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An Epinephrine-Dependent Mechanism for the Control of
UV-Induced Pigmentation
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TO THE EDITOR
Tanning results from a coordinated set
of signals that induce skin hyperpig-
mentation in response to exposure to
UV radiation (Park et al., 2008). This is
classically thought to occur through the
actions of proopiomelanocortin-de-
rived peptides and a-melanocyte stimu-
lating hormone (Abe et al., 1969a, b;
Wakamatsu et al., 1997; Thody and
Graham, 1998; Slominski et al., 2000,
2004; Tsatmali et al., 2000; Rousseau
et al., 2007) on the melanocyte mela-
nocortin-1 receptor by increasing in-
tracellular cAMP (Im et al., 1998).
However, as studies in proopiomelano-
cortin-deficient mice have shown that
these mice retain the capacity to
produce eumelanin even in the
absence of a-melanocyte stimulating
hormone or proopiomelanocortin-re-
lated peptides (Smart and Low, 2003;
Slominski et al., 2005), and animals
with a nonfunctional melanocortin-1
receptor are still able to produce
melanin in response to forskolin (Fried-
mann et al., 1990; D’Orazio et al.,
2006), it is likely that alternate cAMP-

dependent pathways can induce
melanogenesis.

One alternate cAMP-dependent path-
way involves the adrenergic receptor.
The adrenergic receptors are pharmaco-
logically divided into two subgroups, a
and b, and both receptor subfamilies
have been implicated in the control of
pigmentation in frog skin (McGuire,
1970; Taylor and Teague, 1976) and
human uveal melanocytes (Hu, 2000;
Hu et al., 2000). Human epidermal
melanocytes express the a1-adrenergic
receptor and b2-adrenergic receptor
(B2AR; Schallreuter et al., 1996; Scar-
paro et al., 2000), and activation of the
B2AR was shown to increase melanin
synthesis (Gillbro et al., 2004) whereas
activation of the a1-adrenergic receptor
had no effect (Schallreuter et al., 1996).
Human melanocytes also increase their
expression of the B2AR in response to
UV irradiation (Yang et al., 2006),
further suggesting a role for the B2AR
in UV-induced hyperpigmentation.

Catecholamines are endogenous li-
gands for the adrenergic receptor and
epinephrine has the greatest affinity for

the B2AR. Indeed, epinephrine has
been shown to increase melanin synth-
esis in human uveal melanocytes (Hu
et al., 2000) and increase intracellular
cAMP in human epidermal melano-
cytes (Gillbro et al., 2004). Epidermal
melanocytes can synthesize the cate-
cholamine norepinephrine but are un-
able to produce epinephrine as they do
not express the enzyme phenylethano-
lamine-N-methyltransferase, which is
necessary for synthesis of epinephrine
(Gillbro et al., 2004). Norepinephrine,
though synthesized by melanocytes,
does not seem to alter melanogenesis
(Schallreuter et al., 1996). However,
keratinocytes possess the capacity to
synthesize epinephrine (Schallreuter
et al., 1992; Pullar et al., 2006). Thus,
we hypothesized the existence of a
paracrine interaction whereby keratino-
cytes secrete epinephrine in response to
UV irradiation, which could then sti-
mulate neighboring b-adrenergic recep-
tors (BARs) on melanocytes to increase
melanin synthesis.

Primary human keratinocytes and
melanocytes were isolated from human
neonatal foreskin and cultured in kerati-
nocyte serum-free media (Cascade Biolo-
gics, Portland, OR) and phorbol-free

Abbreviations: B2AR, b2-adrenergic receptor; BAR, b-adrenergic receptor; PBS, phosphate buffer
solution

784 Journal of Investigative Dermatology (2009), Volume 129

RK Sivamani et al.
Epinephrine Mechanism for Pigmentation

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82269621?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


melanocyte growth media (Cascade Bio-
logics), respectively. Melanocytes were
grown to 70–90% confluence and incu-
bated for 48 hours in five different
treatment groups: 10mM epinephrine (Sig-
ma, St. Louis, MO), 10mM epinephrine
and the nonselective b-adrenergic antago-
nist 10mM timolol (Sigma), 10mM norepi-
nephrine (Sigma), 10mM norepinephrine
and 10mM timolol, and 10mM timolol. The
cells were then collected, resuspended in
1 M NaOH, and vortexed for 15 minutes.
After centrifugation, the supernatant was
collected and its absorbance at 475 nm
was measured and compared against a
standard curve of melanin ranging from 0
to 150mg ml�1. The melanin measure-
ment was then normalized to the cell
count to express the melanin content as
pg per cell. Only viable cells, as deter-
mined by Trypan blue exclusion, were
included in the cell count.

