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SUMMARY

Pdx1 and Oc1 are co-expressed in multipotent
pancreatic progenitors and regulate the pro-endo-
crine gene Neurog3. Their expression diverges in
later organogenesis, with Oc1 absent from hor-
mone+ cells and Pdx1 maintained in mature b cells.
In a classical genetic test for cooperative functional
interactions, we derived mice with combined Pdx1
and Oc1 heterozygosity. Endocrine development in
double-heterozygous pancreata was normal at em-
bryonic day (E)13.5, but defects in specification and
differentiation were apparent at E15.5, the height of
the second wave of differentiation. Pancreata from
double heterozygotes showed alterations in the
expression of genes crucial for b-cell development
and function, decreased numbers and altered alloca-
tion of Neurog3-expressing endocrine progenitors,
and defective endocrine differentiation. Defects in
islet gene expression and b-cell function persisted
in double heterozygous neonates. These results sug-
gest thatOc1 andPdx1 cooperate prior to their diver-
gence, in pancreatic progenitors, to allow for proper
differentiation and functional maturation of b cells.

INTRODUCTION

Knowledge gained from developmental biology has been in-

strumental in deriving glucose-responsive, insulin-secreting

pancreatic b cells from embryonic stem cells (ESCs) or induced

pluripotent stem cells (iPSCs) to generate a cell-based therapy

for the treatment of diabetes (Bruin et al., 2015; Pagliuca et al.,
This is an open access article under the CC BY-N
2014; Russ et al., 2015). Of particular interest are signaling mol-

ecules and transcriptional regulators that direct the b-cell fate or

generate fully functional b cells. Many elegant single gene inac-

tivation studies have revealed critical roles for specific transcrip-

tion factors in different stages of pancreas development and

endocrine differentiation. However, few studies have analyzed

the functional consequences of combinatorial genetic manipula-

tions of structurally unrelated pancreas transcription factors dur-

ing development (Burlison et al., 2008; Courtney et al., 2013;

Shih et al., 2015), Here, we report on the genetic and functional

cooperativity of the Pdx1 and Oc1 transcription factors and the

requirement for a combined threshold of activity in setting up a

genetic program for endocrine differentiation and b-cell function.

Pancreatic and duodenal homeobox 1 (Pdx1) is required for

pancreas development, endocrine differentiation, and mature

b-cell function in mouse and human (Gao et al., 2014; Jonsson

et al., 1994; Lammert et al., 2001; Offield et al., 1996; Stoffers

et al., 1997b, 1997c, 1998). Pdx1 is initially expressed in the

mouse posterior foregut endoderm at embryonic day (E)8.5,

expanding into the antral stomach, rostral duodenum, and com-

mon bile duct by E11.5 and maintained at high levels in mature b

cells (Guz et al., 1995; Jonsson et al., 1994; Offield et al., 1996;

Wu et al., 1997). In addition, the burst of b-cell proliferation that

occurs just prior to birth requires Pdx1 (Gannon et al., 2008).

Beginning at late gestation and continuing into the early post-

natal period, b cells undergo gene expression changes associ-

ated with functional maturation, including the acquisition of

tightly controlled glucose-stimulated insulin secretion (Artner

et al., 2010; Nishimura et al., 2006; Stolovich-Rain et al., 2015).

In adult mice, Pdx1 regulates b-cell function and survival (Bris-

sova et al., 2002; Dutta et al., 1998; Gauthier et al., 2009; Kulkarni

et al., 2004; Sachdeva et al., 2009; Waeber et al., 1996). The

crucial role for Pdx1 in endocrine-lineage development and

postnatal b-cell function is underscored by the identification of
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diabetes-causing PDX1 mutations in humans (Hani et al., 1999;

Macfarlane et al., 2000; Stoffers et al., 1997a, 1998).

Onecut 1 (Oc1; also known as hepatic nuclear factor 6; Hnf6)

is expressed more broadly in the developing endoderm and

plays roles in the developing liver and pancreas (Jacquemin

et al., 2000, 2003; Samadani et al., 1996; Zhang et al., 2009).

Expression of the endocrine-progenitor transcription factor,

neurogenin 3 (Neurog3), is nearly undetectable in Oc1�/� em-

bryos, which are diabetic at birth, with a near complete loss of

all pancreatic endocrine cell lineages (Jacquemin et al., 2000).

Oc1 binds to an upstream enhancer from the Neurog3 gene

(Jacquemin et al., 2000), suggesting that Neurog3 is a direct

transcriptional target of Oc1. Unlike Pdx1, Oc1 is not expressed

in differentiated, hormone-positive endocrine cells, but its

expression persists in ducts and acinar cells into adulthood

(Pekala et al., 2014; Prévot et al., 2012; Rausa et al., 1997; Zhang

et al., 2009). Overexpression of Oc1 in the developing pancreas

results in an increase in Neurog3-positive cells (Wilding Crawford

et al., 2008). However, its downregulation in the endocrine line-

age is essential: maintained Oc1 expression prevents b-cell

maturation, most likely by directly inhibiting expression of the

b-cell transcription factor,MafA (Yamamoto et al., 2013), and re-

sults in diabetes (Gannon et al., 2000; Tweedie et al., 2006).

