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1. Introduction

In the modelling of non-Gaussian time series, two strategies may be adopted. We may either retain the general
autoregressive moving average (ARMA) framework and allow the white noise to be non-Gaussian, or we may completely
abandon the linearity assumption, see e.g. [1,2]. In the former case, the difficulty is to choose the distribution of the white
noise appropriately so that the ARMA time series exhibits a specified non-Gaussian feature. In the latter case, one has to
find an adequate explicit model among infinitely many nonlinear forms that typically express the time series as a nonlinear
function of its lagged values.
In this paper, we are interested in correlated data exhibiting asymmetry and we follow the first strategy. The data are

short-range dependent in the sense that their autocorrelations decay to zero exponentially, and their distributions are
near-Gaussian. We study the problem of fitting an AR model to these data. Many non-Gaussian AR models were proposed
in the literature, see e.g. [3] and references therein. In particular, Jacobs and Lewis [4] considered the construction of
models for stationary sequences of discrete random variables with given first-order marginal probability mass functions
and nonnegative autocorrelation structures. Anděl [5] studied AR(1) models with exponentially distributed innovations.
Li and McLeod [6] addressed the problem of ARMA modelling with non-Gaussian innovations. They established general
results onmaximum likelihood estimates (MLE) and as real examples, they fitted ARMAmodelswith log-normal and gamma
innovations to the sunspot and the Canadian lynx data respectively, demonstrating that linear time series model with non-
Gaussian innovations can be a useful tool in time series modelling. Tiku, Wong and Bian [7] and Tiku, Wong, Vaughan
and Bian [8] considered the estimation of AR models with symmetric innovations that follow a shift-scaled Student’s t
distribution, and Tiku,Wong and Bian [9], Akkaya and Tiku [10] andWong and Bian [11] studied ARmodelswith asymmetric
innovations distributed according to gamma and generalised logistic distributions. These authors derived modified MLE of
the parameters that are easy to compute. On the other hand, Janacek and Swift [12] proposed a different approach that
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consists in modelling a non-Gaussian time series as a nonlinear instantaneous transformation of a Gaussian ARMA time
series, the nonlinear transformation being determined from the first-order marginal distribution of the data. Recently,
Pourahmadi [13] considered the construction of stationary ARMA models with multivariate skew-normal distributions.
When these distributions belong to the class defined by Azzalini and Dalla Valle [14] and Azzalini and Capitanio [15], the
innovations are correlated and the predictors are nonlinear and heteroscedastic. Unfortunately, the autocorrelations of the
ARMA model differ from their Gaussian ARMA counterparts in that they do not converge to zero for large lags, which is
a limitation for modelling real time series. When the multivariate distributions of the ARMA model lie in the family of
closed skew-normal distributions introduced by González-Farías, Domínguez-Molina and Gupta [16] and re-parametrised
and generalised by Arellano-Valle and Azzalini [17], it is possible and natural to define the innovations as a sequence of iid
random variables with a univariate distribution in this family. In this case, the autocorrelations of the ARMA model decay
to zero exponentially and the predictors are linear and homoscedastic as in the Gaussian case. Nevertheless, as mentioned
by Pourahmadi [13], the maximum likelihood estimation of the parameters of the ARMA model might be computationally
intensive and the asymptotic properties of these estimates are not established. Here, we do not investigate the construction
of ARMA models with given multivariate skew-normal distributions, but we consider the statistical estimation of an AR
modelwith iid epsilon-skew-normal (ESN) innovations. The ESN distributionwas introduced byMudholkar andHutson [18]
and has been used recently in regression problems by Hutson [19]. Its main advantage is its flexibility since it is analytically
tractable, it accommodates practical values of skewness and kurtosis, and it strictly includes the Gaussian distribution. As
far as we know, the idea of using an AR model with ESN innovations to represent correlated asymmetric data has not been
explored before, despite the flexibility of the ESN distribution.
Specifically, the ESN(θ, σ , ε) distribution with location θ ∈ R, scale σ > 0 and skewness ε ∈ (−1, 1) is characterised

by the density

f (x) =
1

√
2πσ

[
exp

(
−
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2σ 2(1+ ε)2

)
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]
, (1)

where, for any set S, 1S denotes the indicator function of S. This distribution is unimodalwithmode at θ and it has probability
mass (1+ ε)/2 below the mode. If Z has an ESN(θ, σ , ε) distribution, E Z = θ − 4σε/

√
2π and the kth central moment of

Z is
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xl exp
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√
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(2i− 1) if l = 2m,

2m(1− ε)l+1m! if l = 2m+ 1.
(2)

Therefore, (−1)lIl(−ε) + Il(ε) is a polynomial of degree l and the kth central moment of Z takes the form σ kPk(ε) where
Pk is a polynomial of degree k. For k > 1, the kth cumulant ck,Z of Z is obtained from the lth central moments for l ≤ k by
means of well-known polynomial relations, see for instance [20, eqn (3.43)]. It follows from these relations that ck,Z , k > 1,
takes also the form σ kP ′k(ε)where P

′

k is a polynomial of degree k. The four firsts cumulants of Z are

c1,Z = θ − 4σε/
√
2π,

c2,Z =
σ 2

π
[(3π − 8)ε2 + π ],

c3,Z =
2
√
2σ 3ε
π3/2

[(5π − 16)ε2 − π ],

c4,Z =
4σ 4ε2

π2
[(−3π2 + 40π − 96)ε2 + π(3π − 8)].

(3)

Since ε ∈ (−1, 1), c3,Z/c
3/2
2,Z ∈ (−c0, c0) where c0 =

√
2(4 − π)(π − 2)−3/2 = 0.995, and c4,Z/c22,Z ∈ (0, 0.870). The

ESN distribution is therefore useful for modelling asymmetric data with slight leptokurticity. Of course, the ESN(θ, σ , ε)
distribution reduces to the Gaussian distribution with mean θ and variance σ 2 when ε = 0.
The paper is organised as follows. In Section 2, we propose moments estimates (ME) and conditional MLE of the

parameters (φ1, . . . , φp, θ, σ , ε) of the AR(p)model (Xt) defined by the difference equation

Xt = φ1Xt−1 + · · · + φpXt−p + Zt , (4)
where the polynomial φ(z) = 1 − φ1z − · · · − φpzp has no zeros in the closed unit disk {z ∈ C : |z| ≤ 1}, and (Zt)
is a sequence of iid random variables with an ESN(θ, σ , ε) distribution. Strong consistency and asymptotic normality are
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established. In Section 3, the behaviour of the estimators for finite samples is studied via simulation, and we fit an ARmodel
with ESN innovations to a real time series.

