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SUMMARY

Mutations in the RNA binding protein FUS cause
amyotrophic lateral sclerosis (ALS), a fatal adult
motor neuron disease. Decreased expression of
SMN causes the fatal childhood motor neuron
disorder spinal muscular atrophy (SMA). The SMN
complex localizes in both the cytoplasm and nuclear
Gems, and loss of Gems is a cellular hallmark of
fibroblasts in patients with SMA. Here, we report
that FUS associates with the SMN complex,
mediated by U1 snRNP and by direct interactions
between FUS and SMN. Functionally, we show that
FUS is required for Gem formation in HeLa cells,
and expression of FUS containing a severe ALS-
causing mutation (R495X) also results in Gem loss.
Strikingly, a reduction in Gems is observed in ALS
patient fibroblasts expressing either mutant FUS or
TDP-43, another ALS-causing protein that interacts
with FUS. The physical and functional interactions
among SMN, FUS, TDP-43, and Gems indicate that
ALS and SMA share a biochemical pathway, pro-
viding strong support for the view that these motor
neuron diseases are related.

INTRODUCTION

Mutations in at least ten genes cause ALS, but the disease

mechanisms are not yet understood. Approximately 10% of

ALS cases are familial and the rest are sporadic (Boillée et al.,

2006; Valdmanis and Rouleau, 2008). Mutations in the RNA

binding protein FUS are the cause of a subset of familial and

sporadic ALS cases (Kwiatkowski et al., 2009; Vance et al.,

2009). FUS has features in commonwith the RNA binding protein
C

TDP-43, and mutations in TDP-43 also cause ALS (Gitcho et al.,

2008; Kabashi et al., 2008; Sreedharan et al., 2008). FUS

and TDP-43 are nuclear proteins at steady state and shuttle

between the nucleus and cytoplasm. Both proteins function in

transcription, splicing, mRNP transport, and other processes in

the nucleus and cytoplasm (Liu-Yesucevitz et al., 2011). These

and other observations suggest a relationship between RNA

metabolism and motor neuron disease. For example, the child-

hood motor neuron disease spinal muscular atrophy (SMA) is

caused by deficiency in the SMN protein (Lefebvre et al.,

1995). SMN is a component of the SMN complex, which func-

tions in snRNP biogenesis (Battle et al., 2006), and has been

implicated in other RNA-related roles, such as mRNP transport

(Fallini et al., 2012b). RNA metabolism defects may also explain

the pathogenicity of C9ORF72, which causes ALS via a repeat

expansion in the first intron (DeJesus-Hernandez et al., 2011;

Renton et al., 2011). This expansion forms nuclear aggregates

that can titrate crucial RNA binding proteins (DeJesus-Hernan-

dez et al., 2011).

In most cell types, including motor neurons, the SMN complex

localizes in the cytoplasm and in nuclear Gems (Battle et al.,

2006; Gubitz et al., 2004; Liu and Dreyfuss, 1996). Loss of

Gems is a cellular hallmark of SMA. Of interest, studies have

shown that Gems are also lost from motor neurons in a TDP-

43 knockout mouse (Shan et al., 2010), and mutations in

SOD1, which account for a large fraction of familial ALS cases,

also lead to Gem deficiency in mouse models (Gertz et al.,

2012; Kariya et al., 2012). These mouse model studies suggest

that ALS and SMAmay be related diseases, but the biochemical

pathways involved are not known. These studies have generated

considerable interest in understanding how RNA-related pro-

teins cause motor neuron disease. Here, we report that FUS

interacts both physically and functionally with SMN. We show

that SMN-containing nuclear Gems are lost from FUS knock-

down HeLa cells. Strikingly, Gem loss also occurs in HeLa cells

transfected with a FUS construct bearing a severe ALS-causing
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Figure 1. The SMN Complex and U1 snRNP Associate with FUS

(A) IP was carried out with HeLa nuclear extracts using FUS or negative control antibodies (lanes 1–3). In lane 3, nuclear extract was incubated with RNase A prior

to IP. GST-FUS (lanes 4 and 5) or GST (lanes 6 and 7) was used for pulldowns from nuclear extract (lanes 4 and 6) or buffer alone (lanes 5 and 7). Proteins were run

on a 4%–12% sodium dodecyl sulfate (SDS) gradient gel and detected by Coomassie staining. Indicated proteins were identified byMS. L, antibody light chain; *,

FUS; **, a nonspecific band.