Pdx1 and Oc1 are coexpressed in multipotent pancreatic

progenitors (MPCs) in the early pancreatic bud and later in the

undifferentiated, bipotential duct/endocrine cell pool located

within the ‘‘trunk’’ domain of the pancreatic epithelium. Pdx1

and Oc1 each activate Neurog3 expression and our in vitro evi-

dence suggests that a physical interaction between these two

factors involving the Pdx1 C terminus promotes endocrine spec-

ification. Pdx1 occupies an evolutionarily conserved Neurog3

enhancer at E13.5 and, in reporter assays, Pdx1 transactivation

via this enhancer was significantly enhanced by Oc1. Mice

homozygous for a Pdx1 allele with a premature C-terminal trun-

cation (Pdx1DC/DC) display a global reduction in endocrine line-

ages and decreased numbers of Neurog3+ progenitors at

E13.5 (Oliver-Krasinski et al., 2009).

We hypothesized that the Pdx1-Oc1 interaction is critical at

multi- or bipotent stages to promote the specification of

pancreatic endocrine progenitors by regulating Neurog3 and

other developmentally important genes. To assess the signifi-

cance of the Pdx1-Oc1 interaction in vivo, we generated ani-

mals globally heterozygous for either or both genes. To date,

no developmental phenotype for either single heterozygous an-

imal has been reported. At E13.5, double heterozygotes

showed normal numbers of glucagon+ and Neurog3+ cells,

suggesting that the first wave of endocrine differentiation is un-

affected. By E15.5 at the height of the secondary wave of dif-

ferentiation, the numbers of Neurog3+ endocrine progenitors

and insulin+ and glucagon+ cells were reduced. Whole tran-

scriptome analysis at E15.5 revealed a dramatic and unique

impact of Pdx1-Oc1 heterozygosity on the endocrine compart-

ment. Later stages of endocrine differentiation and function,

well after the normal downregulation of Oc1 in the endocrine

lineage, were also defective in double heterozygotes. Thus,

Pdx1 and Oc1 cooperate to promote endocrine specification

and subsequent functional maturation of b-cells, most likely

by establishing a state of competency in progenitors earlier in
2638 Cell Reports 15, 2637–2650, June 21, 2016
development that allows for later steps in endocrine differenti-

ation to be realized.

RESULTS

Combined Pdx1 and Oc1 Heterozygosity Has a Broad
Effect on the Transcriptional Network Regulating
Endocrine Development
To determine the effect of combined global heterozygosity for

Pdx1 and Oc1 on pancreas development, we analyzed the

transcriptome of pancreata from control (WT), Pdx1lacZ/+

(which carry one null allele of Pdx1 containing a lacZ cassette;

Offield et al., 1996), Oc1+/�, and Pdx1lacZ/+;Oc1+/� (hereafter:

double heterozygous, DH) animals using RNA-sequencing

(RNA-seq; see Supplemental Information). We performed our

analysis at E15.5 since all pancreatic lineages are present at

this stage and the greatest number of Neurog3+ cells can be

detected (Gradwohl et al., 2000). A total of 2,331 genes were

differentially expressed in at least one of the three experi-

mental genotypes (Figure 1A; Table S1). Expression of 102

genes was altered in Pdx1lacZ/+ pancreata (Figure 1B).

Oc1+/� pancreata showed the greatest number of gene

expression changes, with more than 2,000 genes affected. In

contrast to Pdx1 single-heterozygotes (SH), b-cell genes

such as Ins1, Ins2, and Iapp were increased in Oc1+/� SH,

consistent with a role for Oc1 in suppressing b-cell differentia-

tion (Tweedie et al., 2006).

The transcriptome of Pdx1-Oc1 double heterozygotes

showed a pattern of gene dysregulation distinct from either SH

transcriptome. Of the 257 genes affected in DH, 153 genes

were specifically altered in DH compared to WT (Figure 1B),

including key transcriptional regulators MafA, MafB, NeuroD1,

and Nkx6.1, providing strong support for functional cooperation

between these two transcription factors to regulate a distinctive

genetic program. Furthermore, the shift of gene expression pat-

terns of Oc1+/� SH versus DH or Pdx1lacZ/+ SH versus DH (Fig-

ure 1A) suggests the Pdx1-Oc1 interaction acts cooperatively

or antagonistically at the level of broad categories of genes.

To assess systematic changes in expression of genes involved

in canonical signaling pathways, disease and biological function

categories, and molecular networks of genes altered in the three

experimental genotypes, we performed comparison-enrichment

analysis using Ingenuity Pathway Analysis (IPA). The top gene

ontology categories ascribed to genes altered in Oc1+/� or in

Pdx1lacZ/+ SH pancreata were ‘‘cancer’’, ‘‘embryonic develop-

ment’’ and ‘‘cellular development’’, or ‘‘gene expression’’,

respectively (Table S2). The genes altered in DH pancreata

clustered primarily in the ‘‘endocrine system development and

function’’, ‘‘carbohydrate metabolism’’, and ‘‘endocrine system

disorders’’ categories (Figure 1C; Table S2). The ‘‘endocrine sys-

tem development and function’’ category was enriched for

genes associated with ‘‘quantity of endocrine cells’’ and ‘‘quan-

tity of beta and alpha islet cells’’ (Table 1), indicating a possible

impact on endocrine progenitors and endocrine differentiation.

Genes in these categories clustered less strongly in Pdx1lacZ/+

or Oc1+/� SH because the vast majority of genes were specif-

ically altered in the DH data set and not in SH pancreata (Figures

1C and 1D; Table 1).



