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Abstract

In these notes we develop a link between the Kadison–Singer problem and questions about certain dy-
namical systems. We conjecture that whether or not a given state has a unique extension is related to certain
dynamical properties of the state. We prove that if any state corresponding to a minimal idempotent point
extends uniquely to the von Neumann algebra of the group, then every state extends uniquely to the von Neu-
mann algebra of the group. We prove that if any state arising in the Kadison–Singer problem has a unique
extension, then the injective envelope of a C*-crossed product algebra associated with the state necessar-
ily contains the full von Neumann algebra of the group. We prove that this latter property holds for states
arising from rare ultrafilters and δ-stable ultrafilters, independent, of the group action and also for states
corresponding to non-recurrent points in the corona of the group.
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Let H be a separable Hilbert space, and let D ⊂ B(H) be a discrete MASA. The Kadison–
Singer problem [10] asks whether or not every pure state on D has a unique extension to a state
on B(H). Without loss of generality, one can assume that the Hilbert space is �2(N), where N
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denotes the natural numbers, with the canonical orthonormal basis, {en}n∈N and that the MASA
is the subalgebra of operators that are diagonal with respect to this basis.

However, since any two discrete MASA’s on any two separable infinite-dimensional Hilbert
spaces are conjugate, one may equally well assume that the Hilbert space is �2(G), where G

is a countable, discrete group, with canonical orthonormal basis {eg}g∈G and that the MASA is
the set of operators that are diagonal with respect to this basis. Thus, D = {Mf : f ∈ �∞(G)},
where Mf denotes the operator of multiplication by the function f . We let 1 denote the identity
of G and let Ug = λ(g) denote the unitary operators given by the left regular representation, so
that Ugeh = egh.

The reason that we prefer this slight change of perspective, is that we are interested in in-
corporating properties of the group action into results on the Kadison–Singer problem. Indeed,
identifying the MASA, D ≡ �∞(G) ≡ C(βG), where βG denotes the Stone–Cech compactifi-
cation of G, then pure states on D correspond to the homomorphisms induced by evaluations at
points in βG.

Moreover, we have that for each g ∈ G, the map g1 → gg1 extends uniquely to a homeomor-
phism, hg :βG → βG and this family of homeomorphisms satisfy, hg1 ◦ hg2 = hg1g2 , that is,
they induce an action of G on the space βG and we set hg(ω) = g · ω.

In this paper we study the extent to which uniqueness or non-uniqueness of extensions of
the pure state induced by a point ω ∈ βG is related to the dynamical properties of the point. In
particular, we will be interested in the orbit G · ω = {g · ω: g ∈ G} of the point.

We will use the fact that the map g → g ·ω is one-to-one, which is a consequence of a theorem
of Veech [16]. To see why this is so, note that this map being one-to-one is equivalent to requiring
that the stabilizer subgroup, Gω = {g ∈ G: g · ω = ω} consist of the identity. When this is the
case, we shall say that ω has trivial stabilizer.

If every point in βG has trivial stabilizer, then G acts freely (and continuously) on βG. Con-
versely, if there exists a compact, Hausdorff space X equipped with a continuous G-action that
is free, then choosing any x ∈ X, the map g → g · x extends to a continuous G-equivariant map
h :βG → X and for any point ω ∈ βG, the stabilizer of ω is contained in the stabilizer of h(ω)

and hence is trivial. Thus, every point in βG has trivial stabilizer if and only if G can act freely
and continuously on some compact Hausdorff space. Veech’s theorem [16] shows that, in fact,
every locally compact group acts freely on a compact, Hausdorff space. Thus, every point in βG

has trivial stabilizer.
We begin by examining properties of any state extension of the pure state given by evaluation

at a point ω. To this end, given Mf ∈ D, we let f ∈ C(βG) denote the corresponding continu-
ous function on βG and let sω :D → C denote the pure state given by evaluation at ω, that is,
sω(f ) = f (ω).

Let s :B(�2(G)) → C be any state extension of sω and let π :B(�2(G)) → B(Hs) and v1 ∈ Hs

be the GNS representation of s, so that s(X) = 〈π(X)v1, v1〉. We set vg = π(Ug)v1, g ∈ G, let
Ls ⊆ Hs denote the closed linear span of the vg’s and let φs :B(�2(G)) → B(Ls) denote the
completely positive map given by φs(X) = PLs

π(X)|Ls
.

Note that for any Mf ∈D we have that

〈
π(Mf )vg, vg

〉 = 〈
π

(
U−1

g Mf Ug

)
v1, v1

〉 = f (g · ω).