(B) Total RNA from IP and GST pulldown samples used in (A); 30% input (inpt) was loaded. RNAs were detected with ethidium bromide.

(C) Protein was isolated from samples in (B) followed by western blotting with the indicated antibodies; 15% input (inpt) was loaded.

(D) Table showing MS data for the indicated proteins from FUS IP. The number of total peptides (Total) and total unique peptides (Unique) identified by MS is

shown.

(E) IP/western blotting with the indicated antibodies. The negative control for the FUS and TDP-43 antibodies was a rabbit polyclonal antibody (lane 2, SAP130),

and the negative control for the monoclonal antibodies (SMN and Gemin3) was a monoclonal against HA (lane 7).

(F) Same as in (E) except that the nuclear extract was treated or not treated with RNase prior to the IP.

(G) FUS interacts directly with SMN. The indicated purified proteins (2 mg) were mixed in the presence of RNase A followed by GST pulldowns. Proteins were

separated on a 4%–12% SDS-gradient gel and detected by Coomassie staining. Molecular weight markers in kDa are indicated.

See also Figure S1.
mutation and in ALS patient fibroblasts bearing FUS or TDP-43

mutations. Together, these observations suggest that a common

biochemical pathway involving SMN, FUS, TDP-43, and Gems

links the motor neuron diseases SMA and ALS.

RESULTS

FUS Associates with the SMN Complex and U1 snRNP
To investigate the mechanisms by which mutations in RNA

binding proteins cause ALS, we focused on FUS. Antibodies

raised against GST-FUS detect one main band on a western

blot, and immunoprecipitate FUS from HeLa nuclear extracts
800 Cell Reports 2, 799–806, October 25, 2012 ª2012 The Authors
(Figure S1). To examine the FUS interactome, we used the

FUS antibody for immunoprecipitation (IP), and GST-FUS for

pulldowns from nuclear extract, and analyzed the proteins

on a Coomassie gel (Figure 1A). Mass spectrometry (MS) of

bands excised from the gel showed that U1 snRNP components

were among the most abundant proteins associated with FUS

(Figure 1A, lanes 2 and 4). Moreover, U1 small nuclear RNA

(snRNA) was abundant in the FUS immunoprecipitate and

pulldown (Figure 1B), and western analysis confirmed the pres-

ence of U1 snRNP proteins in the FUS immunoprecipitate and

pulldown (Figure 1C). The interaction between FUS and U1

snRNP is specific, because U1 snRNP components were not



immunoprecipitated by the FUS antibody in FUS knockdown

nuclear extracts (Figure S1).

The FUS IP and pulldown revealed that FUS also associates

with components of the SMNcomplex, including SMN andGem-

ins 4 and 6 (Figure 1A). This result is significant because an asso-

ciation between FUS andSMN raises the possibility that ALS and

SMA are caused by defects in a shared biochemical pathway. To

pursue this possibility, we analyzed the total proteins present in

the FUS immunoprecipitate by MS. U1 snRNP components and

Sm proteins were the most abundant proteins in the data set

(Figure 1D; Table S1). In addition, all of the nuclear components

of the SMN complex, except for the smallest (Gemin 7, 14 kDa),

were present (Figure 1D; Table S1). FUS reciprocally coimmuno-

precipitated with SMN and the Gemins, confirming the speci-

ficity of the association between the SMN complex and FUS

(Figure 1E). Although previous work showed that FUS associates

with TDP-43 (Kim et al., 2010; Ling et al., 2010), we found that

the level of TDP-43 was not significantly above background in

our FUS immunoprecipitate (Table S1). However, IP/western

analysis revealed that TDP-43 and FUS do coimmunoprecipitate

in nuclear extract (Figure 1E). In contrast, TDP-43 does not coim-

munoprecipitate with SMN complex components (Figure 1E).

Thus, although FUS and TDP-43 interact, the two proteins

have distinct molecular associations. Indeed, TDP-43 associ-

ates with components of the miRNA processing machinery

(Ling et al., 2010; Sephton et al., 2011).

Most of the proteins in the FUS immunoprecipitate associate

with FUS in an RNA-dependent manner (Figure 1A, lane 3),

including the SMN complex and U1 snRNP (Figure 1F). Consis-

tent with this observation, analysis of FUS deletion mutants

revealed that the RNA-recognition motif is required for the asso-

ciation of FUS with the SMN complex, U1 snRNP proteins, and

U1 snRNA (Figure S1). The SMN complex binds directly to U1

snRNA (Yong et al., 2002). Thus, U1 snRNA may mediate the

RNA-dependent binding of the SMN complex to FUS. The

GST-pulldown data also revealed that FUS associates with itself,

because endogenous FUS in the nuclear extract binds to GST-

FUS (indicated by the asterisk in Figure 1A, lane 4). An amino-

terminal region on FUS (1-111) is necessary and sufficient for

the FUS-FUS interaction (Figure S1).

