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1. Introduction 

It is generally held that bovine pancreatic ribo- 
nuclease (RNAase) is an enzyme specific for phospho- 
diester bonds in which the 3’-linked nucleotide is a 
pyrimidine [ 1 ] . Slow hydrolysis of purine nucleotides 
has nevertheless been observed in ribonuclease 
preparations and is sometimes attributed to other 
contaminating nucleases [2]. 

In this communication, we wish to report obser- 
vations made by 31P NMR which indicate that the 

hydrolysis of single stranded poly(A) in the presence 
of ribonuclease proceeds via a 2’,3’-cyclic inter- 
mediate. The kinetics of the reaction suggest that the 

cyclization step is enzymatic, and the hydrolysis is 
completed non-enzymatically by the basic solvent 
(pH 7.90, held constant), yielding a mixture of 2’ and 

3’-AMP. 

2. Experimental 

Phosphorus NMR spectra were obtained at 40.5 
MHz on a Varian Associates XL-loo-1 5 spectrometer 
equipped with a Nicolet Technology Corporation 
(Mountain View, California) Fourier Transform 

Abbreviations: RNAase = Bovine Pancreatic Ribonuclease A, 

poly(A) = polyadenylic acid, poly(U) = polyuridylic acid, 
AMP = adenosine monophosphate, His = histidine, NMR = 

nuclear magnetic resonance 
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accessory and a NIC-1080-16K Computer. Hetero- 
nuclear proton noise decoupling was achieved with a 
Varian gyrocode spin decoupler model V 442 1. 
Sensitivity was increased by using quadrature detec- 
tion and base line stability was improved by usual 
shifting of the RF-pulse phase. Purified poly(A) 

(60 mM in phosphodiester groups) from Sigma and 
RNAase A (60 PM) from Worthington were dissolved 
in 0.1 M Tris-HCl buffer pH 7.90. All spectra were 
recorded at 42°C in 12 mm cells. Chemical shifts are 
expressed from 85% H3P04 as an external standard. 

3. Results 

Figure 1 shows the 31P spectra of poly(A) in the 
presence of RNAase over a period of 7 days. Initially, 
only the single peak of the poly(A) (S = to.76 ppm) 
is seen (fig.1). The small separate peak of the 5’-ter- 
minal residue often seen in the spectra of shorter 
polynucleotide chains is not seen in this spectrum 
because of the relatively high degree of polymeriza- 
tion (mol. wt s 100 000). After approximately 1 h, 
an additional peak with a 6 of -20.39 ppm a posi- 
tion characteristic of the 2’,3’-cyclic AMP [3] begins 
appearing (frg.1). This peak does not appear in control 
samples of poly(A) held under identical conditions 
(pH, concentration, ionic strength and temperature) 
except for the presence of RNAase. Its appearance can 
therefore be attributed to enzymatic catalysis. The 
reaction proceeds, as might be expected, only at tem- 
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Fig.1. Proton decoupled “P spectra illustrating the time course 

of poly(A) hydrolysis in presence of RNAase A at pH 7.90. 

(a) Initial, (b) 32 h (c) 82 h (d) 142 h. Spectra are fully 
proton-noise decoupled. Acquisition time 5.45 s. Digital 

resolution 0.18 Hz. Sensitivity enhancement corresponding to 
0.3 Hz artificial line broadening. 52 Pulses. Inserts on spectrum 

(b) represent the -21.5 to -19 ppm (left) and -1 to + 1.5 ppm 
(right) regions of the spectrum. 

peratures above 35”C, i.e., only on partially unstacked 

poly(A) 141. 
As the concentration of the cyclic intermediate 

increases, heterogeneity appears in the poly(A) peak, 
as well as in the cyclic AMP peak (fig.1) indicating the 
gradual depolymerisation of poly(A) yielding a mix- 
ture of oligonucleotides of different length (from 
0.75-0.59 ppm) and of short oligonucleotides con- 
taining a cyclized residue (from -20.25 to -20.39 ppm). 
The signal attributable to the final product is initially 

broad and complex then becomes narrower as the 
cyclization reaction nears completion. This indicates 

that initially the product is a mixture of mono- , di- 
and perhaps other short ohgonucleotides which 
gradually become digested by repeated interaction with 
the enzyme. 

The cyclization reaction is essentially completed in 
160 h. The final hydrolysis product, a mixture of 
2’- and 3’-nucleotides does not begin appearing until 
150 h (fig.2). The resonances corresponding to 2’-AMP 

and 3’-AMP (fig.2) are readily identified as the basis 
of their chemical shifts and coupling constants patterns 
[3]. This second step of the reaction was not followed 
to completion and is believed to be non-enzymatic. 
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Fig.2. Undecoupled ” P spectra illustrating the time course 
of poly(A) hydrolysis in presence of RNAase A at pH 7.90. 

(a) 50 h of reaction. 520 pulses. See legend of fig.1 for condi- 

tions. (b) 155 h of reaction. 520 pulses. Same conditions as 

above except for 0.5 Hz line broadening for sensitivity enhance- 
ment. Low field doublet 2’-AMP. High field doublet 3’-AMP. 
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4. Discussion 

These results indicate that RNAase is capable of 
carrying out the cyclization but not the hydrolytic 
step of its two-step mechanism on purine polynucleo- 
tides. The structural interpretation of this finding is 
that poly(A), like poly(U), forms a complex at the 

active site of ribonuclease, but in a manner which 
permits alignment of the phosphate with one of the 
active site histidines but not with the other. This 

allows the proton transfer from the 2’-hydroxyl of 
the ribose to histidine 12 required for the formation 

of the pentacovalent intermediate with subsequent 
cyclization [5], but does not permit the second 

proton transfer from a water molecule to His 119 

required for hydrolysis of the cyclic nucleotide. The 
necessary degree of distortion could result from the 
fact that the ribose is attached to Na of the imidazole 

ring in purine nucleotides, but to N, of the pyrimidine 
ring in pyrimidine nucleotides. Thus, even if the fit 
of the pyrimidine moiety of adenine were perfect at 
the pyrimidine-specific (B,) site of RNAase [2], the 
position of the ribose with respect to His 12 and 
His 119 would be different in the two cases. Examina- 
tion of molecular models indicates that the resulting 
change in the position of the phosphate is greater 
relative to His 119 than relative to His 12. The less 

favorable mutual orientation of the 2’-hydroxyl and 

His 12 probably accounts for the extreme slowness 
of the cyclization reaction in the purine case. The 
larger displacement of the phosphate relative to 
His 119 accounts for the failure of the in-line mecha- 

nism to go to completion. 
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