Figure 1. Combined Heterozygous Reduc-

tion in Pdx1 and Oc1 Gene Dosage Has

a Broad Impact on the Transcriptional

Network of Endocrine Pancreas Progenitors

(A–D) Hierarchical clustering of 2,331 differentially

expressed genes in individual pancreata at E15.5

fromPdx1LacZ/+ (n=4),Oc1+/� (n=3), andPdx1LacZ/+;

OC1+/� mice (n = 5) compared to WT (n = 4) (A);

Venn diagram depicting the number of altered

genes in the Pdx1LacZ/+, Oc1+/�, and Pdx1LacZ/+;

Oc1+/� (B); and endocrine system development and

function gene ontology category in each genotype,

according to negative log of p value from Fisher

exact test. The numbers above each column repre-

sent the number of genes enriched in each category

(C) and the heatmap of endocrine development and

function genes (D). The up- or downregulated genes

with false discovery rate less than 0.1 and fold

change higher than 0.5 versus WT are highlighted

with bold black borders. See also Tables S1 and S2.
The largest effects of DH on transcription were observed in

pancreatic endocrine-hormone expression. Insulin was most

affected in the DH pancreata, being significantly reduced

compared to both WT and SH animals (Figure 1D). mRNA levels

of other islet hormones (Gcg, Iapp, and Sst) were also decreased

in the DH animals by 30%–50% compared to WT or SH pan-

creata, suggesting an overall synergistic action of Pdx1 and

Oc1 on the entire endocrine compartment. Within the gene set

significantly altered in DH pancreata, we also observed an

impressive array of transcription factors crucial for development

of the endocrine pancreas. The decreased expression of MafA,

MafB, Pax4, Pax6, Mnx1, Nkx2.2, and Nkx6.1 suggests that

simultaneous reduction in expression of both Pdx1 and Oc1

acts at multiple levels of endocrine differentiation and not just
Cell
at the level of activation of Neurog3.

Expression of Neurog3 and Pax4 was

decreased inOc1 SH and DH, while neuro-

peptide Y (NPY) was decreased similarly in

the Pdx1 SH and DH compared with WT,

indicating that some genes show sensi-

tivity to reductions in either Pdx1 or Oc1

gene dosage alone.

In DH pancreata, we also observed large

decreases in expression of genes encod-

ing proteins involved in multiple aspects

of glucose-stimulated insulin secretion,

glucose metabolism (Gck and G6pc2),

KATP channel components (Abcc8 and

Kcnj11), vesicle trafficking (Scg5 and

Sytl4), G protein coupled receptors (Glp1r

and Ffar1), and transmembrane proteins

(Klb) (Figure 1D). These findings are likely

related to the decreased number of differ-

entiated endocrine cells in DH at this devel-

opmental age (see below). Although the

majority of changes were associated with

downregulation of gene expression, some
genes were upregulated in all three mutant genotypes, including

vitronectin (Vtn), which is increased in delaminating endocrine-

committed cells (Cirulli et al., 2000) and inhibits insulin pro-

duction and secretion (Kaido et al., 2006), and regenerating

islet-derived 1 (Reg1), which is associated with islet regeneration

(Kobayashi et al., 2000; Terazono et al., 1988).

Embryonic Endocrine Progenitor Specification and
Endocrine Cell Maturation during the Secondary
Transition Are Impaired by Double Pdx1-Oc1

Heterozygosity
The E15.5 RNA-seq data suggested that endocrine lineage

commitment and differentiation were impaired in DH pancreata.

Specifically, expression of Neurog3, the critical endocrine
Reports 15, 2637–2650, June 21, 2016 2639



Table 1. Clustering of Genes in Each Endocrine System Development and Function Gene Ontology Category in Each Experimental

Genotype

Endocrine System Development and Function Annotationa p Value Molecules

Pdx1LacZ/+

Migration of beta islet cells 4.38 3 10�3 Vtn

Transmembrane potential of beta islet cells 4.38 3 10�3 Kcnj11

Development of enteroendocrine cells 8.74 3 10�3 Atoh1

Replication of beta islet cells 1.31 3 10�2 Reg1a

Formation of parathyroid gland 1.74 3 10�2 Aldh1a7

Glucuronidation of beta-estradiol 1.74 3 10�2 Nr1i2

Differentiation of beta islet cells 2.17 3 10�2 Slc2a2

Oc1+/�

Glucose tolerance 2.34 3 10�4 Abcb4, Atf4, C19orf10, Cbl, cckbr, Cyp2J2, Ffar3,

Fxyd2, Grb10, Hnf4a, Htr2c, htr3a, Hyou1, Iapp, ins,

Irs2, Klf15, Mir-802, Nrob2, Nr1h4, Pcbd1, Rbp1, Serp1,

Srebf1, and Wnt10b

Pdx1LacZ/+; Oc1+/�

Quantity of endocrine cells 9.28 3 10�11 Arx, Gast, Ins, Ins1, Kcnj11, Mafb, Mnx1, Neurog3,

Nkx6-1, Pax4, Pax6, and Pcsk2

Quantity of beta islet cells 2.40 3 10�10 Arx, Ins, Ins1, Kcnj11, Mnx1, Nkx6-1, Pax4, and Pcsk2

Quantity of alpha islet cells 2.79 3 10�6 Arx, Ins, Ins1, and Pcsk2

Entry into cell-cycle progression of endocrine cell lines 2.53 3 10�5 Ins1, Sst, and Tf

Concentration of corticosterone 2.77 3 10�5 Crhr2, Gck, Glp1r, Ins, Klb, Npy, and Scg5

Glucose tolerance 1.43 3 10�4 Abcc8, Glp1r, Iapp, Ins, Mafa, Pdx1, Sytl4, and Tgfb3