To further characterize the association between FUS and

SMN, we carried out GST-FUS pulldowns using purified proteins

in the presence of RNase. This analysis revealed that GST-FUS

interacted efficiently and directly with SMN, but not with negative

control proteins (GST and LC3; Figure 1G, lanes 1–7). We

conclude that the associations among FUS, the SMN complex,

and U1 snRNP are mediated by U1 snRNA and also by a direct

interaction between FUS and SMN.

FUS Is Required for Gem Formation in HeLa Cells
We next asked whether the physical association between FUS

and SMN is functionally significant. Accordingly, we targeted

FUS with small hairpin RNA (shRNA) in HeLa cells and examined

the distribution of SMN and FUS by immunofluorescence (IF). IF

showed that FUS was efficiently knocked down, and, as ex-

pected, FUS localized in the nucleus in control knockdown cells

(Figure 2A). Remarkably, the number of SMN-stained nuclear

bodies was dramatically reduced in the FUS knockdown cells
C

(Figure 2A), and diffuse nuclear staining of SMN was observed

in a subset of the cells (Figure 2A, arrowheads). Loss of Gems

was also observed when antibodies to Gemins 3 and 4 were

used (Figure 2B), indicating that Gems are the nuclear bodies

lost in FUS knockdown cells. Consistent with this conclusion,

Gems were detected when antibodies to Gemin3 or SMN were

used for double IF (Figure S2). Of importance, however, the

levels of SMN and the other Gemin proteins were not affected

by the FUS knockdown in total cell lysates (Figure 2C). We

conclude that FUS knockdown results in loss of Gems without

affecting the overall levels of SMN/Gemins.

To further examine the role of FUS in Gem formation, we asked

whether the loss of Gems in FUS knockdown cells could be

rescued by expression of exogenous SMN. FUS knockdown or

control cells were transfected with SMN-GFP and then analyzed

for SMN-GFP expression and by IF for Gemin3. Their colocaliza-

tion was used to identify Gems. As shown in Figure 2D, Gems

were lacking in FUS knockdown cells that did not express

SMN-GFP or that express GFP alone. In contrast, Gems were

efficiently restored in FUS knockdown cells expressing SMN-

GFP. In control knockdown cells, the Gem levels were similar

in nontransfected cells and in cells transfected with SMN-GFP

or GFP alone (Figure 2D). We conclude that increased levels of

SMN can bypass the requirement for FUS in Gem formation,

which suggests that SMN acts downstream of FUS in a shared

pathway required for Gem formation.

Expression of an ALS-Causing FUS Mutation Causes
Loss of Gems
Many of the mutations in FUS that cause ALS are found in

the nuclear localization sequence (NLS) and result in varying

degrees of mislocalization of FUS to the cytoplasm (Dormann

et al., 2010). Because these ALS mutations are dominant, we

next asked whether transfection of a construct bearing the

FUS R495X ALS mutation affects Gem levels in HeLa cells.

This mutation, in which the NLS is lacking, causes a severe

form of ALS (Bosco et al., 2010; Waibel et al., 2010). When

wild-type (WT) FUS was expressed in HeLa cells, FUS properly

localized to the nucleus (Figure 3A). In contrast, high levels of

FUS R495X were detected in the cytoplasm (Figure 3A). Strik-

ingly, Gem levels were dramatically reduced in the cells contain-

ing FUS R495X compared with cells transfected with WT FUS

(Figures 3A and 3B).We conclude that normal Gem levels require

nuclear localization of FUS. The NLS of FUS is not required for

SMN binding (Figure S3). Thus, it is possible that FUS R495X

sequesters SMN in the cytoplasm to an extent that results in

loss of Gems. Alternatively, FUS R495X may inhibit the normal

function of FUS in Gem formation by acting as a dominant nega-

tive via the FUS-FUS interaction.