For irradiation studies, the keratino-
cyte culture medium was exchanged for
prewarmed (37 1C) phosphate buffer
solution (PBS), and then the cells were
irradiated with either 15, or 40 mJ cm�2

of UVB by exposing them to a precali-
brated UVB lamp. Culture dishes cov-
ered by aluminum foil served as
controls. The PBS was then collected,
filtered through a 0.2 mm filter, then
spiked with 100ml of 0.1 M HCl to
stabilize any catecholamines and saved
for epinephrine measurement. The
UVB-irradiated keratinocytes were
lysed and sonicated in 0.1 M HCl, and
the post-centrifugation supernatant col-
lected. The epinephrine in the PBS and
the keratinocyte lysates were subse-
quently measured by an enzyme
immunoassay method (Biosource,
Camarillo, CA). Epinephrine in cell
extracts was expressed as pg of epi-
nephrine per mg of protein. In a
subsequent experiment, the PBS over-
lying the UVB-irradiated keratinocytes
was collected, sterile filtered through a
0.2mm filter, and then used to treat
melanocytes for 2 hours. Each treatment
medium was split into two treatment
groups, where one of the treatment
groups was augmented with b-blocker,
timolol (10 mM). Melanin content for
each of the treated melanocyte groups
were determined as described above.
Two different strains of keratinocytes
and melanocytes derived from different

individuals were used and the data were
averaged from each group.

We found that melanocytes in-
creased their synthesis of melanin by
91% when treated with epinephrine.
Interestingly, norepinephrine had no
effect (Figure 1). Moreover, treatment
with the BAR antagonist timolol
abrogated the epinephrine-induced in-
crease in melanin generation.

UVB irradiation of keratinocytes led
to a twofold (15 mJ cm�2 recipients) or
twenty-fold (40 mJ cm�2) increase in the
levels of epinephrine over nonirra-
diated controls (Figure 2a). Epinephrine
levels in the lysate of these cells were
below the level of detection (data not
shown), suggesting that UV irradiation
led to an immediate release of intracel-
lular epinephrine.

When the medium from UVB-irra-
diated (40 mJ cm�2) keratinocytes was
transferred onto cultured melanocytes
and the cells incubated for an addi-
tional 2 hours, there was a 29%
increase in their production of melanin
(Figure 2b). Inclusion of the BAR
antagonist timolol in the medium con-
ditioned by the UVB-exposed cells
completely abrogated this melanogenic
response (Figure 2b). Therefore, these
results suggest that keratinocytes re-
lease epinephrine in response to UVB
irradiation, which then acts in a para-

crine fashion to activate BARs on
melanocytes and consequently stimu-
late melanogenesis.

Our findings support a BAR-mediated
pathway in cutaneous melanogenesis that
is responsive to epinephrine, in accor-
dance with previous findings (Hu et al.,
2000; Gillbro et al., 2004). We also found
that keratinocytes can acutely release
epinephrine in response to UVB irradia-
tion, which is particularly interesting as
epinephrine is an endogenous ligand of
the B2AR, and B2AR activation is a
known potent activator of melanogenesis
(Gillbro et al., 2004). Notably, melano-
cytes are unable to synthesize epinephrine
(Gillbro et al., 2004), which we show as
the necessary catecholamine for BAR-
mediated melanogenesis. It will be inter-
esting to further pursue the interaction of
stress and UV-mediated pigmentation
in vivo, as our work and the work of
others (reviewed in Costin and Hearing,
2007) suggest that these are linked.

