Y1) −→ H2
(
SC(X)

) ∂−→ H1(Y0 ∩ Y1).

By π1(Y0 ∩Y1) 
××n∈Nπ1(Xn, xn), we conclude that π1(Y0 ∩Y1) is trivial. Hence H1(Y0 ∩Y1) is trivial. Since π1(Y0) is trivial,
it follows that H2(Y0) is isomorphic to π2(Y0). Now we have H2(Y0) = π2(Y0) 
 ∏

n∈N
π2(Xn, xn) = {0} by [7, Theorem 1.1].

Similarly, H2(Y1) = 0 and H2(Y0) ⊕ H2(Y1) = {0}. Now the above exact sequence implies that H2(SC(X)) is trivial. �
We denote the commutator aba−1b−1 by [a,b].

Alternative proof of Corollary 3.2. For the case X = S1 we take cn as the generator of the fundamental group of
XCn , which is isomorphic to Z. As in the preceding proof of Theorem 3.1, it suffices to show that the element c =
c1c−1

2 c3c−1
4 . . . c−1

1 c2c−1
3 c4 . . . does not belong to the commutator subgroup of the group π1(Y0 ∩ Y1). To prove this by

contradiction, suppose that c belongs to the commutator subgroup, i.e. c is a product of m commutators for some m.
Consider natural homomorphism f :π1(Y0 ∩ Y1) → π1(

∨
1�i�2m+2(XCi , Ci)), where XCi = S1. The group

π1(
∨

1�i�2m+2(XCi , Ci)) is a free group with (2m + 2)-generators 〈c1, c2, . . . , c2m+1, c2m+2〉. We have

f (c) = c1c−1
2 . . . c2m+1c−1

2m+2c−1
1 c2 . . . c−1

2m+1c2m+2.

Let d1 = c1,d2 = c−1
2 , d2k−1 = c−1

2k−2c2k−3 . . . c−1
2 c1c2k−1 and d2k = c−1

2k c2k−1.

It is easy to prove by induction the equality c1c−1
2 . . . c2k−1c−1

2k c−1
1 c2 . . . c−1

2k−1c2k = [d1,d2] . . . [d2k−1,d2k].
Since (d1,d2, . . . ,d2m+1,d2m+2) is obtained by a Nielsen transformation [13, p. 5] from (c1, c2, . . . , c2m+1, c2m+2), the set

{d0,d1, . . . ,d2m,d2m+2} generates the free group 〈c1, c2, . . . , c2m+1, c2m+2〉. It follows from this and by [13, Proposition 6.8,
p. 55] (see also [2, p. 137]) that f (c) cannot be presented as a product of less than m + 1 commutators. This contradicts our
assumption. �
4. A PL model for SC(S1) and some related constructions

In this section we demonstrate piecewise linear constructions which are similar to SC(S1), using parameters for oscilla-
tions of a tube. Actually we prove in Theorem 4.3 that they are homotopy equivalent to the point, SC(S1), or G depending
on their parameters.

For 0 � y � 1 and ε � 0 with 0 < y + ε � 1, we construct a space S(y, ε) ⊆ R
3 as follows. Consider the following points

on I
2 for n ∈ N (see Fig. 2), where we regard I

2 ⊆ R
2 as I

2 × {0}:

An =
(

1

2n − 1
,0

)
, Bn =

(
1

2n
,1

)
, Cn =

(
1

2n − 1
, y + ε

2n − 1

)
,

Dn =
(

1

2n
,1 − y − ε

2n

)
, En =

(
1

2n − 1
,

1

2

(
y + ε

2n − 1

))
, Fn =

(
1

2n
,

1

2

(
2 − y − ε

2n

))
.

Let En and F n be points on the plane {(z, x, y) ∈ R
3 | z = 1

2 x} the projections of which to the plane R
2 are points En

and Fn respectively, i.e.,

En =
(

1

2n − 1
,

1

2

(
y + ε

2n − 1

)
,

1

2(2n − 1)

)
, F n =

(
1

2n
,

1

2

(
2 − y − ε

2n

)
,

1

4n

)
.

Let H2n−1 be the convex hull of the points An , Bn , Cn , Dn , En and F n and H2n the convex hull of the points An+1, Bn ,
Cn+1, Dn , F n and En+1.