2. Parameter estimation

In all the following, the parameter vector η = (φ′, θ, ε, σ 2)′ where φ = (φ1, . . . , φp)′ is assumed to be lying in the open
set S = C × R × (−1, 1) × (0,∞), where C is the interior of the domain of vectors φ such that φ(z) has no zeros in the
closed unit disk. We shall denote by ‖ · ‖ the Euclidean norm in Rp+3, so that ‖η‖ = (η′η)1/2.

2.1. Method of moments

The difference equation (4) has the unique stationary solution

Xt =
∞∑
i=0

ψiZt−i, (5)

where the series converges absolutely almost surely (a.s.) and in the mean square sense, and where (ψi)i∈N are the
coefficients in the Taylor series expansion of 1/φ(z) for |z| ≤ 1. Since

∑
|ψi| < ∞, finiteness of E |Zt |k imply finiteness of

E |Xt |k for all k ≥ 1, see e.g. [21, Lemma 2.7.3].
Letm = E Xt , X̃t = Xt −m,m2,k = E X̃t X̃t+k, andm3,k = E X̃t X̃2t+k. It results from (4) that

m(1− e′φ) = E Zt = θ − 4σε/
√
2π, (6)

where e = (1, . . . , 1)′. The time series (̃Xt) satisfies the causal AR(p)model

X̃t = φ1X̃t−1 + · · · + φpX̃t−p + Z̃t , (7)

where Z̃t = Zt − E Zt . The standard Yule–Walker equations for model (7) are

M2φ = m2, (8)

and

m2,0 − φ′m2 = E Z̃2t =
σ 2

π
[(3π − 8)ε2 + π ], (9)

whereM2 is the invertible covariance matrix [m2,i−j]
p
i,j=1 andm2 = (m2,1, . . . ,m2,p)

′. Eqs. (6), (8) and (9) allow to estimate
the autoregressive parameters as well as the mean and variance of (Zt). To adjust the model to the skewness of the series,
we introduce the following third-order moment equations. According to (7),

m3,0 − φ′m3 = E Z̃t X̃2t = E Z̃t(φ1X̃t−1 + · · · + φpX̃t−p + Z̃t)
2

= E Z̃3t =
2
√
2σ 3ε
π3/2

[(5π − 16)ε2 − π ], (10)

wherem3 = (m3,1, . . . ,m3,p)′. We deduce from (9) and (10) that

g(ε) =
m3,0 − φ′m3

(m2,0 − φ′m2)3/2
, (11)

where g : (−1, 1)→ (−c0, c0) is defined by

g(x) = 2
√
2x

(5π − 16)x2 − π
[(3π − 8)x2 + π ]3/2

. (12)

Function g is continuously differentiable on (−1, 1)with derivative

g ′(x) = 2
√
2π

(21π − 64)x2 − π
[(3π − 8)x2 + π ]5/2

.

On the interval (−1, 1), g ′ < 0 and then g is strictly monotone which implies that g is an homeomorphism from (−1, 1)
onto (−c0, c0).
The ME η̂n = (̂φ′n, θ̂n, ε̂n, σ̂

2
n )
′ of η is obtained by replacing in (6), (8), (9) and (11) the moments m, m2,k and m3,k by the

sample moments

m̂ =
1
n

n∑
t=1

Xt , m̂2,k =
1
n

n−k∑
t=1

X̂t X̂t+k, m̂3,k =
1
n

n−k∑
t=1

X̂t X̂2t+k, (13)
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where X̂t = Xt − m̂. Therefore, η̂n satisfies the equations

φ̂n = M̂−12 m̂2,

ε̂n = g−1
(
m̂3,0 − φ̂′nm̂3

(m̂2,0 − φ̂′nm̂2)3/2

)
,

σ̂ 2n =
(m̂2,0 − φ̂′nm̂2)π
(3π − 8)̂ε 2n + π

,

θ̂n = m̂(1− e′φ̂n)+ 4σ̂n̂εn/
√
2π.

(14)

We have m̂2,0 − φ̂′nm̂2 = n
−1∑n+p

t=1 Ẑ
2
t > 0, where

Ẑt = X̂t − φ̂n,1X̂t−1 − · · · − φ̂n,pX̂t−p
and X̂t = 0 if t < 1 or t > n. When (m̂3,0 − φ̂′nm̂3)(m̂2,0 − φ̂

′
nm̂2)

−3/2
6∈ (−c0, c0), the ME (̂θn, ε̂n, σ̂ 2n ) are not defined.

Since Zt has an ESN(θ, σ , ε) distribution, it follows from (1) that Zt = θ+σWt whereWt has an ESN(0, 1, ε) distribution.
Then, according to (4), Xt = θ(1 − e′φ)−1 + σYt where Yt does not depend on the location θ and the scale σ . Therefore,
X̂t/σ , m̂2,k/σ 2, m̂3,k/σ 3, the Yule–Walker estimator φ̂n, and (m̂3,0 − φ̂′nm̂3)(m̂2,0 − φ̂

′
nm̂2)

−3/2 do not depend on θ and σ .
Another ME η̄n = (̂φ′n, θ̄n, ε̄n, σ̄

2
n )
′ of η is given by

φ̂n = M̂−12 m̂2,

ε̄n = g−1(̂c3,Z /̂c
3/2
2,Z ),

σ̄ 2n =
π ĉ2,Z

(3π − 8)ε̄2n + π
,

θ̄n = m̂(1− e′φ̂n)+ 4σ̄nε̄n/
√
2π,

(15)

where

ĉk,Z =
1
n

n∑
t=p+1

Ẑkt

for k = 2, 3. If ĉ3,Z /̂c
3/2
2,Z 6∈ (−c0, c0), the ME (θ̄n, ε̄n, σ̄

2
n ) are not defined. Since Ẑt/σ does not depend on θ and σ , ĉk,Z/σ

k

and ĉ3,Z /̂c
3/2
2,Z do not depend on θ and σ .

