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Abstract

The general mixed linear model can be written as y = Xβ + Zu + e. In this paper, we mainly deal with
two problems. Firstly, the problem of predicting a general linear combination of fixed effects and realized
values of random effects in a general mixed linear model is considered and an explicit representation of the
best linear unbiased predictor (BLUP) is derived. In addition, we apply the resulting conclusion to several
special models and offer an alternative to characterization of BLUP. Secondly, we recall the notion of
linear sufficiency and consider it as regards the BLUP problem and characterize it in several different ways.
Further, we study the concepts of linear sufficiency, linear minimal sufficiency and linear completeness, and
give relations among them. Finally, four concluding remarks are given.
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1. Introduction

The three classical small-area models, of Battese, Harter and Fuller [4], Dempster, Rubin and
Tsutakawa [7], and Fay and Herriot [11], are all special cases of the general mixed linear model,
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denoted by

y = Xβ + Zu + e, (1.1)

where y is an n-dimensional vector of observations, X and Z are known n × p and n × q
matrices, respectively, β is a vector of fixed effects, u is a vector of random effects, and e is
a vector of random errors. Assume that E (u) = 0, E (e) = 0, D(u) = σ 2G, D(e) = σ 2R, and
E (ue′) = σ 2K, in which E (•) and D(•) refer to expectation and dispersion matrices, σ 2 (>0) is
unknown. The assumptions are expressible jointly as

E

(
u
e

)
= 0, D

(
u
e

)
= σ 2

(
G K
K′ R

)
.

Defining Σ = ZGZ′
+ZK+K′Z′

+R, it is not difficult to see that D(y) = σ 2Σ . As we know, for
the three small-area models it is customary to consider the problem of predicting some particular
functions which are special cases of the general linear combination of fixed effects and realized
values of random effects, say

f (l, m) = l′β + m′u, (1.2)

for given vectors, l and m, of constants. In the early literature, this problem has been of great
interest to many authors. Among them, Henderson [16] pointed out that the practitioner is usually
concerned with the above problem (that is, of predicting linear functions of β and u jointly)
while the animal breeding research worker is usually concerned with the problem of estimating
some estimable linear function of β. See also Harville [13], Harville and Jeske [14], Prasad and
Rao [24], Robinson [25], and Das et al. [6].

We call f (l, m) predictable if l′β is linearly estimable, that is l ∈ R(X′), where R(•) denotes
the range (column space) of the matrix. A linear predictor f̃ (l, m) = c′y + c0 is said to be
(linearly) unbiased with respect to (w.r.t.) f (l, m) in the sense that E ( f̃ (l, m) − f (l, m)) = 0
holds for all β. Clearly, c′y + c0 is unbiased w.r.t. f (l, m) if and only if c0 = 0 and X′c = l.
Thus, we only need to consider the homogeneous linear unbiased prediction class

C =
{
c′y|X′c = l

}
(1.3)

in the context. For the case of K = 0, Henderson [16] offered the best linear unbiased predictor
(BLUP) for predictable f (l, m) as f̃ (l, m) = l′β̃ + m′GZ′Σ−1(y − Xβ̃) as regards the mean
squared error (MSE) criterion, provided that 6 is nonsingular, where β̃ is any solution to the
generalized least squares (GLS) equations X′Σ−1Xβ̃ = X′Σ−1y. For the case of K = 0 and
Σ > 0, Harville [13] obtained the essentially unique BLUP as f #(l, m) = l′β#

+m′GZ′Σ−1(y−

Xβ#), in which β# is any solution to the equation X′Σ#Xβ#
= X′Σ#y, Σ# is any particular

generalized inverse of Σ satisfying rk
(
X′Σ#X

)
= rk(X) and X′Σ#Σ NX = 0 with the notation

NX = I− PX, where PX refers to the orthogonal projection onto the range of X (the same below).
A coming problem, which has not hitherto appeared in the literature of this area, is how to deal
with a more general situation and this will be solved in this paper.

Another main aim of this article is to consider those linear statistics which preserve sufficient
information for predicting f (l, m) and to characterize them. Such linear statistics will be called
linearly (combination) sufficient statistics, combining the notion of linear sufficiency introduced
by Drygas [8] when Xβ was estimated and the notion of linear error-sufficiency investigated by
Groß [12] while the random error term was predicted in a general Gauss–Markov model. This
is as argued by Isotalo and Puntanen [20] that since the uniformly minimum variance unbiased
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estimators (UMVUEs) are based on the concepts of sufficiency and completeness and the well
known Rao–Blackwell and Lehmann–Scheffé Theorems, linear versions of above can be defined
correspondingly and then used as an alternative to obtaining the BLUE or BLUP.

The remainder is as follows. We first deduce an explicit expression of the BLUP for f (l, m)

and offer an alternative method to characterizing BLUP after applying the resulting BLUP to
some special situations in Section 2. Notions of linear sufficiency and linear minimal sufficiency
in conjunction with linear completeness are recalled w.r.t. the BLUP problem in Section 3.
Relations among them are provided in different ways. Finally, we give four concluding remarks.

2. Best linear unbiased prediction

For a particular predictable function f (l, m), we will derive the representation of its BLUP
by virtue of Rao’s Unified Theory of Least Squares and apply the resulting conclusions to the
nested-error regression model and a random regression coefficients model with equi-correlated
errors and in addition X having one column as the unit vector.