Hence, these vectors are reducing for π(D) and orthonormal. Hence, they are an orthonormal
basis for Ls and the map Weg = vg is a Hilbert space isomorphism between Ls and �2(G).
Setting ψs(X) = W ∗φs(X)W we obtain a completely positive map on B(�2(G)).
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Also, we have that

〈
ψs(X)eh, eg

〉 = 〈
π(X)vh, vg

〉 = 〈
π(Ug−1XUh)v1, v1

〉 = s(Ug−1XUh).

This shows that the correspondence s → ψs is one-to-one.
In particular, we have that ψs(Ug) = Ug and that for any Mf ∈D, ψs(Mf ) = πω(Mf ), where

πω :D → D is the *-homomorphism given by

πω(Mf )(g) = f (g · ω).

From these two equations, we see that the restriction of ψs to the C*-algebra generated by D
and the set {Ug: g ∈ G}, is a *-homomorphism, which we will denote by πω × λ, satisfying,

πω × λ

(∑
n

MfnUgn

)
= ψs

(∑
n

MfnUgn

)
=

∑
n

πω(Mfn)Ugn,

for every finite, or norm convergent sum. This algebra is, in fact, *-isomorphic to the reduced
crossed-product C*-algebra, D ×r G as defined in say [14], although we do not need that fact
here, we shall adopt that notation for the algebra.

By Choi’s theory of multiplicative domains [7] of completely positive maps, we have that for
any A1,A2 ∈D ×r G and X ∈ B(�2(G)), we have that

ψs(A1XA2) = πω × λ(A1)ψs(X)πω × λ(A2).

We now characterize the range of this correspondence.

Theorem 1. Let ω ∈ βG. If ψ :B(�2(G)) → B(�2(G)) is any completely positive extension of
πω × λ and we set s(X) = 〈ψ(X)e1, e1〉, then s is a state extension of sω and ψ = ψs . Con-
sequently, the map, s → ψs is a one-to-one, onto affine map between the convex set of state
extensions of sω and the convex set of completely positive extensions of πω × λ.

Proof. It is clear that s is a state extension of sω. Now given any X ∈ B(�2(G)) and g,h ∈ G,
we have that 〈ψ(X)eh, eg〉 = 〈ψ(Ug−1XUh)e1, e1〉 = s(Ug−1XUh) = 〈ψs(X)eh, eg〉 and, thus,
ψ(X) = ψs(X).

Hence, the map ψ → s defines an inverse to the map s → ψs , so that these correspondences
are one-to-one and onto. Finally, it is clear that both of these correspondences preserve convex
combinations. �
Corollary 2. Let ω ∈ βG. Then the following are equivalent:

• sω :D → C has a unique extension to a state on B(�2(G)),
• πω × λ :D ×r G → B(�2(G)) has a unique extension to a completely positive map on

B(�2(G)).

There is, of course, always one distinguished state extension of sω . If we let E0 :B(�2(Z)) →
D be the canonical projection onto the diagonal, then the regular extension of sω is given by

X → sω
(
E0(X)

)
.
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Corresponding to this regular extension is a unique completely positive map, ψω :B(�2(Z)) →
B(�2(Z)) which we also call the regular completely positive extension. We wish to describe this
map in some detail.

Every X ∈ B(�2(G)) has a formal series, X ∼ ∑
g∈G MfgUg where Mfg = E0(XU−1

g ). To
compute the (gi, gj )th entry of ψω(X), we note that

ψω(X)gi ,gj
= 〈

ψω(X)egj
, egi

〉 = 〈
ψω

(
U−1

gi
XUgj

)
e1, e1

〉 = sω
(
E0

(
U−1

gi
XUgj

))
.

But, we have that

U−1
gi

XUgj
∼

∑
g∈G

U−1
gi

MfgUgi
(U

g−1
i ggj

),

and hence,

E0
(
U−1

gi
XUgj

) = U−1
gi

Mf
gig

−1
j

Ugi
.

Thus, ψω(X)gi,gj
= f

gig
−1
j

(gi · ω).

These observations lead to the following result.

Theorem 3. Let ω ∈ βG and let ψω be the regular completely positive extension correspond-
ing to sω . If X ∼ ∑

g∈G MfgUg , then ψω(X) ∼ ∑
g∈G πω(Mfg )Ug . Moreover, sω has a unique

extension to a state on B(�2(G)) if and only if ψω is the unique completely positive map on
B(�2(G)) extending πω × λ :D ×r G → B(�2(G)).

Note that VN(G) is always contained in the range of ψω, since X ∈ VN(G) implies that there
are scalars, ag ∈ C such that X ∼ ∑

g agUg and hence, ψω(X) ∼ ∑
g πω(agI )Ug = ∑

g agUg .
It may seem paradoxical to attempt to make progress on the Kadison–Singer problem by

replacing statements about uniqueness of the extension of a state to statements about uniqueness
of the extension of a completely positive map, but something is gained by making the domain
and range of the map the same space. We make this precise in the following results.