The two ME η̂n and η̄n are consistent. Indeed, the linear process (Xt) is strictly stationary and ergodic, and then so are
the processes (XtXt+k) and (XtX2t+k) for any fixed k, see for instance [22, Theorem 3.5.8]. The pointwise ergodic theorem for
stationary sequences [22, Theorem 3.5.7] asserts that m̂, m̂2,k and m̂3,k converge a.s. tom,m2,k andm3,k, respectively. Since
transformation (14) is continuous, we deduce that η̂n

a.s.
−→ η. Since

Ẑt = Z̃t +
p∑
i=1

(φi − φ̂n,i)̃Xt−i + (m− m̂)(1− e′φ̂n)

and φ̂n
a.s.
−→ φ, m̂

a.s.
−→ m, E |̃Zkt X̃

k1
t−1 . . . X̃

kp
t−p| < ∞ for all k, k1, . . . , kp ≥ 0, we have ĉk,Z

a.s.
−→ E Z̃kt for all k ≥ 1. Hence, the

continuity of transformation (15) implies that η̄n
a.s.
−→ η. The asymptotic normalities of η̂n and η̄n are proved in the Appendix.

The results are summarised in the following theorem.

Theorem 1. Let (Xt) be defined by (4) where (Zt) are iid random variables with an ESN (θ, σ , ε) distribution. Let η =
(φ′, θ, ε, σ 2)′ ∈ S and η̂n, η̄n be the ME of η defined by (14) and (15), respectively. Then, as n→∞,

(i) η̂n
a.s.
−→ η and η̄n

a.s.
−→ η,

(ii) n1/2(̂ηn − η)
d
−→ N(0,Σ1) and n1/2(η̄n − η)

d
−→ N(0,Σ2).

Remark 1. Since φ̂n is the Yule–Walker estimator of φ, we deduce from [23, Theorem 8.1.1] that n1/2(̂φn − φ)
d
−→

N(0, c2,ZM−12 ). Therefore,

Σ1,ij = Σ2,ij = c2,ZM−12,ij for 1 ≤ i, j ≤ p. (16)

Moreover, the covariance matrix c2,ZM−12 depends only on the parameters φ. The explicit expressions of the others
components of matricesΣ1 andΣ2 seem quite cumbersome.

Remark 2. In the simple case of an iid sequence (Zt)whose skewness ε is knownapriori and is not estimated, the asymptotic
covariance of n1/2(θ̌n − θ, σ̌ 2n − σ

2), where θ̌n = m̂ + 4εσ̌n/
√
2π and σ̌ 2n = π ĉ2,Z/((3π − 8)ε2 + π) is given in [18,

Theorem 3.1], showing in particular that θ̌n and σ̌ 2n are asymptotically correlated when ε 6= 0.
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2.2. Conditional maximum likelihood method

Here, we suppose that η0 is the true value of η and we consider the likelihood estimator based on maximisation of
the conditional likelihood of (X1, . . . , Xn) conditionally to (X1, . . . , Xp). According to (4), the logarithm of the conditional
likelihood is

Ln(η) =
n∑

t=p+1

l(Xt , . . . , Xt−p; η), (17)

where, for all x = (x0, . . . , xp) ∈ Rp+1, l(x; η) = ln f (x0 − φ1x1 − · · · − φpxp) and f is the density defined by (1). Our main
result is the following and is proved in the Appendix.

Theorem 2. Let (Xt) be defined by (4) where φ is replaced by φ0 and (Zt) are iid random variables with an ESN (θ0, σ0, ε0)
distribution, and let η0 = (φ′0, θ0, ε0, σ

2
0 )
′
∈ S. Then, there exists a sequence of estimators (̃ηn) such that, for any ε > 0, there

exists an event E with P(E) > 1− ε and an n0 such that on E, for n > n0, ∂Ln∂η (̃ηn) = 0 and Ln attains a relative maximum at η̃n.
Furthermore,

(i) η̃n
a.s.
−→ η0 as n→∞.

(ii) n1/2(̃ηn − η0)
d
−→ N(0,Σ) as n→∞, where

Σ = σ 20 (1− ε
2
0)

 M−12 −mM−12 e 0 0
−me′M−12 c1 c2 0

0 c2 c3 0
0 0 0 c4

 , (18)

c1 =
3π
3π − 8

+m2e′M−12 e, c2 =
2
√
2π

(3π − 8)σ0
, c3 =

π

(3π − 8)σ 20
, c4 =

2σ 20
1− ε20

,

and M2,m are calculated for η = η0.
(iii) The covariance matrixΣ can be estimated strongly consistently by replacing η0 by η̃n in its expression. One may also replace

M2 by the estimated covariance matrix [m̂2,i−j]
p
i,j=1.

Remark 3. It results from (18) that the MLE σ̃ 2n and φ̃n are asymptotically independent of (̃φ
′
n, θ̃n, ε̃n) and ε̃n, respectively.

This property does not hold for the ME. Furthermore, we deduce from (16) and (18) that the asymptotic covariance of φ̃n is
reduced compared to the asymptotic covariance of the Yule–Walker estimator φ̂n by the factor

c2,Z
σ 20 (1− ε

2
0)
=
(3π − 8)ε20 + π
π(1− ε20)

∈ [1,∞).

This factor is a strictly increasing function of |ε0| and is equal to 1 in the Gaussian case ε0 = 0. On the other hand, the
asymptotic variances of φ̃n, θ̃n, ε̃n and σ̃ 2n depend on (φ0, ε0), (φ0, θ0, ε0, σ

2
0 ), ε0 and σ

2
0 , respectively.