2.1. BLUP: General case

Define T = Σ + XUX′, where U refers to any fixed arbitrary symmetric matrix such
that T is symmetric nonnegative definite (s.n.n.d.) and R(T) = R(X,Σ ), or equivalently,
R(X) ⊆ R(T). Without loss of generality, we suppose that R(U) ⊆ R(X′). By virtue of the
above notation we put f ∗(l, m) = l′β∗

+ m′u∗, with{
β∗

= (X′T−X)−X′T−y,
u∗

= (ZG + K′)′T−(y − Xβ∗).

Note that l ∈ R(X′). This combined with consistency of the model (1.1), i.e., y ∈ R(X,Σ ) =

R(T) almost surely, yields that f ∗(l, m) is invariant w.r.t. the choices of generalized inverses
involved, and thereby we can replace (•)− with the corresponding (•)+ whenever necessary and
vice versa. The following theorem concerns the BLUP of f (l, m).

Theorem 2.1. For the general mixed linear model of form (1.1), assume that f (l, m) is
predictable. Then f ∗(l, m) is the essentially unique BLUP for f (l, m) w.r.t. the MSE criterion.

Proof. Assume that c′y is any fixed arbitrary linear unbiased predictor for f (l, m), that is
c′y ∈ C . We apply the Lagrange multipliers method below. Let L(c, λ) = σ−2MSE(c′y, f ) −

2λ′(l−X′c) be the Lagrange function, where λ is a p-dimensional vector of Lagrange multipliers,
and

MSE(c′y, f ) = E (c′y − f )2
= D

(
Z′c − m

c

)′ (u
e

)
= σ 2

(
Z′c − m

c

)′ (G K
K′ R

) (
Z′c − m

c

)
since c′y is unbiased. It follows that L(c, λ) = c′Σc + m′Gm − 2m′(ZG + K′)′c − 2λ′(l − X′c).
By means of standard formulas for partial derivatives of matrix functions, let the gradients of
L(c, λ) w.r.t. c and λ vanish. It follows that

∂L(c, λ)

∂c
= 0 ⇔ Σc + Xλ = (ZG + K′)m,

∂L(c, λ)

∂λ
= 0 ⇔ X′c = l,
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or equivalently,(
Σ X
X′ 0

) (
c
λ

)
=

(
(ZG + K′)m

l

)
. (2.1)

We first need to show the consistency of Eq. (2.1), that is,(
(ZG + K′)m

l

)
∈ R

(
Σ X
X′ 0

)
. (2.2)

Actually, employing the well known fact that(
Σ X
X′ 0

)−

=

(
T−

− T−XS−X′T− T−XS−

S−X′T− US−S − S−

)
, (2.3)

in which S = X′T−X, we obtain(
Σ X
X′ 0

) (
Σ X
X′ 0

)−

=

(
TT− X(U − USS−)

0 SS−

)
by direct operations, since R(X) ⊆ R(T), R(Σ ) ⊆ R(T), and R(U) ⊆ R(X′) = R(S). In
view of the two facts R(A) = R(AA−) and R[X(U − USS−)] ⊆ R(X) ⊆ R(T) = R(TT−),
we get

R

(
Σ X
X′ 0

)
= R

[(
Σ X
X′ 0

) (
Σ X
X′ 0

)−
]

= R

(
TT− X(U − USS−)

0 SS−

)
= R

(
TT− 0

0 SS−

)
= R

(
T 0
0 S

)
= R

(
Σ X 0
0 0 X′

)
.

Since f (l, m) is estimable, we assume l = X′d for some vector d, and therefore(
(ZG + K′)m

l

)
=

(
ZG + K′ 0

0 X′

) (
m
d

)
.

Thus to show (2.2), it suffices to justify R(ZG + K′) ⊆ R(T). Actually, writing(
G K
K′ R

)
=

(
A
B

) (
A
B

)′

=

(
AA′ AB′

BA′ BB′

)
,

and recalling that Σ = ZGZ′
+ R + ZK + K′Z′, we get

R(ZG + K′) = R

[(
Z′

I

)′ (G
K′

)]
= R

[(
Z′

I

)′ (A
B

)
A′

]
⊆ R

[(
Z′

I

)′ (A
B

)]
= R

[(
Z′

I

)′ (A
B

) (
A
B

)′ (Z′

I

)]
= R(Σ ) ⊆ R(T),

and therefore the consistency of (2.1) is proved. Put

c∗
=

(
T−

− T−XS−X′T− T−XS−
) (

(ZG + K′)m
l

)
= (T−

− T−XS−X′T−)(ZG + K′)m + T−XS−l

(the same below). Note that y′c∗ is invariant w.r.t. the choices of generalized inverses involved
with probability 1. Let c now be a fixed arbitrary vector satisfying X′c = l. Then the MSE of c′y
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w.r.t. f (l, m) is given as

MSE(c′y, f (l, m)) = E (c′y − f (l, m))2
= E

(
c∗′y − f (l, m) + c′y − c∗′y

)2

= MSE(c∗′y, f (l, m)) + E (c′y − c∗′y)2
+ 2%,

with

% = E
[
(c∗′y − f (l, m))(c′y − c∗′y)

]
= E

{(
Z′c∗

− m
c∗

)′ (u
e

) (
u
e

)′ (Z′

I

)
(c∗

− c)
}

=

[
c∗′

(
Z′

I

)′ (G K
K′ R

) (
Z′

I

)
−

(
m
0

)′ (G K
K′ R

) (
Z′

I

)]
(c∗

− c)

=
[
c∗′Σ − m′(ZG + K′)′

]
(c∗

− c) =
[
c∗′T − m′(ZG + K′)′

]
(c∗

− c) = 0,

considering X′(c∗
− c) = 0. Consequently, MSE(c∗′y, f (l, m)) 6 MSE(c′y, f (l, m)), with

equality holding if and only if E (c′y − c∗′y)2
= 0, or equivalently, c′y = c∗′y almost surely.