The role of the epidermal epinephri-
ne–BAR network continues to be defined
and it serves as a pathway of paracrine
communication between keratinocytes
and melanocytes. We show this to be
especially true for keratinocytes acti-
vated by UVB irradiation. It is possible
that exogenous epinephrine may serve as
a protective mechanism to induce non-
UV-mediated pigmentation as has been
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Figure 1. Epinephrine increases melanin synthesis in melanocytes. Melanocytes were treated with either
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suggested in previous studies (D’Orazio
et al., 2006). Further research will help
more accurately delineate how UV-
induced epinephrine may participate
within the cutaneous neuroendocrine
system as well as the contribution of
the epidermal epinephrine–BAR network
to skin pigmentation.
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A New Paradigm for the Role of Aging in the Development
of Skin Cancer
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TO THE EDITOR
Cancers of the skin are the most
common cancers to afflict Americans
in the United States with over
1,000,000 new cases estimated to
occur in 2008 (ACS, 2008). The primary
environmental factor that influences the
development of skin cancer is exposure
to sunlight, in the ultraviolet B (UVB)
wavelengths. Notably, a dramatic in-
crease in the incidence of skin cancers
is seen with increasing age (ACS, 2008),
as evidenced by the fact that a majority
of skin malignancies are found in
people over the age of 60 years
(Kraemer, 1997; ACS, 2008). However,
the mechanisms underpinning the cor-
relation between age and skin cancer
are not well understood. New ideas on
the link between age and skin cancer
have arisen based on age-related accu-
mulation of stromal senescent cells that
can lead to a tumor-promoting environ-
ment (Krtolica et al., 2001; Krtolica and
Campisi, 2002; Dilley et al., 2003;
Parrinello et al., 2005; Collado et al.,
2007). Combining these recent data
from others with data from our labora-
tory leads us to propose a new para-
digm for the role of aging in the
development of skin cancer involving
the insulin-like growth factor-1 receptor
(IGF-1R) pathway (Kuhn et al., 1999;
Chuang et al., 2005; Heemst et al.,

2005; Kurosu et al., 2005; Samani
et al., 2005; Lewis and Spandau,
2008; Lewis et al., 2008).

The historical explanation for the
correlation between skin cancer and
aging is that UVB-induced skin damage
during childhood and early adoles-
cence initiates mutations in keratino-
cytes (Kraemer, 1997; Whiteman et al.,
2001; Krtolica and Campisi, 2002;
MacKie, 2006; Feng et al., 2007).
Subsequently, these keratinocytes con-
taining mutations acquire a growth
advantage that over many decades
generates enough genetic change to
become carcinogenic. However, can
we presume that time is the sole
contributor to UVB-induced skin can-
cers? It is reasonable to consider that
the physiology of aging also lends a
hand to carcinogenic events. Recent
data from a variety of labs have
demonstrated a modification on the
theory of skin cancer and aging based
on changes in stromal fibroblasts of
aged individuals. There are age-related
increases in the number of senescent
dermal fibroblasts and epidermal kera-
tinocytes in human skin (Dimiri et al.,
1995). In a study involving aging
primates, an age-dependent increase
in markers of senescence in skin fibro-
blasts was observed (Herbig et al.,
2006; Jeyapalan et al., 2007). Given

this age-associated accumulation of
senescent cells, it is reasonable to
propose that cellular senescence may
contribute to age-related cancers by
altering the surrounding tissue into a
neoplasia-promoting environment. The
paradoxical effect of cellular senes-
cence on an organism’s well-being has
been called antagonistic pleiotropy
(Williams, 1957; Krtolica and Campisi,
2002). However, cellular senescence is
a powerful tumor suppressor limiting
cell life span and removing damaged
cells from a proliferative state prevent-
ing formation of clonal tumors (Campisi,
2005; Hornsby, 2007; Rodier et al.,
2007). Conversely, the accumulation of
senescent cells may contribute to aging
and provide a tumor-promoting envir-
onment due to their altered properties
such as stromal matrix reorganization
and/or degradation, secretion of growth
factors, and inflammatory cytokines
(Krtolica and Campisi, 2002; Parinello
et al., 2005). Here we present our data
proposing a new paradigm to explain
non-melanoma skin carcinogenesis that
further substantiates the importance of
stromal interactions in the progression
of carcinogenic events. The stromal
interactions discussed demonstrate that
IGF-1 and the IGF-1R are critical in the
interactions between dermal fibroblast
and epidermal keratinocytes and that
they play an important role in aging and
the response of skin to UVB irradiation.Abbreviations: NMSC, non-melanoma skin cancer; UVB, ultraviolet B
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