Gems Are Deficient in ALS Patient Fibroblasts Bearing
FUS or TDP-43 Mutations
Previous work showed that Gems are lost from SMA patient

fibroblasts (Coovert et al., 1997). In addition, Gems were shown

to be deficient in both TDP-43 and SOD1 ALS mouse models

(Gertz et al., 2012; Kariya et al., 2012; Shan et al., 2010). We

therefore asked whether Gem levels are affected in ALS patient

fibroblasts. Costaining with SMN and Gemin antibodies was
ell Reports 2, 799–806, October 25, 2012 ª2012 The Authors 801



Figure 2. FUS Is Required for Gem Formation in HeLa Cells

(A) FUS or control knockdown (KD) HeLa cells were used to detect Gems (green in nucleus) and FUS (red) by IF with SMN and FUS antibodies, respectively. FUS

was knocked down using an shRNA against FUS. Scrambled shRNA was used as a negative control. DAPI shows the nucleus. Scale bar, 20 mm.

(B) IF staining of FUS or control KD HeLa cells was carried out with the indicated antibodies. Scale bar, 20 mm.

(C) Western analysis of FUS and control KDs in HeLa cells using the indicated antibodies. Tubulin was used as the loading control.

(D) SMN-GFP or GFPwas expressed in control or FUSKDHeLa cells. Gemswere detected with SMN-GFP and costaining with theGemin3 antibody. DAPI shows

the nucleus. Scale bar, 20 mm. Right panels (merged) show high magnification of the dashed squares indicated in the left panels.

See also Figure S2.
used to verify the detection of Gems in the fibroblasts (Figure S4).

We first examined two ALS patient fibroblast lines, one bearing

a FUS R521C mutation and another bearing a TDP-43 M337V

mutation. Strikingly, a Gem deficiency was observed in both

FUS and TDP-43 patient fibroblasts compared with age- and

sex-matched fibroblasts from unaffected individuals (Figures

4A and 4B). To extend these results, we used an automated

system to collect images from three biological replicates of

each fibroblast line and then counted the Gems in at least 800

cells for each cell line tested. We also used this system to

examine fibroblasts from additional patients carrying a FUS
802 Cell Reports 2, 799–806, October 25, 2012 ª2012 The Authors
(R514G) or TDP-43 (G298S) mutation, as well as five unaffected

individuals. These data revealed that the average Gem number

was 2- to 3-fold lower in the FUS fibroblasts and 1.8-fold lower

in the TDP-43 fibroblasts relative to controls (Figure 4C). We

conclude that a single dominant amino acid substitution in

FUS or TDP-43 results in Gem deficiency in these ALS patient

fibroblasts. Both of the FUS patient mutations that we examined

were in the NLS, and we observed significant mislocalization of

FUS to the cytoplasm in these fibroblast lines relative to the

controls (Figure S4). Thus, the decreased level of Gems may

be explained by the decrease in levels of nuclear FUS.



Figure 3. Gems Are Lost in HeLa Cells

Transfected with the ALS-Causing R495X

FUS Mutation

(A) Representative images showing the expression

of FLAG-tagged FUS or FUS R495X in HeLa cells

(red). Gems were detected using SMN antibodies

(green in nucleus). Scale bar, 20 mm.

(B) Quantitation of Gem levels in HeLa cells ex-

pressing the indicated proteins. The mean and

standard deviation of Gem numbers per cell were

calculated from three independent experiments.

At least 100 cells were observed in each experi-

ment. The p valueswere calculated by comparison

with three controls (*p < 0.01, Student’s t test).

See also Figure S3.
Previous work showed that Gems are decreased in a TDP-43

knockout mouse model (Shan et al., 2010). Consistent with this

conclusion and our patient fibroblast data, Gems were signifi-

cantly decreasedwhen TDP-43was knocked down in HeLa cells

(Figure S4). We found that TDP-43 was properly localized in the

nucleus in both of the ALS patient fibroblast lines containing

TDP-43 mutations (Figure S4). We conclude that these muta-

tions in TDP-43 or knockdown of TDP-43 affect the normal levels

of Gems.

DISCUSSION

Here we report several independent lines of evidence indicating

that ALS and SMA are motor neuron diseases linked by a

common molecular pathway. Specifically, we show that FUS,

which is mutated in ALS, interacts with SMN, the protein that is

deficient in SMA. SMN is a component of the SMN complex

(Battle et al., 2006), and we show that FUS associates with this

complex. The SMN complex functions in snRNP biogenesis,

and we found that U1 snRNP is abundantly associated with

FUS. In the nucleus, the SMN complex is present in Gems,

and we found that FUS is required for Gem formation. Further-

more, we found that Gems are lost from HeLa cells transfected

with an ALS-causing FUS mutation. Previous work showed

that Gems are lacking in SMA patient fibroblasts (Coovert

et al., 1997). Strikingly, we found that single dominant mutations

in FUS result in decreased Gem levels in ALS patient fibroblasts.