Definition 4. Let ω ∈ βG, then we define the uniqueness set for ω to be the set,

U(ω) = {
X ∈ B

(
�2(G)

)
: s(X) = sω

(
E0(X)

) ∀s
}
,

where s denotes an arbitrary state extension of sω . We also define the uniqueness set for πω to
be the set,

U(πω × λ) = {
X ∈ B

(
�2(G)

)
: ψ(X) = ψω(X) ∀ψ

}
,

where ψ denotes an arbitrary completely positive extension of πω × λ.

Proposition 5. Let ω ∈ βG, then

U(πω × λ) =
⋂

g,h∈G

UgU(ω)Uh.
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Proof. Since every completely positive extension of πω × λ is of the form ψs for some state
extension of sω, we have that X ∈ U(πω), if and only if ψs(X) = ψω(X) for every extension s.
But this is equivalent to s(Ug−1XUh) = 〈ψs(X)eh, eg〉 = 〈ψω(X)eh, eg〉 = s(E0(Ug−1XUh)) for
every g,h ∈ G, which is equivalent to Ug−1XUh ∈ U(ω) for every g,h ∈ G, and the result fol-
lows. �

Of course, if sω has a unique extension, then the sets above are all equal to B(�2(G)), but
if some sω fails to have a unique extension, then it should be easier to show that U(πω × λ) �=
B(�2(G)), than to show that U(ω) �= B(�2(G)).

We now turn our attention to some results that relate uniqueness of extension to injective
envelopes.

Definition 6. We let Aω = πω × λ(D ×r G) and we denote the von Neumann algebra generated
by {Ug: g ∈ G} by VN(G).

Recall that a map φ is called a B-bimodule map for an algebra B if φ(b1xb2) = b1φ(x)b2, for
every b1, b2 ∈ B.

Proposition 7. Let ω ∈ βG. If sω has a unique extension, then every completely positive map,
φ :B(�2(G)) → B(�2(G)) that fixes Aω elementwise, also fixes the range of ψω elementwise and
is a VN(G)-bimodule map.

Proof. If φ does not fix the range, then φ ◦ ψω would be another completely positive map ex-
tending πω. Thus, φ must fix the range of ψω elementwise. But VN(G) is a subset of the range
of ψω and so must be fixed. By Choi’s [7] theory of multiplicative domains this implies that φ is
a VN(G)-bimodule map. �
Remark 8. For many countable groups G, even when G = Z, there exist completely positive
maps, φ :B(�2(G)) → B(�2(G)) that fix C∗(G) elementwise and hence are C∗(G)-bimodule
maps, but whose range does not contain VN(G) and that are not VN(G)-bimodule maps. Exam-
ples of such completely positive maps are constructed in [6]. However, any completely positive
map φ :B(�2(G)) → B(�2(G)) that fixes D ×r G elementwise is necessarily the identity map
on all of B(�2(G)), since D ×r G contains the compact operators. Thus, since C∗(G) ⊆ Aω ⊆
D ×r G, whether or not sω has a unique extension should be related to how small πω(D) can be
made.

This last result can be interpreted in terms of injective envelopes. Recall, that given a uni-
tal C*-subalgebra A ⊆ B(H) and a completely positive idempotent map φ :B(H) → B(H) that
fixes A elementwise and is minimal among all such maps, then the range of φ,R(φ) is com-
pletely isometrically isomorphic to the injective envelope of A, I (A). Such maps are called
minimal A-projections. Thus, in particular, the ranges of any two minimal A-projections are
completely isometrically isomorphic via a map that fixes A elementwise. See [11] for further
details. For this reason the collection of subspaces that are ranges of minimal A-projections
are called the copies of the injective envelope of A. If we let F(A) denote the set of elements
of B(H) that are elementwise fixed by every completely positive map that fixes A, then it is
clear that F(A) is contained in every copy of I (A). In [12] it is shown that F(A) is, in fact, the
intersection of all copies of I (A), but that is not necessary for the following result.
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Corollary 9. Let ω ∈ βG. If sω has a unique extension, then VN(G) ⊆ R(ψω) ⊆ F(Aω).

Thus, if the Kadison–Singer problem has an affirmative answer, then necessarily VN(G) ⊆
I (Aω), and this inclusion is as a subalgebra for every ω. However, we know that, generally,
VN(G) is not a subalgebra of I (C∗(G)).

Problem 10. Let Dg ∈ πω(D) be chosen such that Y ∼ ∑
g∈G DgUg is a bounded operator. Is Y

necessarily in the range of ψω? Can conditions on the orbit of ω be given that guarantee that this
is the case?

2. Dynamics and algebra

In this section we begin to look at how dynamical properties of points and their behavior with
respect to a natural semigroup structure on βG can be related to uniqueness of extension. For
more on this structure see [9], but we recall a few basic definitions.