Replication of beta islet cells 3.55 3 10�4 Gast and Reg1a

Differentiation of endocrine cells 1.10 3 10�3 Nkx6-1, Pax4, and Pdx1

Area of islets of Langerhans 1.17 3 10�3 Ins and Ins1

Differentiation of beta islet cells 1.17 3 10�3 Nkx6-1 and Pdx1

Regeneration of islet cells 1.17 3 10�3 Nkx6-1 and Pcsk2

Formation of islet cells 2.42 3 10�3 Pax6 and Pdx1

Quantity of delta islet cells 2.42 3 10�3 Arx and Pcsk2

Synthesis of hormone 2.88 3 10�3 Abcc4, Crhr2, Cyp11a1, Ins, Pax6, and Vip

Proliferation of beta islet cells 3.98 3 10�3 Iapp, Ins, Nkx6-1, and Pax4

Quantity of enteroendocrine cells 6.15 3 10�3 Arx and Pax4

Steroidogenesis of hormone 7.54 3 10�3 Abcc4, Crhr2, Cyp11a1, Ins, and Vip

Size of beta islet cells 8.60 3 10�3 Pcsk2 and Pdx1

Synthesis of corticosterone 8.60 3 10�3 Apoa1 and Cyp11a1

Activation of parathyroid gland 1.09 3 10�2 Casr

Arrest in organogenesis of pancreas 1.09 3 10�2 Pdx1

Binding of hypothalamus 1.09 3 10�2 Pyy
aSee also Figure 1 and Tables S1 and S2.
specification transcription factor, and Pax6, a pan-endocrine-

lineage transcription factor downstreamof Neurog3, were down-

regulated. Pancreas development is asynchronous and multiple

developmental stages can be observed at a single time point

(Guney and Gannon, 2009). To obtain cellular resolution of

gene expression changes, we quantified the number of cells

expressing either Neurog3 or Pax6 at E15.5. DH pancreata had

approximately 50% fewer Neurog3+ endocrine progenitors

thanWT (Figures 2A and 2C). These data support our hypothesis

that combined Pdx1 and Oc1 deficiency leads to reduced endo-

crine lineage specification. Despite a reduction in Neurog3
2640 Cell Reports 15, 2637–2650, June 21, 2016
mRNA expression in Oc1 SH (Figure 1D), the number of Neu-

rog3+ cells in Oc1 SH was not statistically significantly affected

compared to WT (Figure 2C), suggesting a decrease in Neurog3

expression per cell in Oc1 SH. Although the reduction in Pax6+

endocrine precursor cells did not achieve statistical significance

(Figures 2B and 2D), the ratio of Neurog3+ cells to Pax6+ cells at

E15.5 was similar among genotypes (Figure S1), supporting an

overall decrease in the number of specified and committed

endocrine cells. In contrast, at E13.5, Neurog3+ progenitor

numbers were not affected in SH or DH pancreata (Figure S2A).

Pax6+ and glucagon+ cells were also normal at this stage



Figure 2. Reduced Number and Altered Location of Neurog3-Expressing Endocrine Progenitors in DH Mice at E15.5

(A, B, E, and F) WT, Pdx1LacZ/+,Oc1+/�, and DH pancreata were immunolabeled for Neurog3 (A, E, and F) or Pax6 (in red) (B), Pdx1 (green), and E-cadherin (blue).

(C and D) Quantification for Neurog3 (C) and Pax6 (D). The white arrows: delaminated Neurog3+ progenitors and yellow arrowheads: Neurog3+ progenitors within

developing trunk.

(A and B) 203magnification. The scale bar represents 100 mm. (E and F) 403magnification. The scale bar represents 100 mm. p value for all marked comparisons

was < 0.05 by one-way ANOVA with Tukey correction (*p = 0.0019). See also Figure S1.
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(Figures S2B and S2C; too few insulin+ cells were detected to

quantify). Thus, the impact of decreased Pdx1-Oc1 dosage

appears to be restricted to the second wave of endocrine differ-

entiation that gives rise to cells within the mature islets of Lang-

erhans (Guney and Gannon, 2009).

During normal pancreas development, Neurog3 expression

initiates within a subset of bipotential trunk epithelial cells

(Beucher et al., 2012) and becomes elevated in cells destined

to undergo commitment to the endocrine lineage. It is thought

that the Neurog3hi cells give rise to hormone-expressing cells af-

ter delaminating from the ductal epithelium (Villasenor et al.,

2008). Closer examination of DH pancreata at E15.5 revealed

that, in contrast to WT pancreata, fewer Neurog3+ cells could

be found within the pancreatic trunk epithelium. A greater

proportion of the Neurog3+ cells present were instead located

adjacent to the epithelium in DH compared with the other three

genotypes; these extra-truncal Neurog3+ cells seemed to ex-

press high levels of Neurog3 (Figures 2E and 2F, white arrows

compared to yellow arrows).

To characterize the impact of Pdx1-Oc1 cooperativity on the

endocrine compartment during the definitive second wave of

endocrine differentiation, we examined markers of differenti-

ated endocrine lineages at E15.5 including the hormones insu-

lin and glucagon. DH pancreata showed significant decreases

in the numbers of both insulin+ and glucagon+ cells (Figures

3A and 3B). Only DH pancreata showed a reduction in

glucagon+ cell number (Figure 3B), whereas similar decreases

in the number of insulin+ cells were observed in Pdx1 SH and

DH (Figure 3A). While previous studies have shown decreased

b-cell function and impaired glucose homeostasis in Pdx1 SH

postweaning, here, we show that defects in the b-cell lineage

exist in Pdx1 SH during embryonic development. Defective

b-cell development could contribute to the susceptibility to

mature onset diabetes of the young (MODY) and adult-onset

diabetes observed in mice and humans with heterozygous

Pdx1 mutations (Dutta et al., 1998; Hani et al., 1999; Macfarlane

et al., 2000; Sachdeva et al., 2009; Stoffers et al., 1997c, 1998;

Weng et al., 2001). Taken together, these data reveal a reduc-

tion in the numbers of emerging hormone-expressing cells at

E15.5 in mice with combined reduction in Pdx1 and Oc1

gene dosage.