Remark 4. It is interesting to compare the asymptotic covariance matrix of the MLE of (θ0, ε0, σ 20 ) in (18) with the
asymptotic covariance matrix Π of the MLE of (θ0, ε0, σ 20 ) obtained for an iid sequence (φ0 = 0) and given in [18,
Theorem 4.7] by

Π = σ 20 (1− ε
2
0)

(c7 c2 0
c2 c3 0
0 0 c4

)
,

where c7 = 3π/(3π − 8). The asymptotic variances of the estimates of ε0 and σ 20 are the same, as well as the asymptotic
covariance between the estimates of θ0 and ε0, while the asymptotic variance of the estimate of θ0 is inferior in the iid case
unless (Zt) is zero-mean. The variance stabilising transformations for the parameters ε0 and σ 20 are therefore the ones given
in [18, Theorem 4.11]. In particular, an approximate (1− α) confidence interval for ε0 is(

sin
{
arcsin(̃εn)− zα/2

√
π

(3π − 8)n

}
, sin

{
arcsin(̃εn)+ zα/2

√
π

(3π − 8)n

})
, (19)

where zα denotes the (1− α) quantile of the standard normal distribution.
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Remark 5. When the skewness ε0 is known a priori and is not estimated, the asymptotic covariance Ψ of the MLE of
(φ′0, θ0, σ

2
0 )
′ is obtained by inverting the matrix V = Σ−1 whose (p+ 2)th row and (p+ 2)th column have been deleted. It

results from (34) that

Ψ = σ 20 (1− ε
2
0)

 M−12 −mM−12 e 0
−me′M−12 c8 0

0 0 c4

 , (20)

where c8 = 1+m2e′M−12 e andM2,m are calculated for η = η0. Therefore, the asymptotic variance of theMLE of the location
θ0 is reduced by the factor

c1
c8
=

3π
3π−8 +m

2e′M−12 e

1+m2e′M−12 e

when the value of the skewness, if known a priori, is used. The asymptotic covariances of φ̃n and σ̃ 2n are unchanged.

Remark 6. When it is known that (Xt) is Gaussian and thus the skewness is not estimated, (̃φn, θ̃n) coincide with the usual
least squares estimates (LSE) (φLSn , θ

LS
n ) obtained by minimising the sum of squares

S(φ, θ) =
n∑

t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p − θ)2,

and σ̃ 2n = σ
2,LS
n = (n− p)−1S(φLSn , θ

LS
n ). The corresponding asymptotic covariance is given by (20) where ε0 = 0. To check

this, we set v2 = 1 in (26). Then, the partial derivatives ∂ l/∂φi, ∂ l/∂θ and ∂ l/∂σ 2 are given by (28) where v2 = 1 and
(̃φn, θ̃n, σ̃

2
n ) satisfy the equations ∂Ln/∂η = 0, i.e.,
n∑

t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p − θ)Xt−i = 0,

n∑
t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p − θ) = 0,

n∑
t=p+1

(Xt − φ1Xt−1 − · · · − φpXt−p − θ)2 = (n− p)σ 2,

whose solutions are indeed the LSE (φLSn , θ
LS
n , σ

2,LS
n ).

Remark 7. It is instructive to study the properties of (φLSn , θ
LS
n , σ

2,LS
n ) when ε0 6= 0. According to the standard theory,

(φLSn , θ
LS
n , σ

2,LS
n )

a.s.
−→ (φ0, c1,Z , c2,Z ) and n1/2(φLSn − φ0)

d
−→ N(0, c2,ZM−12 ). Therefore, when ε0 6= 0, φ

LS
n is consistent but is

not efficient, and we deduce from (3) that θ LSn tends to overestimate the location θ when ε0 < 0 and tends to underestimate
θ when ε0 > 0, and σ 2,LSn tends to overestimate σ 2.

3. Numerical results

3.1. Simulation study

The standard ESN(0, 1, ε) distribution is amixture of two half-normal distributions andmay be generated by (1−U)(1−
ε)|N1| − U(1+ ε)|N2| where U , N1, N2 are mutually independent, P(U = 1) = (1+ ε)/2 = 1− P(U = 0), and N1, N2 are
N(0, 1), see [18]. If Z has an ESN(0, 1, ε) distribution, then θ + σZ has an ESN(θ, σ , ε) distribution. Therefore, AR models
with ESN innovations are easily generated.
In the following, we consider a causal AR(1) model defined by
Xt = φXt−1 + Zt , (21)

where |φ| < 1 and (Zt) is a sequence of iid random variables with an ESN(θ, σ , ε) distribution. We compare the different
ME of the parameters η = (φ, θ, ε, σ 2)′ for finite samples, and we discuss the advantages of the MLE.
The centred series X̃t satisfies the difference equation X̃t = φX̃t−1 + Z̃t , where Z̃t = Zt − E Zt . Therefore, we have
E X̃3t = E(φX̃t−1 + Z̃t)

3
= φ3 E X̃3t−1 + E Z̃

3
t ,

which is equivalent to

m3,0(1− φ3) =
2
√
2σ 3ε
π3/2

[(5π − 16)ε2 − π ], (22)
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and we deduce from (9) and (22) that

g(ε) =
m3,0(1− φ3)
[m2,0(1− φ2)]3/2

, (23)

where g is defined by (12). We can consider the ME η̊n = (̂φn, θ̊n, ε̊n, σ̊ 2n )
′ of η obtained by replacing in (6), (8), (9) and (23)

the momentsm,m2,0,m2,1 andm3,0 by the corresponding sample moments given in (13). Then η̊n is defined by

φ̂n = m̂2,1/m̂2,0,

ε̊n = g−1
(
m̂3,0(1− φ̂3n)

[m̂2,0(1− φ̂2n)]3/2

)
,

σ̊ 2n =
m̂2,0(1− φ̂2n)π
(3π − 8)ε̊ 2n + π

,

θ̊n = m̂(1− φ̂n)+ 4σ̊nε̊n/
√
2π.