Given ω ∈ βG we let ρω :βG → βG be the unique continuous function satisfying, ρω(g) =
g ·ω, for all g ∈ G so that ρω(βG) is the closure of the orbit of ω. Since ρω ◦hg(g1) = ρω(gg1) =
gg1 · ω = hg ◦ ρω(g1), we have that ρω ◦ hg = hg ◦ ρω, i.e., the map ρω is equivariant for the
action of G on βG. This map also defines a semigroup structure on βG by setting, α ·ω ≡ ρω(α).
We caution that in spite of the notation, this operation is not abelian even when the underlying
group is abelian (except for finite groups).

However, it is associative and continuous in the left variable and so it gives βG the structure of
a compact right topological semigroup. We refer the reader to [9] for these and other basic facts
about this algebraic structure on βG. One fact that we shall use is that the corona, G∗ = βG \ G

is a two-sided ideal in βG.
We now wish to relate dynamical properties of a point ω, to the structure of Aω and to the

semigroup properties of ω.

Proposition 11. Let ω,α ∈ βG. Then ρω ◦ ρα = ρα·ω, πα ◦ πω = πα·ω and ψα ◦ ψω = ψα·ω.

Proof. We have that ρω ◦ ρα(g) = ρω(hg(α)) = hg ◦ ρω(α) = hg(α · ω) = ρα·ω(g), and hence,
ρω ◦ ρα = ρα·ω.

The second equality comes from the fact that after identifying D = C(βG), then πω(f ) =
f ◦ ρω, and hence, πα ◦ πω(f ) = f ◦ ρω ◦ ρα = f ◦ ρα·ω = πα·ω(f ). The proof of the third
identity is similar. �
Definition 12. A point ω ∈ βG is called idempotent if ω · ω = ω.

Non-zero idempotent points are known to exist [9], since the corona is a compact right contin-
uous semigroup. As we shall see below they play a special role in the Kadison–Singer problem.

Proposition 13. Let ω ∈ βG. Then the following are equivalent:

• ω is idempotent,
• ρω ◦ ρω = ρω,
• πω :D →D is idempotent,
• πω × λ :D ×r G → D ×r G is idempotent,
• ψω is an idempotent completely positive map.
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Theorem 14. Let ω ∈ βG be an idempotent. If sω has a unique state extension, then R(ψω) is
completely isometrically isomorphic to the injective envelope of Aω. Moreover, R(ψω) is the
unique copy of the injective envelope inside B(�2(G)) and ψω is the unique projection onto it.
Thus, the identity map on Aω extends uniquely to an embedding of I (Aω) into B(�2(G)).

Proof. We have seen earlier that for any ω ∈ βG the range of ψω is contained in any copy of
the injective envelope. Thus, when ω is idempotent, since ψω is already a completely positive
projection, its range must be a minimal completely positive projection and its range must be the
unique copy of the injective envelope. �
Conjecture 15. We conjecture that if ω is idempotent, then sω possesses non-unique extensions.
That is, the Kadison–Singer conjecture is false and idempotent points provide counterexam-
ples. In fact, we believe that idempotent points fail to satisfy the condition of Corollary 9,
VN(G) ⊆ F(Aω).

The following result lends some credence to the above conjecture, at least for minimal idem-
potents. An idempotent ω is minimal if it is minimal in any of several different orders ([9,
Definition 1.37] and [4]) and this is shown to be equivalent to the left ideal generated by ω, i.e.,
{α · ω: α ∈ βG} being a minimal left ideal [9, Theorem 2.9]. Moreover, by [9, Theorem 19.23c],
a minimal idempotent is uniformly recurrent (see also [5] where this is proved for the case of N).
Recall that ω uniformly recurrent means [9, Definition 19.1] that for every neighborhood U of ω

we have that the set S = {g ∈ G: g ·ω ∈ U} is syndetic, i.e., there exists a finite set g1, . . . , gm ∈ G

such that g1 · S ∪ g2 · S ∪ · · · ∪ gm · S = G.

Theorem 16. Let G be a countable, abelian, discrete group and let X ∈ VN(G). If there exists a
minimal idempotent ω such that X ∈ U(ω), then X ∈ U(α) for every α ∈ βG.

Thus, if there exists any state sα which fails to have unique extension for some X ∈ VN(G),
then every minimal idempotent fails to have unique extension for that X.

Proof. Since U(ω) is an operator system, X ∈ U(ω) if and only if Re(X) = (X + X∗)/2 and
Im(X) = (X − X∗)/(2i) are both in U(ω). Thus, it will be sufficient to assume that X = X∗.
Moreover, since I ∈ U(ω), it is sufficient to assume also that E(X) = 0. Now by Anderson’s
paving results [1] and [2] (see also [13, Theorem 2.7]), X ∈ U(ω) if and only if for each ε > 0,
there exists A in the ultrafilter corresponding to ω such that −εPA � PAXPA � +εPA where
PA ∈D is the diagonal projection PA = diag(ag) with

ag =
{

1, g ∈ A,

0, g /∈ A.