It follows that f ∗(l, m) = y′c∗
= l′β∗

+ m′u∗ is the essentially unique BLUP for f (l, m) w.r.t.
the MSE criterion. The proof is completed. �

Note that the fact that R
(
Σ X
X′ 0

)
= R

(
Σ X 0
0 0 X′

)
can be justified by post-multiplying(

Σ X
X′ 0

)
with a series of block elementary matrices. According to the proof of Theorem 2.1, by

direct operations, one can justify that:

Theorem 2.2. For the general mixed linear model (1.1), assume that f (l, m) is predictable. Then

MSE
(

f ∗(l, m), f (l, m)
)

=

(
Z′c∗

− m
c∗

)′ (G K
K′ R

) (
Z′c∗

− m
c∗

)
= l′(S−

− U)l + m′Gm − 2m′(ZG + K′)′T−XS−l

− m′(ZG + K′)′Q(ZG + K′)m

= α′S−α − l′Ul + m′Gm − m′(ZG + K′)′T−(ZG + K′)m,

(2.4)

where α = l − X′T−(ZG + K′)m, and Q = T+
− T+XS−X′T+. �

As we can see, the case of Z = 0 and l = 0 reduces to a special prediction problem in a
special prediction model (cf. [20, p. 1012, Eq. (4)]), denoted by(

y
y f

)
=

(
X
0

)
β +

(
e
u

)
with the same assumption as for (3.1). The BLUP of m′y f = f (0, m)|Z=0 is expressible as
K(R−

− R−X(X′R−X)−X′R−)y. As to the case of l 6= 0, it is a trivial situation and can be dealt
with in a similar fashion.

2.2. BLUP: Applications

In the following, we apply our conclusions to the first small-area model, nested-error
regression model, and a special random regression coefficients model (written Lρ) which is
denoted by (1.1) with equi-correlated errors and in addition X having one column as the unit
vector (we assume X = (1n, X0), without loss of generality).
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2.2.1. Application to the nested-error regression model
The nested-error regression model, proposed by Battese, Harter, and Fuller [4] when they

wanted to estimate mean acreage under a crop for counties in Iowa using Landsat satellite data
in conjunction with survey data, is given by

yi j = x′

i jβ + ui + ei j , i = 1, . . . , q, j = 1, . . . , ni ,

where yi j is the character of interest for the j th sampled unit in the i th small sample area,
xi j = (xi j1, . . . , xi j p)

′ is a p-dimensional vector of corresponding auxiliary values, xi j1 = 1,
β = (β1, . . . , βp)

′ is a p-dimensional vector of unknown parameters, ni is the number of
sampled units observed in the i th small area and

∑q
i=1 ni = n. The random errors ui are assumed

to be independent of N (0, σ 2
u ), independent of the ei j , which are assumed to be independent of

N (0, σ 2
e ). However, the normality assumption is not necessary in deriving the following results.

The mean for the i th area may be written as

µi = X
′

iβ + ui (, l′β + m′u),

which can be interpreted as the conditional mean of yi j for the i th area given ui . Note that µi is a
linear combination of the fixed effects β and the realized value of the random effects u, in which
l = Xi is the sample mean of Xi for the i th area and m = (0, . . . , 0, 1, 0, . . . , 0)′ with 1 in the
i th position and 0’s elsewhere. It is seen that the nested-error regression model can be written as
(1.1), with

y = (y′

1, . . . , y′
q)′, yi = (yi1, . . . , yini )

′, X = (X′

1, . . . , X′
q)′,

Xi = (xi1, . . . , xini )
′, xi j1 = 1,

Z = diag(1n1 , . . . , 1nq ), u = (u1, . . . , uq)′ ∼ (0, σ 2
u Iq), i.e., G = τ Iq ,

with τ = σ 2
u /σ 2, σ 2 , σ 2

e ,

e = (e′

1, . . . , e′
q)′ ∼ (0, σ 2

e In), ei = (ei1, . . . , eini )
′, i.e., R = In, K = 0.

It follows that 6 = ZGZ′
+ R + ZK + K′Z′

= diag(Σ1, . . . ,Σq) with Σ i = Ini + τ1ni 1
′
ni

.
Notice that, on the one hand, Σ i is not necessarily s.n.n.d. (nor is Σ ) in view of the fact that if
a ∈ R(A) and b ∈ R(A′), then

1 + rk(A + ab′) = rk
(

A a
−b′ 1

)
= rk(A) + rk(1 + b′A−a),

and further Σ > 0 iff 1 + niτ 6= 0 for i = 1, 2, . . . , q; on the other hand, U =

diag(U1, . . . , Uq) is a suitable choice of U in view of 1′
ni

X⊥

i = 0, with Ui = X+

i (−τ1ni 1
′
ni

)X′
+

i ,
and thereby T = diag(In1 , . . . , Inq ) = In . Rewrite l = Xi = X′k, where k =

1
ni

(0′
n1

, . . . , 0′
ni−1

, 1′
ni

, 0′
ni+1

, . . . , 0′
nq

)′. Then, by Theorem 2.1, the BLUP of µi = X
′

iβ + ui =

l′β + m′u is expressible as

µ∗

i = f ∗(l, m)|l=X′k,m=(0,...,0,1,0,...,0)′,G=τ Iq ,K=0,T=In = k′ PXy + niτk′Z′(I − PX)y