(24)

If m̂3,0(1 − φ̂3n)[m̂2,0(1 − φ̂
2
n)]
−3/2
6∈ (−c0, c0), the ME (θ̊n, ε̊n, σ̊ 2n ) are not defined. As in Section 2.1, we observe that

m̂3,0(1− φ̂3n)[m̂2,0(1− φ̂
2
n)]
−3/2 does not depend on θ and σ . We deduce from the pointwise ergodic theorem for stationary

sequences and the continuity of transformation (24) that η̊n
a.s.
−→ η. The asymptotic normality of (η̊n − η) can be deduced

from the asymptotic normality of (m̂−m, m̂2,0 −m2,0, m̂2,1 −m2,1, m̂3,0 −m3,0) by the delta method.
For the three ME η̂n, η̄n and η̊n defined by (14), (15) and (24), respectively, φ is estimated by the Yule–Walker estimator

φ̂n and we have n1/2(̂φn − φ)
d
−→ N(0, 1− φ2). Therefore, the asymptotic variance of φ̂n depends only on |φ|. We compare

the percentages of undefinedME and themean-squared error (MSE) of the ME of θ , ε and σ 2 for the three MEwhen θ = 10,
σ 2 = 1, and φ and ε vary in (−1, 1).
To build Fig. 1, we generate 2000 independent realisations of size 1000 of model (21) and we plot the percentages of

undefined ME when n = 300 and n = 1000. These percentages do not depend on θ and σ , and we have observed in the
simulations that for each ME, they depend very few on the signs of φ and ε. For that reason, they are plotted in Fig. 1 as
functions of |φ| and |ε|. We observe that for all ME the percentages increase as |ε| increases (around 40% when |ε| = 0.95)
and decrease as n increases. Moreover, the percentages increase as |φ| increases for η̂n and η̊n, these percentages being
bigger for η̊n, and the percentages depend very few on φ for η̄n and are the smallest ones.
To build Figs. 2–4,we generate 1000 independent realisations of size 1000 ofmodel (21) forwhich allME arewell defined.

We have observed in the simulations that the MSE of the ME of ε and σ 2 depend very few on the signs of φ and ε, and
therefore they are plotted as functions of |φ| and |ε|. This is not the case for the MSE of the ME of θ . Fig. 2 shows that the
MSE of the ME of θ are bigger for positive values of φ (compare the cases φ = −0.5 and φ = 0.5), and only the MSE of θ̄n
seems to be an increasing function of φ for any fixed ε. When φ > 0, the MSE decrease as ε increases, and when φ < 0,
the MSE increase as |ε| increases. The MSE of θ̄n is the smallest one for any (φ, ε) and is the less sensible to ε for any fixed
φ. Figs. 3 and 4 show that the MSE of ε̂n, ε̊n, σ̂ 2n and σ̊

2
n increase as |φ| and |ε| increase, while the MSE of ε̄n and σ̄

2
n do not

depend on φ and increase slightly as |ε| increase, and are the smallest ones.
The comparison of the three ME shows that η̄n is the best one in terms of percentage of undefined ME and MSE of the

estimation of θ , ε and σ 2, while η̊n is the worth one.
To compare η̄n with the MLE η̃n, we generate 1000 independent realisations of size 1000 of model (21) for which the

ME η̄n are well defined, and for each realisation, η̄n is used as initial value in a quasi-Newton method to find η̃n. We take
φ = 0.8, θ = 10, σ 2 = 1 and ε varies in (−1, 1). In Fig. 5, we plot the MSE of η̄n and η̃n and the asymptotic variances of
η̃n. For the four parameters, the MSE of η̄n are significantly greater than those of η̃n and the differences between the MSE
increase as |ε| increases. Furthermore, the MSE of η̃n are close from the asymptotic variances given by (18).
In Fig. 6, we plot the LSE (φLSn , θ

LS
n , σ

2,LS
n ) and the MLE (̃φn, θ̃n, σ̃ 2n ) obtained from 1000 independent realisations of size

1000 of model (21) where φ = 0.8, θ = 10, σ 2 = 1 and ε varies in (−1, 1). We observe that φ̃n is closer from the true value
than φLSn when |ε| increases. Furthermore, as noticed in Remark 7, θ

LS
n and σ

2,LS
n are biased estimates of the location θ and

the squared scale σ 2, respectively, and the bias increase as |ε| increases.

3.2. A real time series example

We consider the Dow–Jones Utilities Index from July 3, 1972 through December 20, 1972, and we ignore the unequal
spacing of the data resulting from the five-day working week. The very slowly decaying positive sample autocorrelation
function of this time series suggests differencing at lag one before attempting to fit a stationary model, see [24,
Example 5.1.1]. Fig. 7 shows that the differenced series is asymmetric and may be modeled by an AR(1) process.
The MLE and the Gaussian LSE presented in Remark 6 are given in Table 1 where the variances are calculated using (18)

where η0 is replaced by the MLE, and (20) where ε0 = 0 and (φ0, θ0, σ 20 ) are replaced by the LSE, respectively.
The approximate 95% confidence interval for the skewness parameter ε deduced from Table 1 is (−0.56,−0.04) and

the confidence interval deduced from (19) is (−0.54,−0.04). On the basis of both intervals, we reject at the 5% significance
level the hypothesis that ε is zero.
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Fig. 1. Percentages of undefined ME, p(̂ηn), p(η̄n) and p(η̊n)when θ = 10, σ 2 = 1, n = 300 and n = 1000.

Table 1
MLE and LSE of an AR(1) model fitted to the differenced series of the Dow–Jones Utilities Index (Jul. 3 – Dec. 20, 1972).

MLE LSE
Estimate Variance Estimate Variance

φ 0.47 5.8× 10−3 0.49 6.4× 10−3

θ −0.11 6.3× 10−3 0.05 1.2× 10−3

σ 2 0.12 2.6× 10−4 0.13 2.8× 10−4

ε −0.30 1.7× 10−2

The p-value of the Shapiro–Wilk test applied to the residuals of the AR(1) model obtained with the LSE is 1.9× 10−2 and
the p-value of the Jarque–Bera test applied to these residuals is 4.6× 10−4. Therefore, both tests reject the null hypothesis
of normality at the 95% confidence level.
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Fig. 2. MSE of θ̂n , θ̄n and θ̊n when θ = 10, σ 2 = 1 and n = 1000.
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Appendix

Asymptotic normality of η̂n. Let

m̃2,k =
1
n

n∑
t=1

X̃t X̃t+k,

m̃3,k =
1
n

n∑
t=1

X̃t X̃2t+k,

m̂n = (m̂−m, m̂2,0 −m2,0, . . . , m̂2,p −m2,p, m̂3,0 −m3,0, . . . , m̂3,p −m3,p)′,
m̃n = (m̂−m, m̃2,0 −m2,0, . . . , m̃2,p −m2,p, m̃3,0 −m3,0, . . . , m̃3,p −m3,p)′.