Let U ⊆ βG be the clopen neighborhood of ω satisfying A = U ∩G, so that under the identifi-
cation of D with C(βG) the projection PA is identified with the characteristic function of U , χU .
We have that S = {g ∈ G: g · ω ∈ U} is syndetic, so let g1, . . . , gm be as in the definition of syn-
detic.

Note that ψω(PA) = πω(PA) = πω(χU ) = diag(bg) where

bg =
{

1, g · ω ∈ U,

0, g · ω /∈ U,
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that is ψω(PA) = PS . Also, since X ∈ VN(G) we have that ψω(PAXPA) =
πω(PA)ψω(X)πω(PA) = PSXPS . Thus, applying ψω to the above inequality, we have that
−εPS � PSXPS � +εPS .

Next notice that conjugating the first inequality by λ(g), we have that λ(g)PAλ(g−1) = PgA

and

λ(g)PAXPAλ
(
g−1) = λ(g)PAλ

(
g−1)λ(g)Xλ

(
g−1)λ(g)PAλ

(
g−1) = PgAXPgA.

Thus, −εPgA � PgAXPgA � +εPgA. Applying the map ψω to this inequality and observing that
ψω(PgA) = PgS , we have that

−εPgiS � PgiSXPgiS � +εPgiS,

for i = 1, . . . ,m.
Since, G = g1S ∪ · · · ∪ gmS, and ε > 0 was arbitrary, this shows that X is pavable in Ander-

son’s sense and so, applying Anderson’s [3] paving results, we have that every pure state on D
has a unique extension to X. �
Conjecture 17. The same result holds for non-abelian groups.

Conjecture 18. Assuming that a minimal idempotent has a unique extension, should imply that
every point has a unique extension. That is, if we fix any minimal idempotent ω, then the Kadison–
Singer conjecture is true if and only if sω has a unique state extension.

If ω is any point in the corona, then ψω annihilates any operator all of whose “diagonals”
are c0. Thus, when ω is idempotent, R(ψω) can contain no operators with any c0 “diagonals” and
so in particular, no compact operator. In this sense, πω(D) is a “small” subset of �∞(G), which
is one of the reasons that we conjecture that these points are potential counterexamples. Thus,
in this case R(ψω) ∩ K = (0), where K denotes the compacts. Since any copy of the injective
envelope of Aω is contained in R(ψω) it also follows that for ω idempotent, I (Aω) ∩ K = (0)

and hence cannot be all of B(�2(G)).
We now consider the opposite case, points for which πω(D) is a “large” subset of �∞(D). We

believe that these points are good candidates for having unique extensions.
The following result characterizes the points for which K ∩ R(ψω) �= (0), at least for many

groups and, in particular, for these points, we shall see that the injective envelope of Aω is all of
B(�2(G)).

Recall that given a dynamical system, a point ω is non-recurrent if there is an open neighbor-
hood U of the point such that g · ω /∈ U for all g �= 1. Also, given a semigroup, an element ω is
right cancellative, if α · ω = β · ω implies that α = β . Portions of the following result can also
be deduced from [9, Theorem 8.11].

Theorem 19. Let ω ∈ βG and assume that G is torsion free. Then the following are equivalent:

(i) ω is non-recurrent,
(ii) K ∩Aω �= (0),

(iii) K ⊆ Aω,
(iv) πω :D → D is onto,
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(v) Aω = D ×r G,
(vi) ρω is one-to-one,
(vii) ω is right cancellative.

Proof. (i) implies (iii). If ω is non-recurrent there is a clopen neighborhood U of ω containing
no other g · ω, g �= 1. Hence, πω(χU) is the rank one projection onto the span of e1.

Since Ug ∈ Aω, we have the matrix units, Egi,gj
= Ugi

πω(χU )U−1
gj

= πω(Ugi
χUU−1

gj
) ∈ Aω

for all gi, gj ∈ G and hence K ⊆ Aω

(ii) implies (i). Suppose Aω contains a nonzero compact K = ∑
πω(Mfg )Ug (formal sum).

Then all πω(Mfg ) are compact. So there is a non-zero πω(Mf ) ∈ K ∩ Aω. Applying a se-
quence pn of polynomials to this, tending to the characteristic functions of some eigenspace
you find a finite rank “diagonal” projection Q = χS in Aω with S a finite set. Choose such a Q

with S = {g1, . . . , gn} of minimal non-zero cardinality. Conjugating Q by Ug , we obtain another
such projection in Aω corresponding to the set g · S and so we may assume that 1 ∈ S. Also, the
product of two such projections is also in Aω and is the finite rank projection corresponding to
S ∩ gS. But since S is of minimal non-zero cardinality, either S ∩ g · S is empty or S ∩ g · S = S.
Hence, for each g ∈ S,g−1 · S = S, and so S is a finite subgroup, but then any non-zero element
of S would be a torsion element. Thus, S = {1}, and we have that E1,1 ∈ Aω.