In light of the transcriptional impact of Pdx1 andOc1 reduction

onmarkers of a and b cell maturation (Figure 1), we assessed the

number of cells expressing the ‘‘large Maf’’ transcription factors,

MafA and MafB.MafB is activated soon after endocrine progen-

itor delamination in both glucagon+ and insulin+ cells and is

downregulated postnatally in insulin+ cells inmice.MafA expres-

sion initiates later, specifically in insulin+ cells, and is maintained

in these cells. Despite measurable decreases in MafA and MafB

transcripts (Figure 1D), we observed no differences in the total

number of MafA+ or MafB+ cells at E15.5 (Figures 3C and 3D).

Normal cell numbers in spite of reduced transcripts suggests

that MafA and MafB expression per cell is decreased. When

we compared the numbers of MafA/B+ cells to the number of

insulin/glucagon-expressing cells, we found a significant in-

crease in the number of Maf+/hormone cells in DH pancreata

(Figure S3). These Maf+ cells may derive from Neurog3+ cells

generated prior to E13.5 that fail to gainmature hormone expres-
2642 Cell Reports 15, 2637–2650, June 21, 2016
sion in a timely fashion. Taken together, these data further es-

tablish that the simultaneous decrease in Pdx1-Oc1 dosage

preferentially affects the endocrine progenitor program during

the second wave of endocrine differentiation.

Impaired Terminal Differentiation and Function of
Hormone+ Cells with Double Pdx1-Oc1 Heterozygosity
To determine whether the developmental defects in DH persist

after birth, we examined early postnatal stages physiologically

and morphologically. Immediately at birth, prior to feeding, there

were no significant differences in body weight or blood glucose

levels (Figure S2). However, with the start of feeding at postnatal

day 1 (P1), DH animals failed to increase in body weight

compared to the other genotypes (Figure 4A). At P1, DH pups

exhibited elevated ad lib blood glucose compared to WT and

Oc1+/� animals (Figure 4B). We therefore analyzed whether DH

neonates had reduced a- or b-cell mass, consistent with our ob-

servations of decreased insulin+ and glucagon+ cells at E15.5.

There was a strong trend toward reduced a- and b-cell mass

at P1 in Pdx1 SH and DH, but this was not statistically significant

(Figures 4G and 4H). Islet morphology (Figures 4C–4F) and a:b

cell ratio were unchanged at P1 (Figure 4I). However, there

was a dramatic and significant decrease in total pancreatic insu-

lin protein content in DH when compared with WT or either SH

(Figure 4J). These data suggest reduced insulin production per

b cell and indicate a functional b-cell defect in DH mice that per-

sists after birth in a cell population in which Pdx1 and Oc1 no

longer colocalize.

A postnatal functional defect in DH islets is also supported by

islet gene expression data at P1 (Figure 5). Taqman low density

array (TLDA) analysis revealed that P1 DH islets had undetect-

able levels of insulin and glucagon mRNA; expression of these

hormones was unaffected in islets from SH (Figure 5A). qRT-

PCR using primers spanning the insulin and glucagon transcripts

confirmed the decrease in insulin and glucagon in DH islets at P1

(Figure S5; Table S4). SstmRNA expression was not changed in

any genotype at P1. Expression of several key islet transcription

factor genes that regulate either insulin or glucagon expression

was substantially increased specifically in DH, suggesting at-

tempts at compensation. However, expression of Pax4, a critical

b-cell differentiation factor (Sosa-Pineda et al., 1997), was unde-

tectable (Figure 5B), consistent with the reduction in insulin+

cells and the decrease in Pax4 expression in DH at E15.5 de-

tected by RNA-seq. Similarly, expression of genes involved in

glucose sensing and hormone-granule exocytosis was also

increased (Figure 5C). The bone morphogenetic protein (BMP)

inhibitor Sostdc1 was increased in DH P1 islets (Figure 5C),

possibly contributing to the impaired islet function (Henley

et al., 2012), as autocrine BMP activity was shown to be impor-

tant for glucose-stimulated insulin secretion (Goulley et al.,

2007).

We also observed increased expression of Ctgf, a b-cell-

derived growth factor that is critical for embryonic b-cell prolifer-

ation and capable of inducing proliferation of embryonic a- and

b-cells (Crawford et al., 2009; Guney et al., 2011; Riley et al.,

2015) (Figure 5C). The dramatically increased Ctgf expression

in DH suggested increased a- and/or b-cell proliferation as a

mechanism for restoring a- and b-cell mass by birth. Indeed,



Figure 3. Defective Differentiation of DH Hormone-Expressing Cells at E15.5

(A–D) WT, Pdx1LacZ/+, Oc1+/�, and DH pancreata were immunolabeled for insulin (A), glucagon (B), MafA (C), or MafB (D) in red, E-Cadherin (green), and DAPI

(blue). The images are at 203 magnification. The scale bar represents 100 mm. p value for all marked comparisons was < 0.05 by one-way ANOVA with Tukey

correction (*p < 0.05). See also Figure S3.
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Figure 4. Defects in Glucose Homeostasis and Islet Gene Expression in DH Mice at P1

(A and B) Body weight (A) and ad lib feeding blood glucose measurements (B).

(C–F) Insulin (green) and glucagon (red) immunolabeling of pancreatic sections from WT (C), SH (D and E), and double heterozygotes (F).

(G–I) b cell mass (G), a cell mass (H), and a/b cell ratio (I).

