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Abstract

A series all of whose coe�cients have unit modulus is called an Hadamard square root of
unity. We investigate and partially characterize the algebraic Hadamard square roots of unity.
The investigation makes use of a result about the asymptotic behavior of the coe�cients of
algebraic series and the Weyl–von Neumann theorem. c© 2000 Elsevier Science B.V. All rights
reserved.
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1. Introduction

We work with power series over the complex numbers C. The Hadamard product
h=f� g of power series f and g is de�ned by [xn]h= [xn]f · [xn]g. The coe�cient of
xn in a series f is designated by [xn]f. The identity element of the Hadamard product
is the expansion of 1=1− x. If f� �f=1=(1− x), f is said to be an Hadamard square
root of unity. Here, �f is de�ned by [xn] �f= [xn]f, where the bar indicates complex
conjugation. It is evident that f is an Hadamard square root of unity i� all of its
coe�cients have unit modulus. We are interested in identifying which algebraic series
are Hadamard square roots of unity.
As a point of notation, we will �nd it convenient to de�ne e(z)= exp(2�

√−1 · z).
We should be more precise about the term algebraic series. A substantial exposition

of the concept of formal power series is given in [4]. For our purpose a formal series
f=

∑∞
n=0fn · xn is algebraic if there exists a polynomial p(x; y) with coe�cients in

Q such that p(x; f)= 0 is satis�ed identically. This means that in a term-by-term
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expansion of p(x; f) as a formal series the coe�cient of each power of x is zero. For
example, the formal series that are generated by a context-free grammar are algebraic.
We will actually be concerned with the situation in which f can be regarded as a

power series which converges in some neighborhood of x=0 in the complex plane. It
is the case that if y is de�ned by q(x; y)= 0 where the polynomial q has its coe�cients
in an algebraic number �eld, then y is also de�ned by p(x; y)= 0 for some polynomial
p with rational coe�cients.
It should be pointed out that the coe�cients of an algebraic series are indeed alge-

braic numbers, and that the coe�cients satisfy a recurrence. The following is noted in
[2], and see also [7]. If f is an algebraic series there exists a positive integer n0 and
polynomials p0; : : : ; pd with coe�cients in Q such that for all integers n¿n0,

p0(n) · [xn]f + p1(n) · [xn−1]f + · · ·+ pd(n) · [xn−d]f=0:
The question of which algebraic series are Hadamard square roots of unity was raised
in [5] and is connected to an investigation into language acceptance by automata with
complex weights. See [6]. The question of algebraic Hadamard square roots of unity
can also be seen as one topic at the intersection of analysis and formal language theory,
e.g. [4]. It is also in line with the investigation into Hadamard rings which is considered
in detail in [1].

2. On the problem of characterizing Hadamard square roots of unity

Our characterization result, Theorem 2 assumes the following form. If f is an alge-
braic Hadamard square root of unity, there exists a small algebraic series g such that
f= r + g, where r is a rational series of a particularly simple kind. A series g is said
to be small if there exists some u ¡ 0 such that |[xn]g|=O(nu). Note that the case
g=0 is equivalent to letting u= −∞. Details about the rational series r will be given
in the next section. Our characterization is incomplete because as we sketch in the rest
of this section, it appears to be di�cult to pin down the nature of the small series g.
First we make two elementary observations that will be useful in this section.

Observation 1. Let �; �; � be real and � ¿ 0. Assume that

| exp(√−1( ·�+ �)) + � exp(√−1 · �)|=1:
This means that

|1 + � exp(√−1 · (�− �− �))|=1;
from which we get

�= − 2 cos(�− �− �): (1)

Eq. (1) shows that the modulus � depends on �− �− �.
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Observation 2. Let !n be a sequence of reals indexed by the nonnegative integers.
The series f de�ned by [xn]f= exp(2

√−1 ·!n) is an algebraic series i� the series g
given by [xn]g= − 2 cos(!n) exp(

√−1 ·!n) is algebraic. This follows at once from
1 + exp(2

√−1 ·!n)= 2 cos(!n) exp(
√−1 ·!n):

We now look in detail at the coe�cients of a small series g that can be involved in
an Hadamard square root of unity f. In the simplest case, Theorem 2 dictates that
f= c=(1− �)x + g where we can write �= exp(√−1 · �), and c= exp(√−1 ·�). We
will let [xn]g= �n · exp(