Hence, there exists f ∈ C(βG), such that E1,1 = πω(Mf ). Now f (ω) = 1 and f (g · ω) = 0
for all g �= 1. Thus, U = {α: |f (α)| > 1/2} is an open set containing ω but no other g · ω and so
ω is non-recurrent.

Clearly, (iii) implies (ii) and so (i), (ii), and (iii) are equivalent.
Also, it is clear that (v) implies (iv) implies (ii). Moreover, since πω is given by composition

with ρω, we have that (iv) and (vi) are equivalent. Since, α · ω = ρω(α), it is also clear that ω is
right cancellative is equivalent to ρω being one-to-one. Thus, (vi) and (vii) are equivalent.

(i) implies (iv). Since ω is non-recurrent there is a neighborhood U1 of ω that contains no
other point on its orbit. Hence, g · U1 is a neighborhood of g · ω containing no other point on the
orbit. Thus, non-recurrent is equivalent to the set {g · ω} being discrete. Now using the fact that
βG is a compact, Hausdorff space and hence normal, and that the set of points is countable, one
can choose neighborhoods, Vg of g · ω such that Vg ∩ Vh is empty for g �= h, i.e., the points are
what is called strongly discrete. To recall the construction, first enumerate the points, ωi = gi ·ω,
then using normality, choose for each i disjoint open sets Ui , Vi such that ωi ∈ Ui and the closure
of {ωj : j �= i} is contained in Vi . Then set W1 = U1, Wi = Ui ∩ V1 ∩ · · · ∩ Vi−1, i � 2.

Thus, using the fact that βG is extremally disconnected, we may choose disjoint clopen
sets Ug , g ∈ G, with g · ω ∈ Ug . Thus, if we let Ag = Ug ∩ G, then πω(χAg ) is the rank one
projection onto the span of eg . Given any f1 ∈ �∞(G) define f2 ∈ �∞(G), by f2(h) = f1(g) if
and only if h ∈ Ag , and when h /∈ ⋃

g∈G Ag set f2(h) = λ where λ ∈ C is any number. Then

f2 ∈ �∞(G) and if f̂2 denotes the continuous extension of f2 to βG, then f̂2(g · ω) = f1(g).
Thus, πω(f2) = f1 and so (iv) holds.

(iv) implies (v). Given any finite sum, B = ∑n
j=1 Mfj

Ugj
, we may pick continuous

functions hj , such that πω(
∑n

j=1 Mhj
Ugj

) = B . Thus, the range of the *-homomorphism,
πω :D ×r G → D ×r G is dense in D ×r G and hence is onto. �
Corollary 20. Let G be a countable torsion free group. If ω1,ω2 ∈ βG are non-recurrent, then
ω1 · ω2 is non-recurrent.
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Corollary 21. Let G be a countable torsion free group and let ω ∈ βG. Then I (Aω) = B(�2(G))

if and only if ω is non-recurrent.

Proof. If ω is non-recurrent, then Aω contains all the compacts and hence any completely posi-
tive map that fixes Aω fixes all the compacts and hence is the identity map. To see this note that
if it fixes every diagonal matrix unit, then it is a Schur product map, which fixes every matrix
unit and so is the identity map.

Conversely, if ω is not non-recurrent, then Aω contains no non-zero compacts and hence
the quotient map to the Calkin algebra is an isometry on Aω. But the injective envelope is an
essential extension of Aω and, hence, any embedding of I (Aω) into B(�2(G)), composed with
the quotient map must also be an isometry on I (Aω)and hence, I (Aω) �= B(�2(G)). �

The above result shows that non-recurrent points all satisfy the condition of Corollary 9 that
is necessary for sω to have a unique extension. This lends credence to the following conjectures.

Conjecture 22. We conjecture that if ω ∈ βG is non-recurrent, then the state sω extends uniquely
to B(�2(G)).

Conjecture 23. Let G be a countable torsion free group. If ω ∈ βG is non-recurrent, then we
conjecture that R(ψω) = B(�2(G)).

Assuming the last conjecture, one can prove that if ω is non-recurrent and sα has a unique
extension, then sα·ω has a unique extension. So these conjectures might shed some light on the
algebraic properties of points with unique extensions.

3. Dynamical properties of ultrafilters

We now examine the dynamical properties of various classes of ultrafilters that have been
studied in relation to the Kadison–Singer problem.