= k′
[PX + niτ(I − PX)]y = X

′

i β̂ + niτ
(

ȳi − X
′

iβ
)

,

in view of m′Z′
= ni k′, where the symbol β̂ = (X′X)−X′y refers to the least squares (LS)

solution. The choice of U seems to be complicated but the resulting representation of the BLUP
is more concise than the one derived by Prasad and Rao [24].
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2.2.2. Application to model Lρ
(1)

Dempster, Rubin and Tsutakawa [7] proposed a model with random regression coefficients.
Their model of a special case, with single concomitant variable x and regression through the
origin, can be written as

yi j = βi xi j + ei j = βxi j + ui xi j + ei j , i = 1, . . . , q, j = 1, . . . , ni ,

where βi = β +ui , ui and ei j are as in the nested-error regression model (see Section 2.2.1). The
mean for the i th area is given by µi = X iβ + X i ui , which is a linear combination of the fixed
effect β and the realized value of the random effect ui . Thus, we may consider a more general
case with a random regression coefficients model, denoted by

y = Xγ + e, (2.5)

where X has one column as the unit vector, γ is supposed to be a vector of random regression
coefficients with E (γ ) = β and D

[
(γ ′, e′)′

]
= σ 2

[(1 − ρ)In+p + ρ1n+p1′
n+p]. Writing

γ = β + e, the model reduces to Lρ with Z = X (and thereby q = p). That is, 1n ∈ R(X),
G = (1 − ρ)Ip + ρ1p1′

p, K = ρ1p1′
n , and R = (1 − ρ)In + ρ1n1′

n . We shall write this model as

Lρ
(1), for convenience. Clearly,

Σ = ZGZ′
+ ZK + K′Z′

+ R = (1 − ρ)In +
[
(1 − ρ)XX′

+ ρ(X1p + 1n)(X1p + 1n)′
]

is nonsingular. In this case one may choose U = 0 as a simple substitution. However, we
will consider the choice as U = −

[
(1 − ρ)PX′ + ρX+(X1p + 1n)(X1p + 1n)′X′+

]
considering

1n ∈ R(X). Thereby, T = (1 − ρ)In . By Theorem 2.1, the BLUP for f (l, m) is expressible as

f ∗(l, m) = l′(X′X)−X′y , l′β̂,

where β̂ is the LS solution. Clearly, the above representation is independent of the scalar ρ.
This fact would imply that the covariance factor ρ can be known or unknown in practice, and in
addition, can be replaced with an arbitrary fixed scalar % ∈ (−1, 1). This process may be viewed
as a problem of misspecification of the dispersion matrix.

2.3. BLUP: An alternative method

In this subsection, we offer an alternative method to the characterization of BLUP in a
different way by means of so-called linear zero functions (i.e., unbiased linear estimators of
zero) which are used widely in the literature; cf. Bhimasankaram and Sengupta [5]. Note that c′y
is unbiased w.r.t. f (l, m), in the sense E (c′y − f (l, m)) = 0 for any β, if and only if c′X = l′. In
this case, we have

c′y − f (l, m) = c′(Xβ + Zu + e) − (l′β + m′u) =

(
Z′c − m

c

)′ (u
e

)
.

On the other hand, any linear zero function is of form

d′(I − PX)y = d′(I − PX)(Xβ + Zu + e) = d′(I − PX) (Z, I)
(

u
e

)
.

As this is similar to [20, Theorem 2.1], it is not difficult to conclude that c′y ∈ C is the
BLUP for f (l, m) if and only if Cov(c′y − f (l, m), d′(I − PX)y) = 0 for any d (since
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min{MSE[c′y, f (l, m)]} ↔ min{MSE[c′y − f (l, m), 0]}). Note that

Cov(c′y − f (l, m), d′(I − PX)y) = E

{(
Z′c − m

c

)′ (u
e

) (
u
e

)′ (Z′

I

)
(I − PX) d

}
=

[
c′(Z, I) − m′(I, 0)

] (
G K
K′ R

) (
Z′

I

)
(I − PX) d.

Then, by direct operations, we derive an alternative characterization of BLUP in the following:

Theorem 2.3. For the general mixed linear model (1.1), assume that f (l, m) is predictable. Then
the statements below are mutually equivalent:

• c′y is the essentially unique BLUP for f (l, m);
• c′ (X, 6X⊥) = (l′, m′(ZG + K′)′X⊥);
• X′c = l and 6c − (ZG + K′)m ∈ R(X). �

By Theorem 2.3, it is not difficult to see that for the model Lρ
(1), c′y is optimal for

l′γ = l′(β + e) = f (l, l) if and only if X′c = l and c ∈ R(X).
Clearly, c∗ is such a c satisfying the second or the third condition that appeared in

Theorem 2.3. Other explicit representations not necessarily equal to c∗ can be obtained and thus
BLUP has (potentially) different forms. Theorem 2.1 tells us that the BLUPs of different forms
coincide with each other with probability 1, however.