FUS is known to interact directly with TDP-43 (Ling et al., 2010)

and FUS acts downstream of TDP-43 in shared genetic path-

ways that are required for normal survival and motor function

in Drosophila and zebrafish (Kabashi et al., 2011; Wang et al.,

2011). As observed for SMN and FUS, TDP-43 is required for

normal Gem levels (Shan et al., 2010), and we found that

Gems are significantly decreased in ALS patient fibroblasts

bearing TDP-43 point mutations. Taken together, these observa-

tions suggest a model in which TDP-43 functions upstream of

FUS, which in turn is required for assembly of SMN into Gems.

Thus, SMA and ALS share a common pathway involving TDP-

43, FUS, SMN, and Gems. Of interest, Gems were recently

shown to be deficient in SOD1 mouse models of ALS (Gertz

et al., 2012; Kariya et al., 2012). Thus, disruption of the Gem

pathway may be a common feature of SMA and multiple types

of familial ALS. Our data showing that FUS associates with itself

may explain why FUS mutations are dominant. By interacting
C

with WT FUS, mutant FUS may inhibit the normal function(s) of

FUS or sequester normal FUS, forming aggregates that are toxic

to motor neurons. Similar self-interactions have been observed

for TDP-43, which may also explain the dominance of these

mutations (Da Cruz and Cleveland, 2011).

Our studies also led to important insights into Gem formation.

Specifically, we found that Gems are lost in FUS knockdown

cells even though the cells contain normal levels of SMN and

the Gemin proteins. These data indicate that the requirement

for FUS in Gem formation is not due to an effect on SMN/Gemin

levels. However, our data revealed that the FUS requirement for

Gem formation could be bypassed by overexpression of SMN,

suggesting that the role of FUS in Gem formation may be to

associate with SMN and increase its effective concentration

and/or its association with other Gem components. Our obser-

vation that Gems are deficient in HeLa cells transfected with

FUS R495X, which lacks the NLS, indicates that the nuclear

localization of FUS is required for normal Gem levels. Many of

the known patient mutations in FUS that cause ALS are located

in the NLS (Dormann et al., 2010), including both of themutations

we analyzed in FUS patient fibroblast lines. Our data show that

these lines display significant mislocalization of FUS to the cyto-

plasm and Gem deficiency. Together, these data raise the possi-

bility that other ALS patients with mutations in the FUS NLS may

have the Gem deficiency phenotype. When we analyzed Gem

levels in a few examples of ALS patient fibroblasts with unknown

mutations, we detected no obvious Gem phenotype (T.Y. and

R.R., unpublished). Therefore, a large number of ALS patient

fibroblast lines must be examined before the generality of the

phenotype can be determined. TDP-43, FUS, and SMN also

have other functions. For example, both TDP-43 and FUS are

nucleocytoplasmic shuttling proteins that are present in cyto-

plasmic axonal mRNP transport granules together with the

SMN complex (Fallini et al., 2012a, 2012b; Liu-Yesucevitz et al.,

2011). Thus, mutant FUS, TDP-43, and SMN may cause motor

neuron disease by disrupting axonal transport of mRNAs encod-

ing proteins that are essential for motor neuron function. At

present, it remains to be determined which function(s) of FUS,

TDP-43, and SMN is mechanistically involved in SMA/ALS and

which may be a signature of these diseases.

We observed an �2- to 3-fold decrease in Gem levels in ALS

patient fibroblasts, whereas Gem levels in SMA patient fibro-

blasts are reduced by �20-fold in severe type I disease and by

�3- to 4-fold for the less-severe SMA types II and III (Coovert
ell Reports 2, 799–806, October 25, 2012 ª2012 The Authors 803



Figure 4. Gems Are Deficient in FUS and TDP-43 ALS Patient Fibroblasts

(A) IF using the SMN antibody was used to detect Gems in fibroblasts from an unaffected individual and an ALS patient carrying a FUS R521C mutation. DAPI

shows the nucleus. Scale bar, 20 mm.

(B) Same as in (A), except that fibroblasts bearing a TDP-43 M337V mutation were used.

(C) Graph showing Gem levels in ALS patients and unaffected individuals. The mean and standard deviation of Gem numbers per cell were calculated from three

independent experiments. At least 150 cells were analyzed in each experiment. The p values were calculated by comparison with three controls (*p < 0.01,

Student’s t test). The age (years) and sex (M, male; F, female) of the individuals are indicated.