(J) Total pancreatic insulin content (yp > 0.10, zp = 0.069, *p < 0.05, and **p < 0.01 by one-way ANOVA with Tukey correction).
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Figure 5. Combined Pdx1 and Oc1 Hetero-

zygosity Leads to Dramatic Alterations in

Neonatal Islet Gene Expression

(A–C) WT, Pdx1LacZ/+, Oc1+/�, and Pdx1LacZ/+;

Oc1+/� islets were analyzed for gene expression of

hormones (A), endocrine-associated transcription

factors (B), and secretory functional genes (C).

p value for marked comparisons was < 0.05 by

Kruskal-Wallace Test followed by two-tailed Stu-

dent’s t test (*, WT versus Pdx1LacZ/+;Oc1+/�; #,WT

versus Pdx1LacZ/+; ,̂ WT versus Oc1+/�; @,

Pdx1LacZ/+ versus Pdx1LacZ/+;Oc1+/�; $, Oc1+/�

versusPdx1LacZ/+;Oc1+/�; and ?,Pdx1LacZ/+ versus

Oc1+/�) (not detected = ND). See also Figure S5.
we detected a significant increase in a- and b-cell proliferation

specifically in DH pancreata at E18.5 (Figure 6).

Restoration of Normal Glucose Homeostasis, but
Persistent Gene Expression Defects, in DH Animals at
Weaning
We next examined the DH phenotype at weaning when b cells

become functionally fully mature (Nishimura et al., 2006; Stolo-

vich-Rain et al., 2015). At this time point, DH animals had normal

body weight (data not shown) and normal fasting blood glucose

(Figure S6A). Ad lib blood glucose levels were elevated in Pdx1

SH (Figure S6B), consistent with the adult phenotype in the liter-

ature (Ahlgren et al., 1998; Brissova et al., 2002; Dutta et al.,

1998; Johnson et al., 2003). DH animals showed no statistically

significant difference in ad lib feeding blood glucose levels (Fig-

ure S6B). When challenged with glucose during an intraperito-

neal glucose tolerance test at 3 weeks of age, DH animals

were not glucose intolerant (Figure S6C).

Since the physiological phenotype of DH animals appeared to

resolve by weaning, we examined islet gene expression at

4weeks of age. Although expression of insulin could be detected

in DH islets at this age, it was still significantly reduced compared

with all other genotypes (Figure 7A). At this time point, expres-

sion of Sst was also reduced in DH islets. Expression levels of

islet transcription factors that were elevated in DH at P1 were

normalized at 4 weeks of age, with the exception ofMafA, which
Cell R
remained significantly decreased (Fig-

ure 7B). Expression of genes involved in

glucose sensing and insulin secretion

was also restored to normal levels in DH

islets at 4 weeks (Figure 7C). Ctgf expres-

sion remained slightly elevated, while

Sostdc1 levels were normal (Figure 7C).

Expression of the remaining genes that

were abnormal at P1 was normalized by

weaning.

Oc1 is also expressed in liver and previ-

ous studies show that glycogenolysis and

gluconeogenesis are impaired in the

absence of Oc1 in the liver (Jacquemin

et al., 1999, 2000). To determine whether

a liver phenotype of Oc1 SH could be

contributing to the normalization of
glucose tolerance in DH mice by weaning, we examined

glycogen deposition. Indeed, Oc1 SH mice have increased

glycogen deposition in the liver postweaning compared to WT.

Pdx1 SH have reduced hepatic glycogen compared with WT,

likely due to decreased insulin output associated with the known

impairment in b-cell function in these animals. DH mice have

glycogen deposits that more closely resemble WT animals (Fig-

ure S7). Thus, the effects of the two genotypes on the liver

appear to counteract one another, and it is possible that the

‘‘normalization’’ of DH glucose tolerance at weaning reflects

compensation by the postnatal liver Oc1 heterozygous pheno-

type rather than resolution of the endocrine pancreas develop-

mental defect. The persistence of hormone gene expression

defects in 4-week-old DH islets supports this concept.

DISCUSSION

Pdx1 and Oc1 are co-expressed in MPCs very early in pancreas

development and our previous work suggested that these two

factors cooperate to regulate transcription of the endocrine pro-

genitor transcription factor Neurog3. We hypothesized that a

threshold of cooperative Pdx1 and Oc1 activity is required for

realization of the endocrine program from MPCs. Transcriptome

analyses of DH pancreas at E15.5 supported our hypothesis,

revealing a highly compromised islet differentiation program

with reduced expression of several key endocrine lineage
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Figure 6. Increased a- and b-Cell Prolifera-

tion at E18.5 in DH Pancreata

(A and B) Representative images of proliferating b

cells (A; red: Glut2 and green: Ki67) and a cells

(B; red: glucagon and green: Ki67) at E18.5. a-cell

proliferation at E18.5. The arrows point to prolif-

erating hormone+ cells.

(C and D) Quantification of b-cell proliferation (C),

and quantification of a-cell proliferation (D). The

scale bar represents 100 mm (*p < 0.05; ***p <

0.001).
transcription factors, including Neurog3 and Pax6, as well as

multiple genes involved in mature b-cell function. Complemen-

tary morphological and physiological studies point to distinct ef-

fects of combined Pdx1 Oc1 reduction in endocrine progenitor

specification and maturation with long-term effects on gene

expression and function.

Our findings highlight a specific role for combined Pdx1 and

Oc1 activity in establishing the endocrine progenitor program

during the second wave of endocrine differentiation. Decreased

dosage of Pdx1-Oc1 impacted Neurog3+ cell numbers and sub-

sequent endocrine differentiation at E15.5, but not at E13.5.

