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As individual cells or groups of cells move through the complex environment of the body, their migration is
affected by multiple external cues. Some cues are diffusible signaling molecules, and some are solid
biophysical features. How do cells respond appropriately? This perspective discusses the relationship
between guidance input and the cellular output, considering effects from classical chemotaxis to contact-
dependent guidance. The influences of membrane trafficking and of imposed constraints on directional
movement are also considered. New insights regarding guidance and dynamic cell polarity have emerged
from examining new cell migration models and from re-examining well known ones with new approaches
and new tools.
The Basic Concerns of Migrating Cells
Directional cell movement has interested biologists for a long

time. It is a fascinating cell behavior that can be observed even

with simple microscopes. Of medical relevance, it is critical for

the functionality of our immune system, both for finding and elim-

inating intruders and for allowing the cell-cell interactions that

shape immune responses. Unfortunately, cell migration also

adds to the difficulties of effectively battling cancer by contrib-

uting to spreading and metastasis of tumor cells. New experi-

mental approaches for studying cell migration include sophisti-

cated probes for use in light microscopy as well as the ability

to image whole tissues or animals, both of which have increased

our understanding. But the basic features of eukaryotic cell

migration have been clear for some time (Lauffenburger and

Horwitz, 1996; Ridley et al., 2003): when a cell migrates, it makes

protrusions, plasma-membrane bound cellular processes. In

many cells, these are F-actin rich, such as large flat lamellipodia

or small filopodia, but they can also be ‘‘blebs’’ of locally

extruded cytoplasm and membrane (Insall and Machesky,

2009). For actual movement, the cell and the cell processes

must adhere to, and gain traction on, the substrate. The nature

of the substrate, whether strings (1D), surfaces (2D), or complex

environments (3D) of extracellular matrix (ECM) or other cells,

helps determine which adhesion molecules can perform this

task and which cellular protrusions are made. The cell must

also exert force to pull itself forward, with the amount of force

needed influenced by the resistance in the environment. All of

these processes are dependent on the actin cytoskeleton, on

dynamic actin polymerization, and on force generation on

F-actin cables via myosin motors. Microtubules play a role as

well, but generally as regulators and this is more cell-type

specific. Finally, for cell movement to occur, the processes

described abovemust be polarized such that there is a functional

difference between the front and the back of a cell (Figure 1).

If the cell is not polarized, it just spreads or contracts. Front-

back polarization is spontaneous in many cell types but it may
also be stimulated or directed by external factors, such as guid-

ance cues.

There are different types of migratory cells. One way of cate-

gorizing them is as ‘‘professional’’ migrators versus cells with

a migratory phase. Professional migrators include cells of the

immune system and the amoebae Dictyostelium discoideum,

both popular models of eukaryotic chemotaxis (Servant et al.,

2000; Van Haastert and Devreotes, 2004). These cells migrate

relatively fast, around 10 microns per minute, and can change

direction quickly. Immune cells, such as neutrophils, can

respond to cytokines released by local cells and to substances

released from target cells, such as the peptide fMLP derived

from bacteria or damaged cells. The aim of professional migra-

tors is to get to the target fast, be it intruders or food, so their

movement is likely to be optimized for speed aswell as direction-

ality. Many other animal cells canmigrate directionally, but do so

as part of a developmental or regenerative program. These cells

generally move more slowly, 1 micron per minute or less, similar

to the guided movement of axon growth cones. Their movement

is likely to be optimized for fidelity, allowing multiple input and

corrections, and not for speed, as most developmental morpho-

genesis occurs relatively slowly.