√−1 ·!n), with �n¿0. By Observation 1,
�n= − 2 cos(!n − �− n · �):

Since g is small we must also have either

!n − �− n�= �=2 + �n
or

!n − �− n�=3�=2− �n;
where �n¿0 and �n=O(nu) for u ¡ 0.
In particular, it is clear from the previous paragraph that the series g where �n= �=n

is small, and satis�es |[xnf|= |c · �n+[xn]g|=1 for all n. However, we next show that
g is not algebraic. Assuming that g is algebraic, we will derive a contradiction.
• −g is algebraic.Note [xn](−g)= 2 cos(�=2+2�=n) exp(√−1 · (�+ n�+�=2+�=n)).
• −g − 1=(1 − x) is algebraic. Note [xn](−g − 1=(1 − x))= exp(2 ·√−1 · (� + n� +
�=2 + �=n)).

• De�ne h1 by [xn]h1 = 1=�2n.
• It is evident that h given by

h=
−1
c2

·
(
h1�

(
−g− 1

1− x
))

satis�es [xn]h= e(1=n).
Since h1 is a rational series, h is algebraic by the Jungen–Sch�utzenberger Theorem.

However, Theorem 1, given next, shows that h is not algebraic. Hence, our assumption
that g is algebraic is false. This example shows that it may be di�cult to construct a
small algebraic series g 6= 0 that satis�es Theorem 2.

Note that e(1=n) is the ‘canonical’ primitive nth root of unity in C. Let 
 be the
generating series of these roots, i.e., [xn]
= e(1=n).

Theorem 1. 
 is not algebraic.

Proof. Let an= [xn]
. We assume that 
 is algebraic and derive a contradiction. Recall
from the introduction that if 
 is algebraic, its coe�cients satisfy a recurrence of the
form

p0(n) · an + · · ·+ pd(n) · an−d=0; (2)
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where p0; : : : ; pd are polynomials with rational coe�cients. Let k be the highest degree
of any of the polynomials p0; : : : ; pd. Let b1; : : : ; br be the nonzero coe�cients of the
polynomials pi1 ; : : : ; pir having degree k. Here we take i1¡ · · ·¡ir . With this notation
we can rewrite Eq. (2) as

nk · (b1 · an−i1 + · · ·+ br · an−ir ) + O(nk−1)= 0: (3)

Next, we concentrate on the expression

b1 · an−i1 + · · ·+ br · an−ir
in Eq. (3). Using

1
n− j =

1
n
· (1 + j=n+ (j=n)2 + · · ·);

we can write the expression as

e(1=n) · (b1 · e(i1=n2)(1 + O(1=n3)) + · · ·+ br · e(ir=n2)(1 + O(1=n3))): (4)

We have used the fact that e(ij=n3 + i2j =n
4 + · · ·)= 1+O(1=n3). It is clear from Eq. (4)

that

b1 · an−i1 + · · ·+ br · an−ir = e(1=n) · (b1 · e(i1=n2) + · · ·+ br · e(ir=n2)) + O(1=n3):
(5)

Now,

b1 · e(i1=n2) + + · · ·+ br · e(ir=n2)
can be regarded as the evaluation of the polynomial q= br · xir + · · · + b1 · xi1 at
x= e(1=n2). For n2¿�(ir) (�( · ) is the Euler totient function) we have that this value
cannot be zero. By the Liouville inequality, (see [8] for details) specialized to roots of
unity, and Eq. (5)

|b1 · an−i1 + · · ·+ br · an−ir |¿L−d +O(1=n3);
where L is the LCM of the denominators of the rationals b1; : : : ; br , all taken to lowest
terms, and d is an upper bound on the degree of q. But, since L and d are independent
of n, and dividing Eq. (3) by nk we see that

b1 · an−i1 + · · ·+ br · an−ir +O(1=n)
must be bounded away from 0 for all but �nitely many n which contradicts Eq. (2).

3. Principal result

Theorem 2. If f is an algebraic Hadamard square root of unity; there exists a small
algebraic series g such that f can be written in one of the following ways.
(1) f=p + c=(1− �x) + g; where c and � are unit modulus algebraic numbers and

p is a polynomial. These series are called type 1.
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(2) f=p +
∑m

i=1 ci=(1 − �ix) + g; where p is a polynomial; m ¿ 1; c1; : : : ; cm are
unit modulus algebraic numbers; �1; : : : ; �m are all roots of unity and for all n;

|c1�n1 + · · ·+ cm�nm|=1: (6)

These series are called type 2.