Since the duration of the Neurog3+ state is short (estimated to

be �12 hr) (Bankaitis et al., 2015), the reduced numbers of Neu-
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rog3+ cells at E15.5 suggest that endo-

crine progenitors are more sensitive to

Pdx1-Oc1 dosage after E13.5. The

normal number of glucagon+ and Pax6+

cells at E13.5, which derive from even

earlier Neurog3+ progenitors (Johansson

et al., 2007), supports this timeline of

events. The relative increase in the pro-

portion of delaminated cells expressing

high Neurog3 levels in DH pancreata sug-

gests that Pdx1 and Oc1 synergize to

regulate the timing of transition from a

Neurog3lo to Neurog3hi cell. The signifi-

cance of duration of the Neurog3lo state

is currently unclear, but may affect subse-

quent steps in endocrine maturation.

The morphologic and transcriptomic

analyses at E15.5 further suggest that

Pdx1-Oc1 reduction leads to defective

maturation of a- and b-cell lineages. This

could occur either directly by decreased

dosage of Pdx1 and Oc1 and/or indirectly

due to decreased expression of matura-

tional and other endocrine cell markers

per cell. The persistence of gene expres-

sion defects and elevated blood glucose

at P1 indicate that the endocrine matura-

tion program is not being completed suc-

cessfully by birth in DH embryos.

Our results suggest that the combined

activity of two structurally unrelated tran-

scription factors within a progenitor-cell
population affects subsequent differentiated cell populations

(a and b cells) in which the two factors are not coexpressed.

Expression of Pdx1 and Oc1 initially overlaps in MPCs and in bi-

potential duct/endocrine progenitors in the pancreatic epithelial

trunk, but they diverge with Oc1 silenced and Pdx1 maintained

almost exclusively in the pro-b cell lineage, as endocrine cells

become specified. It is possible that the cooperative activity of

Pdx1 and Oc1 in progenitors primes the cells for subsequent

steps of the differentiation program. This notion that transcrip-

tion factors can have temporally separated effects on cell

behavior is not novel, as deletion of Hnf4a in the embryonic liver

affects gene expression in differentiated hepatocytes long after

its expression is downregulated (Kyrmizi et al., 2006). Similarly,



Figure 7. Early Reductions in Pdx1 and Oc1

Lead to Persistent Alterations in Islet Gene

Expression at Weaning

(A–C) WT, Pdx1LacZ/+, Oc1+/�, and DH islets were

analyzed for gene expression of hormones (A),

endocrine-associated transcription factors (B),

and secretory functional genes (C) at P28. p value

for marked comparisons were < 0.05 by Kruskal-

Wallace Test followed by two-tailed Student’s

t test (#, WT versus Pdx1LacZ/+; $, Oc1+/� versus

Pdx1LacZ/+;Oc1+/�). See also Figure S6.
the FoxD3 transcription factor, which is expressed in adult,

quiescent b cells is required for b-cell proliferation during preg-

nancy despite being absent from maternal b cells during preg-

nancy (Plank et al., 2011). Our preferred model is that Pdx1

and Oc1 cooperate in multi- or bipotent pancreatic progenitors

to establish a competency state that is realized in later stages

of differentiation. Consistent with the Pdx1-Oc1 interaction

occurring during a critical time sensitive period, inactivation of

oneOc1 allele in Pdx1 heterozygotes later in development, using

a later-acting pancreas-specific Cre driver line, did not impact

endocrine function (unpublished data).

The transcriptome of DH islets at P1 suggests potential mech-

anisms for the partial recovery of insulin-expressing cells by

birth, but also for the persistent defect in b-cell function. The

reduced hormone expression could result in a feedback loop

that upregulates expression of regulatory transcription factors

to promote further endocrine differentiation. Additionally, the

Oc1 target Ctgf is essential for embryonic b-cell proliferation;

increased Ctgf expression in embryonic b cells induces both a-

and b-cell proliferation, resulting in increased a- and b-cell

mass at birth (Guney et al., 2011). The dramatic increase in

Ctgf expression in DH islets likely increased a- and b-cell prolif-

eration, thereby increasing a- and b-cell mass by P1. It is also
Cell R
possible that decreased insulin expres-

sion itself stimulates increased b-cell pro-

liferation during late gestation. Mice with

targeted disruption of both insulin genes

in early development exhibit increased

b-cell proliferation at E18.5, similar to the

DH animals (Duvillié et al., 2002). Reduc-

tion in insulin and glucagon expression

persists at P1, which likely contributes to

impaired glucose homeostasis. In addi-

tion, the increase in Sostdc1 could impair

b-cell function. Sostdc1 is a BMP inhibitor

and autocrine BMP signaling was sug-

gested to enhance insulin secretion and

glucose homeostasis (Goulley et al.,

2007). Indeed, inactivation of Sostdc1 en-

hances glucose-stimulated insulin secre-

tion and glucose homeostasis (Henley

et al., 2012). We were surprised to

observe that glycemic control is restored

in the majority of DH animals by weaning.

Sostdc1 expression was no longer
elevated and most islet transcription factors, including Pax4,

had returned to normal expression levels. However, decreases

in insulin and glucagon expression persisted, now along with

reduced MafA expression. Loss of MafA is associated with

impaired b-cell function in adult mice (Artner et al., 2010; Zhang

et al., 2005). Thus, it is likely that islets from DH animals still have

reduced functionality.

Taken together, our results suggest that Pdx1 and Oc1 coop-

erate within pancreaticMPCs or bipotential trunk cells to promote

endocrine specification and to establish a permissive state that al-

lows for later steps of endocrine differentiation and function.