According to [23, Propositions 7.3.4], n1/2(m̃2,k − m̂2,k)
p
−→ 0. Simple algebra gives

n1/2(m̃3,k − m̂3,k) = n1/2(m̂−m)

[
1
n

n−k∑
t=1

X̃2t+k +
2
n

n−k∑
t=1

X̃t X̃t+k − (m̂−m)
1
n

n−k∑
t=1

(2X̃t+k + X̃t)+
n− k
n

(m̂−m)2
]

+ n−1/2
n∑

t=n−k+1

X̃t X̃2t+k.
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Fig. 3. MSE of ε̂n , ε̄n and ε̊n when θ = 10, σ 2 = 1 and n = 1000.

Since n−1/2 E |
∑n
t=n−k+1 X̃t X̃

2
t+k| ≤ n

−1/2k(E X̃2t E X̃
4
t )
1/2, the last term converges to 0 in probability. The term in square

brackets converges a.s. to m2,0 + 2m2,k and n1/2(m̂ − m) converges in distribution. Therefore, it follows from Slutsky’s
lemma that n1/2m̂n and n1/2(m̃n − (m̂−m)d1) have the same asymptotic distribution, where

d1 = (0, 0, . . . , 0, 3m2,0,m2,0 + 2m2,1, . . . ,m2,0 + 2m2,p)′.

This asymptotic distribution is easily obtained from the one of n1/2m̃n. Now, using the same technique as in [23,
Propositions 7.3.1, 7.3.2, 7.3.3], we can show that n1/2m̃n

d
−→ N(0,Υ1), where Υ1 = limn→∞ Υ1,n and Υ1,n is the covariance

matrix of n1/2m̃n. Then, n1/2m̂n
d
−→ N(0,Ω1), where

Ω1,ij = Ω1,ji = Υ1,ij − d1,jΥ1,1i − d1,iΥ1,1j + d1,id1,jΥ1,11, (25)

and n1/2(̂ηn − η)
d
−→ N(0,Σ1), whereΣ1 = D1Ω1D′1 and D1 is the gradient of the transformation (14) that associates η̂n to

(m̂, m̂2,0, . . . , m̂2,p, m̂3,0, . . . , m̂3,p).
Asymptotic normality of η̄n. Let

c̃k,Z =
1
n

n∑
t=p+1

Z̃kt ,

ĉn = (m̂−m, m̂2,0 −m2,0, . . . , m̂2,p −m2,p, ĉ2,Z − c2,Z , ĉ3,Z − c3,Z )′,
c̃n = (m̂−m, m̃2,0 −m2,0, . . . , m̃2,p −m2,p, c̃2,Z − c2,Z , c̃3,Z − c3,Z )′,

where c2,Z and c3,Z are given by (3). Using the causality of model (7) and Slutsky’s lemma, it follows from easy calculations
that n1/2(̃c2,Z −̂c2,Z )

p
−→ 0 and n1/2(̃c3,Z −̂c3,Z−d(m̂−m))

p
−→ 0where d = 3c2,Z (1−e′φ). Then n1/2̂cn and n1/2(̃cn−(m̂−m)d2)

have the same asymptotic distribution, where

d2 = (0, . . . , 0, d)′.
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Fig. 4. MSE of σ̂ 2n , σ̄
2
n and σ̊

2
n when θ = 10, σ

2
= 1 and n = 1000.

As in [23, Propositions 7.3.1, 7.3.2, 7.3.3], we can establish that n1/2̃cn
d
−→ N(0,Υ2), where Υ2 = limn→∞ Υ2,n and Υ2,n is the

covariance matrix of n1/2̃cn. Then n1/2̂cn
d
−→ N(0,Ω2), whereΩ2 is given by (25) in whichΩ1, Υ1, d1 are replaced byΩ2, Υ2,

d2, respectively. Hence, n1/2(η̄n − η)
d
−→ N(0,Σ2), where Σ2 = D2Ω2D′2 and D2 is the gradient of the transformation (15)

that associates η̄n to (m̂, m̂2,0, . . . , m̂2,p, ĉ2,Z , ĉ3,Z ).

Proof of Theorem 2. The basic technique of proof is to control the behavior of the first and second order terms in a Taylor
expansion of Ln(η) about η0. The log-likelihood Ln(η) is defined by (17) where for all x ∈ Rp+1,

l(x; η) = −
1
2
ln(2πσ 2)−

u2v2
2σ 2

(26)

and

u = x0 − φ1x1 − · · · − φpxp − θ,

vn =
1(−∞,0)(u)
(1+ ε)n

+ (−1)n
1(0,+∞)(u)
(1− ε)n

, ∀n ∈ N.
(27)

Function l(x; η) is twice continuously differentiablewith respect toη in someneighbourhoodN0 ofη0 for almost all x ∈ Rp+1.
Without further notice, all neighbourhoods defined below are taken to be contained inN0. Then, for δ > 0, ‖η − η0‖ < δ,

Ln(η) = Ln(η0)+ (η − η0)′
∂Ln
∂η
(η0)+

1
2
(η − η0)

′Vn(η − η0)+
1
2
(η − η0)

′Tn(η?)(η − η0),

where

Vn =
∂2Ln
∂η∂η′

(η0), Tn(η?) =
∂2Ln
∂η∂η′

(η?)−
∂2Ln
∂η∂η′

(η0),
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Fig. 5. MSE and asymptotic variances (ASY) of η̄n and η̃n when φ = 0.8, θ = 10, σ 2 = 1 and n = 1000.

and η? = η?(X1, . . . , Xn; η) is an intermediate point between η and η0. According to [25, Corollary 2.1 and Theorem 2.2],
see also [26, Theorem 3.2.23], Theorem 2(i) holds if the three following conditions are satisfied as n→∞,

(A1) n−1 ∂Ln
∂η
(η0)

a.s.
−→ 0,

(A2) n−1Vn
a.s.
−→ −V , where V is a positive definite matrix,

(A3) for 1 ≤ i, j ≤ p+ 3, limn→∞ supδ→0(nδ)−1|Tn(η?)i,j| <∞ a.s., where Tn(η?)i,j is the (i, j)th component of Tn(η?).
If, in addition,

(A4) n−1/2 ∂Ln
∂η
(η0)

d
−→ N(0, V ),

then Theorem 2(ii) holds withΣ = V−1.
Let us check condition (A1). Using that dvn/dε = −nvn+1, we deduce from (26) and (27), that