Note that type 2 series can occur. The series expansion f of

1 +
√−1 · x
1− x2

is an example of a type 2 series. Note that

[xn]f=
1√
2
· ((1 +√−1) · 1n + (1−√−1 · (−1)n):

In this case m=2, c1 = (1 +
√−1)=√2, c2 = (1−

√−1)=√2, �1 = 1 and �2 = − 1.
The proof of Theorem 2 depends on three facts. The �rst is taken from Flajolet [3].

Theorem 3. If f is an algebraic series; then asymptotically

[xn]f=
�n · ns
�(s+ 1)

·
(

m∑
i=1
ci · �ni +O(nu)

)
: (7)

• � ¿ 0 is algebraic.
• s ∈ Q− {−1;−2; : : :}.
• u ¡ 0.
• c1; : : : ; cm are algebraic.
• �1; : : : ; �m are algebraic and have unit modulus.

The second fact is an elementary technical result.

Lemma 4. If A(x) is a nonmonomial polynomial; |A(x)| cannot be constant over
|x|=1.

Proof. If A(0)= 0, we can write A(x)= xd ·B(x) such that d is a positive integer, B(x)
is a polynomial and B(0) 6= 0. Since |A(x)|= |xd| · |B(x)| and we require that |x|=1,
we can assume that A(0) 6= 0.
Since A(x) is a nonmonomial and A(0) 6= 0, we can write A(x)= a0 · xk + · · ·+ ak ,

where ak · a0 6= 0, and k ¿ 0. Note that since |x|=1, �x=1=x. This implies
|A(x)|2 = (a0 · xk + · · ·+ ak) · ( �a0 · x−k + · · ·+ �ak):

We can rewrite this as

|A(x)|2 = x−k · (a0 · xk + · · ·+ ak) · ( �a0 + · · ·+ �ak · xk):
Expanding this we get

|A(x)|2 = x−k · (a0 · �ak · x2k + · · ·+ ak · �a0):
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Now, if |A(x)|=C, for |x|=1 where C is a constant, then

a0 · �ak · x2k + · · ·+ ak · �a0 =C2 · xk :

Since both a0 �ak and �a0 · ak are both nonzero, and k ¿ 0, this is clearly impossible since
we have a manifestly nonconstant analytic function that is supposed to be constant on
the unit circle.

The third fact is the key technical result used in the proof of Theorem 2.

Lemma 5. Let F(n)=
∑m

i=1ci · �ni ; where n is a positive integer; c1; : : : ; cm are nonzero
and �1; : : : ; �m have unit modulus. We also assume that m¿1. Unless each �i is a
root of unity; |F(n)| has at least two distinct accumulation points as n→∞.

Proof. Let �i= e(�i), where �i is real. Assume that at least one �i is not a root
of unity. Order �1; : : : ; �m so that {�1; : : : ; �s} is a maximal subset which is linearly
independent over Q. Note that s¿1 since some �i must be irrational. If s ¡ m, then
for s+ 16i6m,

�i= bi;0 +
s∑
k=1
bi; k�k ; (8)

such that bi;0; : : : ; bi; k ∈Q.
If s=m, the following argument becomes slightly simpler, since we can dispense

with Eq. (8), and we leave it to the reader.
We indicate the fractional part of real � by �mod 1. Let d be a positive integer

such that d · bi; k is an integer for s + 16i6m and 06k6s. Let �∈ [0; 1]. We claim
that for any �¿0 there exists n such that for 16k6s,

|(d · n · �k − d · k · �)mod 1|¡ �: (9)

Eq. (9) follows directly from the Weyl–von Neumann Theorem which asserts that for
any (a1; : : : ; as)∈ [0; 1]s, and any � ¿ 0, there exists n such that for 16k6s,

|n · �k mod 1− ak |¡ �:

We obtain Eq. (9) by choosing ak = k · �mod 1, letting �= �=d and appealing to re-
peated application of the triangle inequality.
Using Eq. (8), F(n) can be written as

F(n)=
s∑
j=1
cj · e(n�j) +

m∑
i=s+1

ci · e
(
n ·

(
bi;0 +

s∑
k=1
bi; k�k

))
: (10)