An ultrafilter β on a countable set N is called selective [9] if given any partition of N = ⋃
Pi

into subsets, either Pi is in the ultrafilter for some i or there exists a set B in the ultrafilter,
such that for every i, B ∩ Pi has cardinality at most 1. An ultrafilter is called rare [8] if for
each partition N = ⋃

Pi into finite subsets, there exists a set B in the ultrafilter such that for
every i, B ∩ Pi has cardinality at most 1. An ultrafilter is called δ-stable [8] if for each partition
N = ⋃

Pi , into sets of arbitrary sizes, then either one of the Pi ’s is in the ultrafilter or there exists
a set B in the ultrafilter such that for every i, B ∩ Pi is finite. Note that an ultrafilter is selective
if and only if it is rare and δ-stable.

Finally, a point in a topological space is called a P-point [17] if every Gδ that contains the
point contains an open neighborhood of the point.

Note that if X is a compact, Hausdorff space, x ∈ X is a P-point and f ∈ C(X), then {y ∈ X:
f (y) = f (x)} is a Gδ set and hence contains an open neighborhood of x! Thus, this definition
of P-point is antithetical to the concept of p-point that appears in function theory. Choquet [8,
Proposition 1] proves that for any discrete set N , ω is a δ-stable if and only if ω is a P-point in
the corona βN \ N . For this reason the term δ-stable has fallen into disuse and such ultrafilters
are, generally, called P-points without reference to the topological space.
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Finally, we recall a stronger notion than non-recurrent. A point ω in a dynamical system is
wandering, if there exists a neighborhood, U of ω such that g · U ∩ h · U is empty for any g �= h

in the group.
In an earlier version of this paper, we proved that rare ultrafilters are wandering points in N

and Z and conjectured that they were wandering in every group. Since then, Ken Davidson has
verified this conjecture. We present our proof of the case of N and Davidson’s proof for general
groups below.

Proposition 24. Let ω ∈ βN be rare, then ω is wandering in the corona N
∗.

Proof. Let ω be a rare ultrafilter on N. Consider the following partition of N into finite sets:

N = {1} ∪ {2} ∪ {3,4} ∪ {5,6} ∪ {7,8,9} ∪ {10,11,12} ∪ {13,14,15,16} . . . .

Let

σ = {1} ∪ {3,4} ∪ {7,8,9} ∪ {13,14,15,16} . . .

(half the sets in the partition) and let σj denote the j th subset in this list.
By general properties of ultrafilters, either σ or its complement is in ω. We assume, without

loss of generality, that σ ∈ ω.
Since ω is rare, there exists B ∈ ω such that B ∩ σj has at most one element for all j .
Define γ = σ ∩ B ∈ ω, then |γ ∩ (γ + n)| � 2n ∀n ∈ N which can be seen by looking at

how the σj ’s in σ are spread out.
Thus, if U denotes the clopen set in βN corresponding to γ , then (n+U)∩ (m+U) ⊂ N and

is finite. Thus, the relatively open set U ∩ N∗ is wandering in N∗. �
We now present Davidson’s proof for general groups.

Theorem 25. Let G be a countable, discrete group and let ω ∈ βG be a rare ultrafilter, then ω is
wandering in the corona G∗, and, hence Aω = D ×r G.

Proof. Let e denote the identity of G and choose finite subsets, {e} = G0 ⊆ G1 ⊆ · · · with
Gn = G−1

n and G = ⋃∞
n=0 Gn. Set Pn = Gn · · ·G1 · G0 and let An = Pn\Pn−1, n � 1, and

A0 = {e}. We have that each An is finite, An ∩ Am is empty for n �= m, and G = ⋃∞
n=0 An.

If g ∈ Gk and n > k, we claim that

gAn ⊆ An−1 ∪ An ∪ An+1 = Pn+1/Pn−2.

To see this note that gPn ⊆ Pn+1. If p ∈ Pn and gp ∈ Pn−2, then p = g−1(gp) ∈ Pn−1 and,
hence p /∈ An. Thus, if p ∈ An, then gp /∈ Pn−2, and the claim follows.

Now since ω is rare, we may pick a set U in the ultrafilter ω, such that U ∩ An has at most
one element for all n. Let E = ⋃

An, n even and O = ⋃
An, n odd. Then E ∩ O is empty and

E ∪ O = G. Hence either E is in the ultrafilter, or O is in the ultrafilter.
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If E is in the ultrafilter ω, let V = U ∩ E which is in the ultrafilter ω. If g ∈ Gk , g �= e we
claim that the cardinality of gV ∩ V is at most k/2. Assuming the claim, we see that the clopen
neighborhood V of ω corresponding to V , has the property that,

W = V ∩ G
∗

is an open neighborhood of ω with gW ∩W empty for all g �= e.
To see the claim, write V = {a2m: a2m ∈ A2m, m � 0}, so that x ∈ gV ∩ V if and only if

x = ga2m = a2j . But if 2m > k, then

ga2m ∈ A2m−1 ∪ A2m ∪ A2m+1,

and so j = m, forcing g = e. Thus, ga2m = a2j has no solutions for 2m > k when g �= e.
The proof for the case that O is in the ultrafilter ω, is identical. �

Corollary 26. Let G be a countable discrete group. Assuming the continuum hypothesis, G∗ con-
tains a dense set of wandering points.