3. Linear sufficiency

Write ε = Zu+e in the model (1.1) if the interest is in estimating a linear function of β. Then
ε is a random vector with null means and covariance matrix σ 26, and further (1.1) reduces to a
linear model of the form

y = Xβ + ε. (3.1)

In some situations, we can get not all outputs of y but a particular linear transformed function Fy
for some matrix F of suitable order. In this case, we have the transformed model given as

Fy = FXβ + Fε. (3.2)

Thus it is reasonable to consider so-called linearly sufficient estimation as defined in [8].
The notion of linear sufficiency introduced by Drygas [8] is that Fy is said to be linearly
sufficient if there is a linear function of Fy which is the best linear unbiased estimate (BLUE)
of Xβ. This classical notion was considered early on by many authors when they investigated
those linear statistics which preserve enough information for obtaining BLUE of Xβ. Among
them Drygas [8–10], Baksalary and Mathew [3], Müeller [23], Heiligers and Markiewicz [15],
Markiewicz [22] are mentioned. For a more general concept of linear sufficiency one can see
Ip et al. [19]. Another three closely related notions are quadratic sufficiency (cf. [10,21]) and
linear error-sufficiency (cf. [1] and Groß [12]), and linear prediction sufficiency (cf. Isotalo and
Puntanen [20]). Furthermore, Ibarrola and Pérez-Palomares [17,18] applied linear sufficiency
and linear completeness to a continuous time linear model and corresponding characterizations
were offered.

Baksalary and Kala [2] proved that Fy is linearly sufficient if and only if

R(X′F′) = R(X′) (3.3)
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and

R(X) ⊆ R(TF′).

Note that the condition R(X′) = R(X′F′) is necessary for the natural requirement of
unbiasedness. In the paper, we will always suppose that this (i.e., R(X′) = R(X′F′)) is a
precondition, and that

R(F′) ⊆ R(T) (3.4)

as argued by Müeller [23] and Ip et al. [19] that one can neglect all elements outside R(T) since
they form a null set of the linear model (3.1).

As we can see, the above notion was proposed w.r.t. the problem of BLUE for Xβ (or all
linearly estimable functions of β) when the interest is in estimating Xβ. So, we may consider
the notion w.r.t. the problem of BLUP for all predictable combinations of form f (l, m), with
l ∈ R(X′) = R(X′F′); see the natural requirement (3.3). Actually, the obtainable Fy combined
with (1.1) gives a transformed model, denoted by

Fy = FXβ + FZu + Fe, (3.5)

or written as ỹ = X̃β + Z̃u + ẽ, where ỹ = Fy, X̃ = FX, Z̃ = FZ, and ẽ = Fe, with

E

(
u
ẽ

)
= 0, D

(
u
ẽ

)
=

(
G KF′

FK′ FRF′

)
.

Put

6̃ = Z̃GZ̃′
+ FRF′

+ Z̃KF′
+ FK′Z̃′

= FΣF′, T̃ = 6̃ + X̃UX̃′
= FTF′,

S̃ = X̃′T̃−X̃ = X′F′(FTF′)−FX, Q̃ = T̃−
− T̃−X̃S̃−X̃′T̃−,

β∗ =

(
X̃′T̃−X̃

)−

X̃′T̃−ỹ = S̃−X′F′T̃−Fy, u∗ =

(
Z̃G + FK′

)′

T̃−

(
ỹ − X̃β∗

)
,

c∗ = Q̃F(ZG + K′)m + (FTF′)−FX
(
X′F′(FTF′)−FX

)− l.

Following from Theorems 2.1 and 2.2, we obtain the essentially unique BLUP for f (l, m) w.r.t.
the model (3.5) as f∗(l, m) = l′β∗ + m′u∗ = c′

∗Fy with

MSE ( f∗(l, m), f (l, m)) = l′(S̃−
− U)l + m′Gm − 2m′(ZG + K′)′

× F′T̃−FXS̃−l − m′(ZG + K′)′F′Q̃F(ZG + K′)m. (3.6)

In the following, the notion of linear sufficiency w.r.t. the BLUP problem will be defined
below. We consider this notion under the natural requirement (3.3) at all times in the context.
Its characterization will be offered in a concise theorem version. Then, we apply the resulting
conclusion to the model Lρ and derive some attractive remarks.

3.1. Linear sufficiency w.r.t. BLUP

Definition 3.1. Fy is said to be linearly sufficient w.r.t. the BLUP problem if there is a linear
function of Fy which is the BLUP of f (l, m) in the original model (1.1) for any given predictable
f (l, m), and we define F ∈ FMLM. �



1512 X.-Q. Liu et al. / Journal of Multivariate Analysis 99 (2008) 1503–1517

It is clear that this notion reduces to the ordinary one defined by Drygas [8] if random effects
vanish. Therefore, we may view ordinary linear sufficiency as a special situation of Definition 3.1.
By the essential uniqueness of BLUP, we see that F ∈ FMLM if and only if f∗(l, m) = f ∗(l, m)

holds almost surely for any l ∈ R(X′) (= R(X′F′); cf. (3.3), the natural requirement) and for
all m, since both f∗(l, m) = c′

∗Fy and f ∗(l, m) = c∗′y are unbiased w.r.t. f (l, m). Note that if
MSE ( f∗(l, m), f (l, m)) = MSE ( f ∗(l, m), f (l, m)), f∗(l, m) solves the problem of minimizing
MSE

(
c′y, f (l, m)

)
, and therefore

F ∈ FMLM ⇔ f∗
a.s.
== f ∗

⇔ f∗ − f
a.s.
== f ∗

− f ⇔ MSE ( f∗, f ) = MSE
(

f ∗, f
)

⇔


X(S̃−

− U)X′
= X(S−

− U)X′

(ZG + K′)′F′Q̃F(ZG + K′) = (ZG + K′)′Q(ZG + K′)

XS̃−X′F′T̃−F(ZG + K′) = XS−X′T−(ZG + K′)

 (3.7)

in view of Eqs. (2.4) and (3.6), and R(S) = R(X′) = R(X′F′) = R(S̃). The three
conditions together given by (3.7) may be viewed as necessary and sufficient conditions (NSC)
for F ∈ FMLM. However, we have a concise version which will be stated in the following
theorem.