De�ne Adn(z) by

Adn(z)=
s∑
j=1
cj · zdj +

m∑
i=s+1

ci · z
∑s

k=1
dbi; k · k :
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Now, letting z= e(�), appealing to Eq. (9) and comparing Adn(z) with the expression
in Eq. (10), we claim that for any � ¿ 0 there exist in�nitely many n such that

|Adn(z)− F(dn)|¡ �: (11)

To see this, �rst note that since d · bk;0 is an integer in Eq. (10), e(d · n · bk;0)= 1 and
the corresponding factors disappear in going over to Adn(z). Next, for n satisfying Eq.
(9), we have for 16j6s,

zdj = �dnj · exp(O(�));
and for s+ 16i6m,

z
∑s
k=1dbi; k · k = �dnk · exp(O(�)):

The � in Eq. (11) represents the sum of the errors of the form � · (1 − exp(O(�))),
|�|=1, for each of the m terms in Adn(z).
Now, Adn(z) is a Laurent polynomial (some of the exponents may be negative inte-

gers), so we can de�ne Bdn(z) by

Adn(z)= zh ·Bdn(z)
where h is an integer and Bdn(z) is a polynomial. Note that |Adn(z)|= |zh| ·
|Bdn(z)|= |Bdn(z)|. Note that m¿1 means that Bdn(z) is a nonmonomial polynomial,
so by Lemma 4, |Bdn(z)| cannot be constant. That is there must be two distinct val-
ues of z, say z0 and z1 with arguments � and �′ such that |Bdn(z0)| 6= |Bdn(z1)|.
This implies that there are two in�nite sets N and N ′ of positive integers such that
limn→∞ |F(n)|= |Bdn(z0)| for n∈N and limn→∞ |F(n)|= |Bdn(z1)| for n∈N ′.

We proceed to prove Theorem 2.

Proof. We refer to the parameters appearing in Theorem 3. If m=1, then

[xn]f=
�n · ns
�(s+ 1)

· (c · �n +O(nu)):

It is clear that |c · �n+O(nu)|=
(1), so that if �¡1, limn→∞ |[xn]f|=0 and if �¿1,
limn→∞ |[xn]f|=∞. Thus, �=1. It is clear from this that s=0. We can conclude that
for n su�ciently large,

[xn]f= c · �n +O(nu):
This means there exists n0 such that n ¿ n0 implies

[xn]f= [xn]
c

1− �x + [x
n]g;

where g is small. Thus, there is a polynomial of degree at most n0 such that f=p+
1=(1− �x) + g, and clearly g is algebraic. This implies that f is a type 1 series.
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We assume that m ¿ 1. We have, using notation from the proof of Lemma 5,

[xn]f=
�n · ns
�(s+ 1)

· (F(n) + O(nu)):

First we show that each �i must be a root of unity. Assume that at least one �i is not
a root of unity. By Lemma 5, there are at least two accumulation points of |F(n)|. It is
easy to check that if one of them is zero, the only possibility is �=1; s=0; u= −∞.
If both accumulation points are nonzero, it is still clear that �=1 and s=0 by the
argument of the previous paragraph. However, it is impossible that |[xn]f| is a constant
for all n. We conclude that each �i must be a root of unity.
Since the �i are all roots of unity, if |F(n)| 6= 1 (violating Eq. (6)) for some n, it will

assume that value in�nitely often (in fact, ultimately periodically), which contradicts
|[xn]f|=1 for all n. Now the same reasoning used for type 1 shows that these facts
imply f is a type 2 series.

We point out that Theorem 2 holds for some transcendental series f, by dropping
the requirement that g be algebraic. It su�ces that [xn]f have the asymptotic form of
Theorem 3. For example, f with [xn]f=((2n)!=(n!)2)2 is transcendental but satis�es
the required asymptotic form. See [3].

Concluding Remark. It is evident that Theorem 2 is not entirely satisfactory. We have
been unable to produce an algebraic Hadamard square root of unity in which there is a
nonzero small series g. If in fact g is always zero, there is likely a more algebraic, less
‘microscopic’ proof. However, even should that be the case, arguments like Lemma 5
are likely to be useful for looking at the characterization of algebraic series having
in�nitely many unit modulus coe�cients with the rest being zero.
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