See also Figure S4.
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et al., 1997). The observation that Gem levels are deficient in ALS

patient fibroblasts raises the interesting possibility that Gem

levels can be used as a rapid diagnostic marker. For example,

Gem levels may be potentially useful for subtyping FUS and

TDP-43 forms of the disease. However, further ALS patient fibro-

blasts containing FUS, TDP-43, or other mutations must be

analyzed in future work to determine the generality of the Gem

phenotype. The observation that both SMA and ALS (at least

some subtypes) have a Gem phenotype also raises the possi-

bility that drug candidates identified for SMA may be efficacious

for ALS. Our observation that overexpression of SMN rescues

Gem levels in FUS knockdown cells, and recent work showing

that overexpression of SMN delays disease onset in an SOD1

mouse ALS model (Kariya et al., 2012) provide a rationale for

testing SMA therapeutics that both increase Gem levels and

rescue motor neuron defects.

The multiple links identified among FUS, TDP-43, SOD1, the

SMN complex, U1 snRNP, and Gems provide strong support

for the view that defects in RNA metabolism are involved in the

pathogenesis of motor neuron disease. In future work, it will be

important to assess components of these RNA complexes for

mutations that may be candidates for ALS or SMA susceptibility

genes or risk factors.

EXPERIMENTAL PROCEDURES

Plasmids, Proteins, and Antibodies

His-SMN and His-LC3 proteins were obtained from Enzo Life Sciences. The

SMN-GFP expression plasmid was obtained from Origene. Rabbit polyclonal

antibodies were raised against GST-FUS (Covance). We obtained antibodies

to SMN (2B1), Sm (Y12), and Gemin3 (12H12) from Abcam; U1-70K (9C4.1)

and Gemin2 (2E17) from Millipore; TDP-43 from Proteintech; U1A (BJ-7),

HA, Tubulin, Gemin4 (E-8), and Gemin6 (20H8) from Santa Cruz; and FLAG

from Sigma. SAP130 and HA were used as negative controls for polyclonal

and monoclonal antibodies, respectively.

IP, GST Pulldown, and MS

IP and GST pulldowns were performed as previously described (Das et al.,

2007). Gel samples were trypsin digested and peptides were analyzed by

liquid chromatography–tandem MS (LC-MS/MS). FUS and control immuno-

precipitates were TCA precipitated and analyzed by LC-MS/MS. Keratin and

likely contaminants (e.g., desmoplakin, actin, tubulin, myosin, and translation

proteins) were not included in Table S1. Proteins found in the negative control

immunoprecipitate were not included in Table S1 if the total amount of

peptides was <3-fold lower than in the FUS immunoprecipitate. Proteins

that were larger than 300 amino acids and contained%7 peptides as identified

by MS were not included in Table S1. Proteins with <2 unique peptides were

also omitted.

RNAi

Lentiviruses were made by transfecting 293FT cells with three packaging plas-

mids (pLP1, pLP2, and pLP/VSVG) using the method provided by the manu-

facturer (ViraPower Lentiviral Expression System, Invitrogen). Infected cells

were selected with 3 mg/ml puromycin (Sigma). For small interfering RNAs

(siRNAs), cells were treated with Lipofectamine 2000 (Invitrogen) for 48 hr

according to the manufacturer’s protocol.

IF and Gem Imaging

IF was carried out with the use of FUS (1:1000), TDP-43 (1:1000), SMN (1:400),

Gemin3 (1:400), Gemin4 (1:400), and FLAG (1:1000) antibodies. HeLa cells

were fixed with 4% paraformaldehyde in PBS for 15 min, and fibroblasts

were fixed with methanol and acetone (1:1) for 15 min. Cells were permeabi-

lized with 0.1% Triton X-100 in PBS for 15 min. For IF, cells were incubated
C

in 1� antibody overnight at 4�C. After three washes in PBS, 2� antibody was

added for 1 hr at room temperature, followed by three washes in PBS. Then,

1� antibodies were diluted in 10% calf serum in PBS. The 2� antibodies were

mouse Alexa-488 and rabbit Alexa-647 diluted 1:1,000 in 10% calf serum in

PBS. HeLa cells images were captured with a Nikon TE2000U inverted

microscope with a PerkinElmer ultraview spinning disk confocal and a 203

objective using Metamorph software (Molecular Devices, Sunnyvale, CA).

See Extended Experimental Procedures for details about the methods used

in this work.
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