Theorem 3.1. F ∈ FMLM if and only if R(X′F′) = R(X′) and R(X, ZG + K′) ⊆ R(TF′).

Proof. Since we have viewed R(X′F′) = R(X′) as the precondition, we have F ∈ FMLM ⇔

(3.7). It is easily seen that XS̃−X′ and XS−X′ are invariant w.r.t. the choice of the generalized
inverses involved considering the natural requirement and thereby we can replace them by
corresponding Moore–Penrose inverses, i.e. XS̃−X′

= XS̃+X′ and XS−X′
= XS+X′. Let us

now prove

XS̃+X′
= XS+X′

⇔ S̃ = S ⇔ R(X) ⊆ R(TF′). (3.8)

Actually, pre-multiplying XS̃+X′
= XS+X′ by S+X′T− and post-multiplying by T−XS+, it

follows that

XS̃+X′
= XS+X′

⇒ S̃+
= S+SS̃+SS+

= S+SS+SS+
= S+

⇒ S̃ = S,

and vice versa. The first NSC for XS̃+X′
= XS+X′ under (3.3) is verified. Further,

S̃ = S ⇔ S − S̃ = X′T+1/2 (
In − PT1/2F′

)
T+1/2X = 0

⇔
(
In − PT1/2F′

)
T+1/2X = 0 ⇔ PT1/2F′T+1/2X = T+1/2X

⇔ R(T+1/2X) ⊆ R(T1/2F′) ⇔ R(X) ⊆ R(TF′).

(3.8) is thus proved. Under (3.3) and S̃ = S (⇒ F′T̃−FX = T+X), the following would hold
true:

XS̃−X′F′T̃−F(ZG + K′) = XS−X′T−(ZG + K′)

⇔ X′F′T̃−F(ZG + K′) = X′T−(ZG + K′)

⇒ (ZG + K′)′F′Q̃F(ZG + K′) = (ZG + K′)′F′T̃+F(ZG + K′)

− (ZG + K′)′F′T̃+FXS̃−X′F′T̃+F(ZG + K′)

= (ZG + K′)′F′T̃−F(ZG + K′) − (ZG + K′)′T−XS−X′T−(ZG + K′),
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in view of R(ZG + K′) ⊆ R(Σ ) ⊆ R(T). Consequently,

(3.7) ⇔


R(X) ⊆ R(TF′)

(ZG + K′)′F′T̃−F(ZG + K′) = (ZG + K′)′T−(ZG + K′)

X′F′T̃−F(ZG + K′) = X′T−(ZG + K′)

⇔


R(T+1/2X) ⊆ R(T1/2F′)(

T+1/2(ZG + K′)
)′ (

In − PT1/2F′

) (
T+1/2(ZG + K′)

)
= 0

X′T+1/2 (
In − PT1/2F′

)
T+1/2(ZG + K′) = 0.

Observing that the third is a direct consequence of the first, and In − PT1/2F′ is s.n.n.d., it follows
that

(3.7) ⇔


R(X) ⊆ R(TF′)(
In − PT1/2F′

) (
T+1/2(ZG + K′)

)
= 0

⇔ R
(
T+1/2(ZG + K′)

)
⊆ R

(
T1/2F′

)
⇔

{
R(X) ⊆ R(TF′)

R
(
ZG + K′

)
⊆ R

(
TF′

) }
⇔ R(X, ZG + K′) ⊆ R(TF′).

This fact combined with F ∈ FMLM ⇔ (3.7) would mean that F ∈ FMLM ⇔ R(X, ZG+K′) ⊆

R(TF′) under the precondition (3.3). The proof is thus completed. �

It should be noted that, under the condition R(X, ZG + K′) ⊆ R(TF′), R(X′F′) = R(X′)

will be satisfied inherently in view of the following implications:

R(X) ⊆ R(X, ZG + K′) ⊆ R(TF′)

⇒ R(X′) = R(X′T+X) ⊆ R(X′T+TF′) = R(X′F′) ⊆ R(X′). (3.9)

Based on this, the NSC for F ∈ FMLM obtained in Theorem 3.1 is reduced to R(X, ZG + K′) ⊆

R(TF′). Let us now give an alternative characterization of FMLM below, by using the method of
Groß [12]. We will find that the NSC is independent of U.

Theorem 3.2. F ∈ FMLM iff N (F) ∩
{
R(X, ZG + K′) ⊕ R

[
Σ (X, ZG + K′)⊥

]}
⊆

R
[
Σ (X, ZG + K′)⊥

]
.