Together, these two transcription factors initiate a network of

gene expression beyond simple activation of the endocrine pro-

genitor determinant, Neurog3. The concerted action of Oc1 and

Pdx1 is critical for the timely functional maturation of endocrine

cells. Their cooperative role in ESC or iPSC differentiation toward

functionalbcells hasnotbeenexploredandshouldbeconsidered.
EXPERIMENTAL PROCEDURES

Mutant and Transgenic Mice

Pdx1XSLacZ (Pdx1LacZ) animals are described in Offield et al. (1996).Oc1 floxed

mice are described in Zhang et al. (2009). The Pdx1-Cre and Protamine-Cre
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(Prm-Cre) transgenes are described in Hingorani et al. (2003) and O’Gorman

et al. (1997). The Rosa26-EYFP allele is described in Srinivas et al. (2001).

Mice were on a mixed genetic background, were maintained on a 12 hr

light/dark cycle, and provided food and water ad libitum (except where

indicated). All mouse experiments were approved by the Institutional Animal

Care and Use Committee of Vanderbilt University Medical Center. Genotyping

was performed using tail or ear punch DNA and the primer sets listed in

Table S3.

Tissue Dissection, Preparation, and Histology

The morning of the vaginal plug was defined as E0.5. Digestive organs were

fixed for 1–4 hr in 4% paraformaldehyde (PFA) at 4�C, dehydrated, cleared in

Citrisolv (Fisher) or xylenes, and embedded in paraffin. Livers were fixed

24 hr in 4% PFA at 4�C, dehydrated, cleared in xylenes, and embedded in

paraffin. For frozen embedding, tissue was fixed as above and placed in

30% sucrose overnight. Following 30 min in 50/50 FSC22 (frozen section

compound, Leica) and 30% sucrose, frozen tissues were embedded in

100% FSC22 and frozen on dry ice. Paraffin embedded and FSC22

embedded tissues were cut at 5 mm and 7 mm, respectively. Paraffin-

embedded tissues were deparaffinzed in Citrisolv or xylenes and rehydrated;

frozen tissues were allowed to thaw for 30 min and permeabilized in 0.1%

Triton 2 3 15 min in 13 PBS. Detection of MafA, MafB, glucagon, Pax6,

and synaptophysin required antigen retrieval. Neurog3 immunolabeling

required amplification with PerkinElmer tyramide tissue amplification. Anti-

body information is found in Supplemental Information. X-gal staining was

performed as previously described (Wu et al., 1997). Periodic acid Schiff

staining was performed following manufacturer’s protocol (Sigma-Aldrich).

Fluorescent and bright field images were captured using an Olympus BX41

microscope, the Aperio ScanScope microscope and slide scanner, or Nikon

600. Digital images were captured and quantified using MagnaFire software

(Optronics Engineering), ImageScope software of the Aperio software suite

for the insulin, glucagon, MafA, and MafB, or MetaMorph software for the

Neurog3 and Pax6.

b Cell Mass, a/b Cell Area, and a:b Ratio

b cell mass was analyzed as in Riley et al. (2015). For a- or b-cell area, whole

pancreata were serially sectioned at 5 mmand sections every 250 mm immuno-

labeled for insulin and glucagon. At least 1%–2% of the entire pancreas was

imaged. Slides were imaged using MetaMorph or a macro built in Genie

(Aperio System). Proportional insulin/glucagon-positive area was calculated

by adding the insulin-positive and glucagon-positive area of each section

and dividing it by the total pancreas area of each section. a:b cell ratio was

calculated by dividing the number of glucagon-positive cells by the number

of insulin-positive cells. Total endocrine area was calculated by measuring to-

tal area staining positive for synaptophysin as in Zhang et al. (2009).

Quantitative Real-Time PCR and TaqMan Low Density Array

Islet isolation required collagenase digestion of whole pancreas at 37�C and

hand-picking of islets from exocrine tissue. Islets were placed immediately

in 500 ml TRIzol reagent or RNAlater (Ambion), lysed by vortexing or homoge-

nized using a Tissuemiser (Fisher Scientific), and RNA was isolated using the

RNAqueous (Ambion) or RNeasy Micro/Mini Kits (QIAGEN). RNA con-

centration and integrity were assessed using a ND-1000 Spectrophotometer

(NanoDrop) and the 2100 Electrophoresis Bioanalyzer (Agilent) at Vanderbilt

Technologies for Advanced Genomics (VANTAGE) Core. cDNA generated

from neonatal islets required amplification with the SMARTer Pico PCR

cDNA Synthesis Kit (Clontech). cDNA was prepared from 50–350 ng islet or

pancreas RNA using the Superscript III First-Strand Synthesis System (Invitro-

gen). Real-time reactions were carried out in technical duplicates with iQ SYBR

Green Supermix (Bio-Rad) on a CFX Real-Time PCR Detection System (Bio-

Rad) in the Vanderbilt Molecular and Cellular Biology Resource Core. Primers

used for hormone gene expression are listed in Table S3. TLDA required 150–

300 ng cDNA. Genes were analyzed using TaqMan Universal PCR Mastermix

(with UNG, Applied Biosystems) on custom-designed TLDA cards using a

7900HT Fast Real-Time PCR System. Data were analyzed using SDS RQ

Study software (Applied Biosystems, Life Technologies). All samples were

run in triplicate.
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Pancreatic Insulin Content and Glucose Homeostasis

Pancreatic insulin content was measured as described in Zhang et al. (2009).

Intraperitoneal glucose tolerance tests (IPGTT) were performed as in Henley

et al. (2012).

Statistics

Results are expressed as mean + SEM. Statistical significance was calculated

by Student’s t test, one-way ANOVA with Tukey correction, or two-way

ANOVA where applicable. p < 0.05 was considered significant.
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