∂ l
∂φi

(x; η) =
uxiv2
σ 2

,
∂ l
∂θ
(x; η) =

uv2
σ 2
,

∂ l
∂ε
(x; η) =

u2v3
σ 2

,
∂ l
∂σ 2

(x; η) = −
1
2σ 2
+
u2v2
2σ 4

. (28)

Observe that

|vn| ≤
2

(1− |ε|)n
. (29)

Therefore, finiteness of E X2t and (28) imply that

E
∣∣∣∣ ∂ l∂ηi (Xt , . . . , Xt−p; η0)

∣∣∣∣ <∞, for 1 ≤ i ≤ p+ 3. (30)

Since (Xt) is strictly stationary and ergodic, so is the process (Ut)t>p where

Ut =
∂ l
∂η
(Xt , . . . , Xt−p; η0), (31)
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Fig. 6. LSE and MLE of (φ, θ, σ 2)when φ = 0.8, θ = 10, σ 2 = 1 and n = 1000.

Fig. 7. Differenced series of the Dow–Jones Utilities Index (Jul. 3 – Dec. 20, 1972); (a) Series, (b) Histogram, (c) Autocorrelation function, (d) Partial
autocorrelation function.
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and it follows from the pointwise ergodic theorem for stationary sequences [22, Theorem3.5.7] and (30) that n−1 ∂Ln
∂η
(η0)

a.s.
−→

EUt . Since (Xt) is causal, Xt−i and Zt are independentwhen i > 0, and then for all non negative integers k, l,m, n and positive
integers i, j,

E
[
(Zt − θ0)kX lt−iX

m
t−j

(
1(−∞,θ0)(Zt)
(1+ ε0)n

+ (−1)n
1(θ0,+∞)(Zt)
(1− ε0)n

)]
=

σ k0
√
2π

[
(−1)kIk(−ε0)
(1+ ε0)n

+
(−1)nIk(ε0)
(1− ε0)n

]
E X lt−iX

m
t−j, (32)

where Ik(ε) is defined by (2). Using that Xt −φ0,1Xt−1−φ0,pXt−p− θ0 = Zt − θ0, (28) and (32), we get EUt = 0, so that (A1)
holds.
We now check condition (A2). According to (28), we have

∂2l
∂φi∂φj

(x; η) = −
xixjv2
σ 2

,
∂2l
∂φi∂θ

(x; η) = −
xiv2
σ 2

,
∂2l
∂φi∂ε

(x; η) = −
2uxiv3
σ 2

,

∂ l
∂φi∂σ 2

(x; η) = −
uxiv2
σ 4

,
∂2l
∂θ2

(x; η) = −
v2

σ 2
,

∂2l
∂θ∂ε

(x; η) = −
2uv3
σ 2

,

∂2l
∂θ∂σ 2

(x; η) = −
uv2
σ 4
,

∂2l
∂ε2

(x; η) = −
3u2v4
σ 2

,
∂2l

∂ε∂σ 2
(x; η) = −

u2v3
σ 4

,

∂2l
∂σ 4

(x; η) =
1
2σ 4
−
u2v2
σ 6

.

(33)

Using (29) and finiteness of E X2t , we easily deduce from (33) that

E
∣∣∣∣ ∂2l
∂ηi∂ηj

(Xt , . . . , Xt−p; η0)
∣∣∣∣ <∞, for 1 ≤ i, j ≤ p+ 3.

The strict stationarity and ergodicity of the process
(

∂2 l
∂η∂η′

(Xt , . . . , Xt−p; η0)
)
follows from those of (Xt), and the pointwise

ergodic theorem asserts that n−1Vn
a.s.
−→ −V where V = − E ∂2 l

∂η∂η′
(Xt , . . . , Xt−p; η0). Using (32) and (33), we get

V =
1

σ 20 (1− ε
2
0)

M2 +m
2ee′ me mc5e 0

me′ 1 c5 0
mc5e′ c5 3σ 20 0
0 0 0 c6

 (34)

where c5 = −4σ0/
√
2π , c6 = (1− ε20)/(2σ

2
0 ), andM2,m are calculated for η = η0. To show that V is positive definite, take

a = (a′1, a
′

2)
′ where a1 ∈ Rp and a2 = (a21, a22, a23)′ ∈ R3. Simple algebra shows that

σ 20 (1− ε
2
0)a
′Va = a′1M2a1 + (me

′a1 + a21 + c5a22)2 +
σ 20

π
(3π − 8)a222 + c6a

2
23.

Then a′Va > 0 for all a 6= 0 sinceM2 is positive definite, 3π − 8 > 0 and c6 > 0. This shows (A2).
To establish condition (A3), we shall prove that there exist measurable functions gi,j,k : Rp+1 → R, 1 ≤ i, j, k ≤ p + 3,

such that, for all η in some neighbourhoodN of η0 and for almost all x ∈ Rp+1,∣∣∣∣ ∂3l
∂ηi∂ηj∂ηk

(x; η)
∣∣∣∣ ≤ gi,j,k(x) and E gi,j,k(Xt , . . . , Xt−p) <∞. (35)

Indeed, (A3) follows from (35), themean value theoremand the ergodic theorem. According to (33), all the third order partial
derivatives of l(x; η)with respect to η take the form

h(x; η) =
rukxlix

m
j vn

σ 2q
, (36)

where r is an integer and k, l,m, n, q are non negative integers, except ∂3 l
∂σ 6
(x; η) which is the sum of two functions of

type (36). To prove (35), it is therefore sufficient to show that there exists a measurable function g : Rp+1 → R such that,
for all η ∈ N and for almost all x ∈ Rp+1, |h(x; η)| ≤ g(x) and E g(Xt , . . . , Xt−p) <∞. Firstly, we observe that φ(z) 6= 0 for
|z| ≤ 1 implies that the coefficients φk satisfy |φk| <

( p
k

)
. Indeed, let z1, . . . , zp be the unnecessarily distinct roots of φ(z),
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we have φ(z) =
∏p
i=1(1− z

−1
i z) and then φk = (−1)

k+1∑
1≤i1<···<ik≤p

z−1i1 · · · z
−1
ik
, from which the result follows. Now, we

chooseN such that, for all η ∈ N ,

|φi| <
(p
i

)
, |ε| < 1− δ where δ ∈ (0, 1) is small enough , σ > σ0/2, |θ | ≤ 2|θ0|. (37)

Then,

∀(η, x) ∈ N × Rp+1, |h(x; η)| ≤
22q+1|r|

σ
2q
0 δ

n

( p∑
i=0

(p
i

)
|xi| + 2|θ0|

)k
|xi|l|xj|m a.e., (38)

and finiteness of E |Xt |k for all k ≥ 1 implies that

E
( p∑
i=0

(p
i

)
|Xt−i| + 2|θ0|

)k
|Xt−i|l|Xt−j|m <∞.