Proof. By [8], if we assume the continuum hypothesis, then the rare ultrafilters are dense
in G∗. �

We do not know if it is necessary to assume the continuum hypothesis to conclude that the
wandering points are dense in G∗.

Problem 27. Let ω be an ultrafilter on N, then for every countable, discrete group G and every
labeling, G = {gn: n ∈ N}, we have that ω determines a point in G∗. The above result shows that
when ω is rare then the point obtained in this fashion is wandering for the action of G on G∗.
Conversely, if ω is an ultrafilter on N with this property, then must ω be rare?

By the result of Reid [15], we know that the state given by any rare ultrafilter has a unique
extension to B(�2(G)). This suggests the following conjecture:

Conjecture 28. If ω ∈ G∗ is wandering for the G action on G∗, then the state corresponding to
evaluation at ω extends uniquely to a state on B(�2(G)).

Proposition 29. Let G be a countable, discrete group. Then δ-stable ultrafilters are non-recurrent
in βG.

Proof. Let ω be a δ-stable ultrafilter, we have that {g · ω: g ∈ G} is a distinct set of points.
For each g ∈ G that is not equal to the identity, the complement of {g ·ω} is an open neighbor-

hood of ω. The intersection of these sets is a Gδ containing ω and hence, applying the equivalence
of δ-stable to P-point, contains an open neighborhood of ω. No point on the orbit of ω returns to
this open neighborhood. �

Combining the above result with Theorem 19, we see that δ-stable ultrafilters satisfy the con-
dition of Corollary 9 that is necessary for sω to have a unique extension.



132 V.I. Paulsen / Journal of Functional Analysis 255 (2008) 120–132
References

[1] J. Anderson, Extensions, restrictions and representations of states on C*-algebras, Trans. Amer. Math. Soc. 249
(1979) 303–329.

[2] J. Anderson, Extreme points in sets of linear maps on B(H), J. Funct. Anal. 31 (1979) 195–217.
[3] J. Anderson, A conjecture concerning pure states of B(H) and related theorems, in: Proceedings, 5th International

Conference Operator Algebras, Timisoara and Herculane, Romania, Pitman, New York/London, 1984.
[4] V. Bergelson, Minimal Idempotents and Ergodic Ramsey Theory, in: Topics in Dynamics and Ergodic Theory, in:

London Math. Soc. Lecture Note Ser., vol. 310, Cambridge Univ. Press, Cambridge, 2003, pp. 8–39.
[5] A. Blass, Ultrafilters: Where Topological Dynamics = Algebra = Combinatorics, preprint.
[6] P. Casazza, D. Edidin, D. Kalra, V. Paulsen, Projections and the Kadison–Singer Problem, Matrices and Operators,

in press.
[7] M.D. Choi, A Schwarz inequality for positive linear maps on C*-algebras, Illinois J. Math. 18 (1974) 565–574.
[8] G. Choquet, Deux classes remarquable d’ultrafilters sur N , Bull. Sci. Math. (2) 92 (1968) 143–153.
[9] N. Hindman, D. Strauss, Algebra in the Stone–Cech Compactification, de Gruyter Exp. Math., vol. 27, de Gruyter,

New York, 1998.
[10] R.V. Kadison, I. Singer, Extensions of pure states, Amer. J. Math. 81 (1959) 547–564.
[11] V.I. Paulsen, Completely Bounded Maps and Operator Algebras, Cambridge Stud. Adv. Math., vol. 78, Cambridge

Univ. Press, Cambridge, 2002.
[12] V.I. Paulsen, Injective envelopes and the weak expectation property, preprint.
[13] V.I. Paulsen, M. Raghupathi, Some new equivalences of Anderson’s paving conjectures, preprint.
[14] G. Pedersen, C*-algebras and Their Automorphism Groups, London Math. Soc. Monogr., vol. 14, Academic Press,

London, 1979.
[15] G.A. Reid, On the Calkin representations, Proc. London Math. Soc. (3) 23 (1971) 547–564.
[16] W.A. Veech, Topological dynamics, Bull. Amer. Math. Soc. 83 (1977) 775–830.
[17] R.C. Walker, The Stone–Cech Compactification, Ergebn. Math., vol. 83, Springer-Verlag, Berlin, 1974.