Let H∞ be the set
⋃∞

n=1 Hn and ∂ H∞ its boundary. Let �A1C1 E1 be an open triangle in ∂ H∞ . Finally, define S(y, ε) to
be the subspace (I2 × {0}) ∪ ∂ H∞ \ �A1C1 E1 of R

3.
The first lemma is easy to prove and we therefore omit its proof.

Lemma 4.1. Let ε, ε′ ∈ (0,1). Then the spaces S(0, ε) and S(0, ε′) are homeomorphic and S(0,1) is homotopy equivalent to S(0, ε).

Lemma 4.2. If 0 < y � 1/2 and 0 < y + ε � 1, the space S(y, ε) is homotopy equivalent to S(1/2,0).

Proof. It is easy to see that S(y, ε) and S(y,0) are homeomorphic and so we only need to prove that S(y,0) for 0 <

y < 1/2 and S(1/2,0) are homotopy equivalent. (Without any loss of generality we may assume that y = 1/3.)
Since there might be some confusion regarding the homotopy equivalence, we explain this first. Let An, Bn, Cn, Dn, . . . be

the notation for S(1/2,0) and C ′
n, D ′

n, . . . be the corresponding notation for S(1/3,0).
If we remove {0}× I from S(1/2,0) and S(1/3,0), then the resulting spaces are homeomorphic, that is, S(1/2,0)\{0}× I

and S(1/3,0) \ {0} × I are homeomorphic. However, this homeomorphism cannot be extended over to S(1/2,0), since the



K. Eda et al. / Topology and its Applications 156 (2009) 515–521 519
Fig. 2. S(1/2,1/4).

homeomorphism maps Cn to C ′
n and Dn to D ′

n , that is, upwards for Cn and downwards for Dn , with respect to the y-
coordinate. Conversely, if we construct a homotopy on S(1/2,0) \ {0} × I or S(1/3,0) \ {0} × I, whose projection to the
y-coordinate only depends on the y-coordinate on the domain, it extends on SC(1/2,0) or SC(1/3,0).

We define ϕ : S(1/2,0) → S(1/3,0) and ψ : S(1/2,0) → S(1/3,0) piecewise linearly as follows:
Let ϕ(x, y,0) = (x, y,0) and ϕ(x, y, z) = (x, y,ϕ2(x, y, z)), for z > 0, where ϕ2(x, y, z) > 0 if and only if z > 0 and there

exists z′ > 0 such that (x, y, z′) ∈ S(1/3,0). Let

ψ1(y) =
{3y/2, for 0 � y � 1/3,

1/2, for 1/3 � y � 2/3,

3y/2 − 1/2, for 2/3 � y � 1,

and ψ(x, y, z) = (ψ0(x, y, z),ψ1(y),ψ2(x, y, z)), where ψ2(x, y,0) = 0 and ψ2(x, y, z) > 0, for z > 0 and ψ0(x, y, z) is de-
fined as we explain using Fig. 3 in the sequel.

Fig. 3 demonstrates how [ 1
2n+1 , 1

2n ] × I of S(1/2,0) and S(1/3,0) are mapped by ϕ and ψ .
First we explain the map ψ . The two shadowed triangles are mapped to Cn+1 or Dn , respectively. Accordingly, the

segments B ′
nC ′

n+1 and D ′
n A′

n+1 are mapped onto BnCn+1 and Dn An+1 respectively. The segments N ′
n Dn and C ′

n+1 M ′
n are

mapped bijectively to Cn+1 Dn .
Next we explain the map ϕψ . The two shadowed triangles are mapped to ϕ(Cn+1) or ϕ(Dn), which are the dotted point.

The two bending segments are mapped onto C ′
n+1 B ′

n or A′
n+1 D ′

n .
Last we explain the map ψϕ . The two shadowed triangles are mapped to Cn+1 or Dn . The two segments having slope

greater than 1 are mapped to Cn+1 Bn or An+1 Dn .
We have a homotopy H(x, y, z, t) on S(1/2,0) \ ({0} × I) such that:

(1) H(x, y, z,0) = (x, y, z) and H(x, y, z,1) = ψϕ(x, y, z);
(2) for the y-coordinate H1(x, y, z, t) of H(x, y, z, t),

H1(x, y, z, t) =
{ y + yt/2, for 0 � y � 1/3,

y + t/2 − yt, for 1/3 � y � 2/3,

y − t/2 + yt/2, for 2/3 � y � 1;
(3) H(∗,∗,∗, t) maps p−1([ 1

n+1 , 1
n ] × I) onto itself for each n.