Proof. Observe that R(T) has direct sum decomposition R(T) = R(X, ZG + K′) ⊕

R
[
Σ (X, ZG + K′)⊥

]
and that F ∈ FMLM ⇔ R(X, ZG + K′) ⊆ R(TF′). It follows that

F ∈ FMLM ⇔ R(TF′)⊥ ⊆ R(X, ZG + K′)⊥

⇒ R
(

T(TF′)⊥
)

⊆ R
(

T(X, ZG + K′)⊥
)

⇔ R(F′)⊥ ∩ R(T) ⊆ R
[
Σ (X, ZG + K′)⊥

]
considering R(F′)⊥ = N (F) and employing the well known fact that R

(
A′(AB)⊥

)
=

R(A′) ∩ R(B)⊥, and thus the necessity is proved. Conversely, provided N (F) ∩ R(T) ⊆

R
[
Σ (X, ZG + K′)⊥

]
, then

R
[
(X, ZG + K′)′T+T(TF′)⊥

]
⊆ R

[
(X, ZG + K′)′T+T(X, ZG + K′)⊥

]
= {0},

which means (X, ZG+K′)′(TF′)⊥ = 0 and therefore R(X, ZG+K′) ⊆ R(TF′). The sufficiency
is also proved. �
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Another alternative is by the Theorem 2.3. Actually, F ∈ FMLM iff for any predictable f (l, m)

there is some b such that b′Fy is the BLUP, i.e., b′F(X,ΣX⊥) = (l′, m′(ZG + K′)′X⊥) =

(d′, m′) diag(X, (ZG + K′)′X⊥) with l = X′d for some d. It follows that

F ∈ FMLM ⇔ R

(
X′ 0
0 (X⊥)′(ZG + K′)

)
⊆ R

(
X′F′

(X⊥)′6F′

)
. (3.10)

Theorem 3.3. F ∈ FMLM if and only if (3.10) is satisfied. �

3.2. Linear sufficiency: Applications

Let us now consider the random regression coefficients model L (1)
ρ , which is a special

situation of Lρ ; we have R(TF′) = R[(1 − ρ)F] = R(F), and R(X, ZG + K′) = R[X, (1 −

ρ)X+ρX1p1′
p+ρ1n1′

p], and therefore we obtain the following result stated in a theorem version.

Theorem 3.4. For the random regression coefficients model Lρ
(1), F ∈ FMLM if and only if

R(X) ⊆ R(F′). �

Consider another special case of Lρ with the same assumptions as Lρ
(1) but Z = In (and

thereafter p = n). The form of the model is a generalization of that of Fay and Herriot [11] in
some sense. We write this model as Lρ

(2). In a similar fashion, we have R(X, ZG + K′) = Rn ,
R(TF′) = R(F), by choosing U suitably. Consequently, F ∈ FMLM if and only if F is of full
column rank for the model Lρ

(2). This is a trivial situation.

3.3. Linear sufficiency, linear minimal sufficiency, and linear completeness

We offer the definition to the linear minimal sufficiency w.r.t. BLUP as follows.

Definition 3.2. Fy is said to be linearly minimal sufficient w.r.t. the BLUP problem if F ∈ FMLM
and for any other linearly sufficient statistic F0y, there exists a matrix B such that Fy = BF0y
holds almost surely. We denote by FMLM−min the set of such F’s. �

We characterize FMLM−min in different ways in the following and, in addition, investigate
relations among FMLM, FMLM−min, and the notion of so-called linear completeness; cf. [8,12,
20].

Theorem 3.5. The following statements are mutually equivalent:

(1) F ∈ FMLM−min;
(2) R(X, ZG + K′) = R(TF′);
(3) N (F) ∩

{
R(X, ZG + K′) ⊕ R

[
Σ (X, ZG + K′)⊥

]}
= R

[
Σ (X, ZG + K′)⊥

]
;

(4) R
(

X′ 0
0 (X⊥)′(ZG + K′)

)
= R

(
X′F′

(X⊥)′6F′

)
.

Proof. The proof will be done by the following process, (1) ⇔ (2) ⇔ (3)/(4):

(1)⇒(2) Let Fy be linearly minimally sufficient for all predictable functions of form f (l, m),
and F0y be any other linearly sufficient statistic, i.e., F ∈ FMLM−min and F0 ∈ FMLM.
Then there exists a matrix B such that Fy = BF0y holds almost surely, or equivalently,
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FT = BF0T
(
⇒ R(TF′) ⊆ R(TF′

0)
)
, in which R(X, ZG + K′) ⊆ R(TF′

0) and
R(X, ZG + K′) ⊆ R(TF′), or written jointly,

R(X, ZG + K′) ⊆ R(TF′) ⊆ R(TF′

0). (3.11)

Take a special F0 such that rk(X, ZG + K′) = rk(TF′

0), taking F0 = (X, ZG + K′)′T+

for instance. This combined with (3.11) would yield R(X, ZG + K′) = R(TF′).
(2)⇒(1) It is clear.
(2)⇒(3) It is similar to the proof of Theorem 3.2.
(3)⇒(2) Provided N (F) ∩

{
R(X, ZG + K′) ⊕ R

[
Σ (X, ZG + K′)⊥

]}
= R [Σ (X, ZG

+K′)⊥
]
. That is to say R

(
T(TF′)⊥

)
= R

(
T(X, ZG + K′)⊥

)
. Pre-multiplying by

F gives (TF′)′(X, ZG + K′)⊥ = 0 and further one concludes that R(TF′) ⊆

R(X, ZG + K′), while pre-multiplying with (X, ZG + K′)′T+ would mean that
(X, ZG + K′)′(TF′)⊥ = 0 and further R(X, ZG + K′) ⊆ R(TF′). Part (2) follows.