Thus (A3) holds.
We check now condition (A4). Firstly, we prove that the sequence (Ut)t>p defined by (31) is a martingale difference

relative to (Ft)where Ft is the σ -algebra generated by {X1, . . . , Xt}. We have

E[Ut |X1 = x1, . . . , Xt−1 = xt−1] =
∫

R

∂ l
∂η
(xt , xt−1, . . . , xt−p; η0)f (xt |x1, . . . , xt−1)dxt ,

where f (·|x1, . . . , xt−1) is the true conditional density of Xt given X1 = x1, . . . , Xt−1 = xt−1. Since (Xt) is the Markov
process (4),

f (xt |x1, . . . , xt−1) = f0(xt − φ0,1xt−1 − · · · − φ0,pxt−p),

where f0 is the density (1) with (θ, σ , ε) = (θ0, σ0, ε0). Therefore,

E[Ut |X1 = x1, . . . , Xt−1 = xt−1] =
∫

R

∂ f (xt − φ1xt−1 − · · · − φpxt−p)
∂η

∣∣∣∣
η0

dxt . (39)

The right-hand side of (39) is zero if we can interchange integration and differentiation, and this is the case if there exist
functions gi : Rp+1 → R, 1 ≤ i ≤ p + 3, such that, for all η in some neighbourhood N of η0, for all (x1, . . . , xp) ∈ Rp, and
for almost all x0 ∈ R,∣∣∣∣∂ f (x0 − φ1x1 − · · · − φpxp)∂ηi

∣∣∣∣ ≤ gi(x) and ∫
R
gi(x)dx0 <∞, (40)

where x = (x0, . . . , xp), see e.g. [27, Théorème 8.40]. According to (28), all the partial derivatives of l(x; η) with respect to
η either take the form (36) or are sums of functions of type (36). To prove (40), it is therefore sufficient to show that there
exists a function g : Rp+1 → R such that, for all (η, x1, . . . , xp) ∈ N × Rp,

|h(x; η)|f (x0 − φ1x1 − · · · − φpxp) ≤ g(x) a.e. and
∫

R
g(x)dx0 <∞. (41)

We chooseN such that (37) holds for all η ∈ N . Then,

|u| ≥
|x0|
2

if |x0| ≥ M whereM = 2

[
p∑
i=1

(p
i

)
|xi| + 2|θ0|

]
. (42)

Indeed, since u takes the form u = x0 − ywhere |y| ≤ M/2, we have

|u| ≥ |x0| − |y| ≥ |x0| −M/2 ≥ |x0|/2

if |x0| ≥ M . We assume further that σ < 2σ0 for all η ∈ N . Since v2 > 1/4, it results from (26) and (42) that

f (x0 − φ1x1 − · · · − φpxp) =
1

√
2πσ

exp
(
−
u2v2
2σ 2

)
≤


2

√
2πσ0

exp
(
−

x20
128σ 20

)
if |x0| ≥ M,

2
√
2πσ0

if |x0| < M.

Since (38) is also satisfied, there exists a function g satisfying (41) and it follows from (39) that E[Ut |Ft−1] = 0. According
to the central limit theorem of [28,29] for stationary ergodic martingale differences, if the components ofW = EUtU ′t are

finite, then n−1/2 ∂Ln
∂η
(η0)

d
−→ N(0,W ). Therefore, (A4) will be proved if we show thatW = V . This may be verified directly



1776 P. Bondon / Journal of Multivariate Analysis 100 (2009) 1761–1776

using (28) and (32) and vmvn = vm+n for all non negative integersm, n. Alternatively, onemay show thatwe can interchange
integration and one more differentiation in (39) since this implies that E[UtU ′t |Ft−1] = − E[

∂2 l
∂η∂η′

(Xt , . . . , Xt−p; η0)|Ft−1],
and this is the case when there exist functions gi,j : Rp+1 → R, 1 ≤ i, j ≤ p+ 3, such that, for all η in some neighbourhood
N of η0, for all (x1, . . . , xp) ∈ Rp, and for almost all x0 ∈ R,∣∣∣∣[ ∂2l

∂ηi∂ηj
(x; η)+

∂ l
∂ηi

(x; η)
∂ l
∂ηj

(x; η)
]
f (x0 − φ1x1 − · · · − φpxp)

∣∣∣∣ ≤ gi,j(x), ∫
R
gi,j(x)dx0 <∞, (43)

where x = (x0, . . . , xp). According to (33), all the second order partial derivatives of l(x; η)with respect to η either take the
form (36) or are sums of functions of type (36). According to (28), the same property is true for double products of first order
partial derivatives of l(x; η) with respect to η. Therefore, (41) implies (43), and (A4) is established. Simple algebra shows
thatΣ given by (18) is the inverse of V given by (34).
To prove Theorem2(iii),we viewΣ as a function g ofη calculated atη0. Since η̃n

a.s.
−→ η0, g (̃ηn)

a.s.
−→ g(η0) if g is continuous

at η0. This is indeed the case sincem given by (6) is a continuous function of η in S, c2,Z given by (3) is a continuous function
of (ε, σ 2) in (−1, 1) × (0,∞), and for any given lag k, m2,k is a continuous function of (c2,Z , φ) in (0,∞) × C . The last
point follows from m2,k =

c2,Z
π

∫ π
0 cos(kν)|φ(e

−iν)|−2dν where (ν, φ) 7→ cos(kν)|φ(e−iν)|−2 is continuous in [0, π] × C

and every point in C admits a compact neighbourhood. Lastly, since for any fixed k, m̂2,k
a.s.
−→ m2,k, one may also replaceM2

by [m̂2,i−j]
p
i,j=1 in (18) to estimateΣ strongly consistently.
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