Then we can extend H(∗,∗,∗, t) to S(1/2,0) uniquely and continuously.
Concerning S(1/3,0) with ϕψ , we have a homotopy with the same properties as above and we now see that S(1/2,0)

and S(1/3,0) are homotopy equivalent. �
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Fig. 3. Parts of S(1/2,0) and S(1/3,0).

Theorem 4.3. Suppose that 0 � y � 1, ε � 0 and 0 < y + ε � 1. Then the following assertions hold:

(1) for every 1/2 < y � 1, the spaces S(1,0) and S(y, ε) are contractible;
(2) for y = 0, the space S(y, ε) is homotopy equivalent to SC(S1); and
(3) for every 0 < y � 1/2, the space S(y, ε) is homotopy equivalent to the space G .

Proof. The statements (1) and (2) are easy to verify. Therefore we shall only prove (3).
By Lemma 4.2, it suffices to show that S(1/2,1/4) is homotopy equivalent to the space G . Let � be the half-open

triangle, defined as � = {(x, y) | x ∈ (0,1], y ∈ (−x/4 + 1/2, x/4 + 1/2)}. Then p−1(I2 \ �) is a strong deformation retract of
S(1/2,1/4).

Identifying {(x, y) | y = a + (1 − a)x/4, x ∈ I} as one point for a ∈ [1/2,1] and {(x, y) | y = a − ax/2, x ∈ I} as one point
for a ∈ [0,1/2], we get the quotient space of p−1(I2 \ �), which is homeomorphic to G . Now the homotopy equivalence
between p−1(I2 \ �) and G is evident and so S(1/2,1/4) is indeed homotopy equivalent to G . �
Remark 4.4. The space SC(S1) is simply connected (see [9]), whereas the space G is not simply connected (see [11]). We
remark that H2(G) = {0}, which contrasts with Theorem 3.2.

To show this, we introduce some notation. Since the cone C(X) over the space X is the quotient space of X × I, obtained
by identifying X × {1} to a point, we let p : X × I → C(X) be the canonical projection.

For a subset A of I, let C A(X) = p(X × A) ⊂ C(X). Let H1 and H2 be copies of the Hawaiian earring H and G =
C(H1)∨ C(H2) be the one point union of C(H1) and C(H2) defined in Section 2. Let X1 be the disjoint union of C(1/3,1](H1)

and C(1/3,1](H2) and X2 be C[0,2/3)(H1) ∨ C[0,2/3)(H2).
Then G = X1 ∪ X2 and we have the following part of the Mayer–Vietoris sequence:

H2(X1) ⊕ H2(X2) −→ H2(G)
∂−→ H1(X1 ∩ X2)

h−→ H1(X1) ⊕ H1(X2).

Obviously, H2(X1) = {0}. Since X2 is homotopy equivalent to H1 ∨ H2 which is a 1-dimensional compact metric space,
H2(X2) is trivial [3]. Hence ∂ is injective. We observe that X1 ∩ X2 is the disjoint union of C(1/3,2/3)(H1) and C(1/3,2/3)(H2).

Since C[1/3,2/3)(H1) and C[1/3,2/3)(H2) are retracts of C[0,2/3)(H1) ∨ C[0,2/3)(H2) and are homotopy equivalent to
C(1/3,2/3)(H1) and C(1/3,2/3)(H2) respectively, it follows that h is injective. Therefore we obtain that H2(G) = {0}.

Problem 4.5. Does there exist a finite-dimensional non-contractible Peano continuum all homotopy groups of which are
trivial?

Remark 4.6. Recently we have strengthened Theorem 3.1(2) by proving the following: If X is simply connected, then
π2(SC(X)) is trivial. We have proved earlier that SC(X) is also simply connected [9]. Therefore by Theorem 3.1(1) the
following statements are equivalent for any path-connected space X :

(1) X is simply connected;
(2) π2(SC(X)) is trivial; and
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(3) H2(SC(X)) is trivial.
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