(2)⇒(4) Since F is supposed to belong to FMLM−min (in view of (2) ⇔ (1)), F ∈ FMLM and
thereby (3.10) is satisfied. Now, it suffices to show(

rk(X) + rk[(I − PX)(ZG + K′)] =
)

rk
(

X′ 0
0 (X⊥)′(ZG + K′)

)
= rk

(
X′F′

(X⊥)′6F′

)
under the condition R(X, ZG + K′) = R(TF′). This equality can be viewed as a direct
consequence of the fact that rk(X, ZG + K′) = rk(TF′) = rk[F(X,ΣX⊥)] via the
formula rk(A, B) = rk(A) + rk[(I − PA)B].

(4)⇒(2) It is similar to (3) ⇒ (2) and is in view of the fact mentioned in the proof of (2) ⇒ (4).
�

A statistic Fy is said to be linearly complete if each linear zero function of the form AFy
vanishes almost surely. We denote by Fcomp the set of such F’s. By Drygas [8], F ∈ Fcomp
if and only if R(FΣ ) ⊆ R(FX). It is known that, when estimating Xβ, linear completeness
together with (ordinary) linear sufficiency is equivalent to (ordinary) linear minimal sufficiency.
Isotalo and Puntanen [20] argued that the corresponding relation (among their linear prediction
sufficiency, linear minimal prediction sufficiency, and linear completeness) does not seem to
hold. However, this is not necessarily the case as regards the BLUP problem, when predicting
f (l, m).

Theorem 3.6. The following statements are mutually equivalent:

(1) F ∈ FMLM ∩ Fcomp;
(2) F ∈ FMLM−min and, in addition, R

[
F(ZG + K′)

]
⊆ R(FX);

(3) R(X) = R(TF′).

Proof. It suffices to justify (1) ⇒ (2) ⇒ (3) ⇒ (1).

(1)⇒(2) Provided F ∈ FMLM ∩ Fcomp. Observe that

F ∈ FMLM ⇔ R(X, ZG + K′) ⊆ R(TF′), (3.12)

F ∈ Fcomp ⇔ R(FΣ ) ⊆ R(FX) ⇒ rk(FT) = rk(FX). (3.13)

Combining (3.12) with (3.13), we obtain rk(TF′) = rk(FX) 6 rk(X) 6 rk(X, ZG +

K′) 6 rk(TF′), and thereby rk(X) = rk(X, ZG + K′) = rk(TF′). Consequently, the



1516 X.-Q. Liu et al. / Journal of Multivariate Analysis 99 (2008) 1503–1517

first equality combined with R(X) ⊆ R(X, ZG + K′) gives R(X) = R(X, ZG +

K′) and therefore R(FX) = R
[
F(X, ZG + K′)

]
, which is further equivalent to

R
[
F(ZG + K′)

]
⊆ R(FX); on the other hand, the second equality combined with

R(X, ZG + K′) ⊆ R(TF′) yields R(X, ZG + K′) = R(TF′), which combined with
Theorem 3.5 completes the proof of (1) ⇒ (2).

(2)⇒(3) In view of the following:

R(X, ZG + K′) = R(TF′) ⇒ rk
[
F(X, ZG + K′)

]
= rk

(
FTF′

)
= rk(TF′) = rk(X, ZG + K′),

R
[
F(ZG + K′)

]
⊆ R(FX) ⇔ R

[
F(X, ZG + K′)

]
= R(FX) ⇒ rk

[
F(X, ZG + K′)

]
6 rk(X),

we obtain

rk
[
F(X, ZG + K′)

]
6 rk(X) 6 rk(X, ZG + K′) = rk

[
F(X, ZG + K′)

]
.

Thus rk(X) = rk(TF′), which combined with R(X) ⊆ R(X, ZG + K′) = R(TF′)

gives R(X) = R(TF′).
(3)⇒(1) It is clear.

The proof is completed. �

4. Concluding remarks

In this paper, we consider the problem of predicting a general linear combination of fixed
effects and realized values of random effects in a general mixed linear model and we offered
an explicit representation of the BLUP w.r.t. the MSE criterion and, in addition, applied the
resulting conclusion to several special models. An alternative to characterization of BLUP was
offered. Secondly, the notion of linear sufficiency w.r.t. the BLUP problem was considered and its
characterization was investigated in three different ways. Finally, we studied concepts of linear
minimal sufficiency w.r.t. BLUP and gave relations among FMLM, FMLM−min and Fcomp. Some
significant remarks may be as follows:

1. Relative efficiency. It is seen that Fy is not always linearly sufficient. In this case, one can
consider the problem of relative efficiency of f∗ with respect to f ∗, which varies in (0, 1]. If
the value of the relative efficiency is near to 1−, the loss will be trivial substituting f ∗ with
f∗. Conversely, the loss is unacceptable if the value tends to 0+. As we know, for this topic it
is of interest to seek the upper or lower bound in practice.

2. Objective function. We mainly considered the scalar objective function in this article. This can
be expanded readily to predicting L′β + M′u with L and M being matrices of suitable order
w.r.t. the MSE criterion or MSE matrix criterion. It is not difficult to see that L′β∗

+M′u∗ has
the minimal prediction MSE in the set of all linear unbiased predictors and further it possesses
MSE matrix optimality in the Löwner sense.

3. The link of FMLM, FMLM−min, Fcomp w.r.t. BLUP and ordinary ones can be derived and
viewed as an idea for how to deal with corresponding problems.

4. As pointed out by a referee, we can see that Z = 0 in conjunction with K 6= 0 results in an
interesting topic. It is actually a combination of ordinary linear sufficiency and the so-called
linear prediction sufficiency proposed by Isotalo and Puntanen [20] w.r.t. a special prediction
model in some sense.
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