In physiological settings, many cells do not migrate alone, but

collectively, as part of a group. A number of recent reviews have

discussed occurrence of collective migration in development

and disease, as well as the features of such migration (Friedl

and Gilmour, 2009; Rorth, 2009; Weijer, 2009). As for many

solitary migrating cells, collectively migrating cells can display

inherent cell motility that is steered by, but not induced by,

external guidance cues (Haas and Gilmour, 2006; Poukkula

et al., 2011). In addition to these basic migratory features, collec-

tively migrating cells also interact with each other. This can

provide non-cell-autonomous pushing and pulling forces to

affect overall movement. The collectively migrating cells also

have the potential to provide each other with spatial input as

they occupy discrete places in substrate space.
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Figure 1. Basic Features of a Migrating Eukaryotic Cell
Indicated are features typical of a migrating cell, with protrusions at the front
and myosin-dependent contraction at the back. Below is the same cell viewed
from the side, indicating substrate adhesion (shown as stronger in the front)
and relevant cellular forces. Not all features are found in all cells: robust F-actin
polymerization is a common front feature, but some cells use blebs (Insall and
Machesky, 2009). Also, the indicated polarity may be stable or labile. Positive
interactions and feedback reinforce the front (and back) domains, and mutual
inhibition may keep them separate.
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This perspective will discuss guidance mechanisms for cell

migration, in particular the relationship between input and

output. Input in this context means the guidance information

originating from outside the migrating cell and interpreted

by this cell. Chemotaxis triggered by soluble input will be

considered first to allow a discussion of some principles of

signal interpretation. The focus will subsequently be on guid-

ance by touch, the use of local and physical interactions to

direct movement. This is quite widely used but has particular

relevance for collective migration. When considering output,

the intracellular signaling output created by migrating cells in

response to the input is clearly important. But the actual cellular

output can be defined as the feature(s) directly changed by

guidance input such that the cell moves in the right direction:

preferential addition of cell cortex/protrusions, preferential

adhesion, or preferential direction of pulling. The simplicity,

both technically and conceptually, of looking at outgrowth of

protrusions makes it tempting to focus exclusively on this

cellular feature. But while important, it is unlikely to be the

whole story. As various examples will show, the relationship

between guidance input and output is not fixed. They can be

essentially separate features of cell migration, as in classical

bacterial chemotaxis, or they may be more intimately con-

nected. The latter is evident when considering guidance by
10 Developmental Cell 20, January 18, 2011 ª2011 Elsevier Inc.
touch as well as the effects of trafficking and the role of

constraints in directional movement.

Graded Guidance Input and Cellular Switches
Guidance of cell migration by soluble cues, a straightforward

form of chemotaxis, has been a key focus of analyses in both

prokaryotes, which swim, and eukaryotes, which crawl.

Although bacteria move by a different mechanism, their strategy

of chemotaxis is well understood and of interest for this discus-

sion. Integrating and computing the incoming guidance signals is

interesting and complex (Baker et al., 2006; Falke et al., 1997),

but the outcome is simple: a switch-like control of the orientation

of flagellar rotation (Berg, 2003), which in turn determines one of

only two possible outcomes, forward movement of the cell (run)

or tumbling to give a new, random direction. Signal comparison

is temporal, with an increasing concentration of attractant over

time favoring the run state. The resulting biased random walk

provides effective net directionality, showing that well-guided

cell movement can occur from control of binary cellular deci-

sions.

Contrary to bacterial cells, eukaryotic cells, including fast

neutrophils and amoebae, can sense chemotactic gradients

purely spatially (Herzmark et al., 2007; Van Haastert and

Devreotes, 2004; Zigmond, 1974). In addition, there is ample

opportunity for spatial control of local effects. The initial stimulus

may be the stochastic chance of ligand binding to a uniformly

distributed receptor (Ueda et al., 2001), giving an intracellular

signal that directly converts the extracellular ligand concentra-

tion into a graded average frequency of receptor activation.

The relevant cellular outputs, such as F-actin polymerization or

adhesion strength, can be local and clearly they are not inher-

ently binary. Nevertheless, switches are conspicuous in the

control circuitry for eukaryotic cell migration. On cellular level,

there is a front/back switch or front/back polarity (Figure 1),

making a section of the cell either front-like or back-like at any

one point in time, rather than a bit of both. The existence of

such intrinsic polarity explains why many eukaryotic cells can

move straight and effectively within short timeframes, even

without clear guidance input. That front/back is a major polarity

axis can also be seen from recent proteome analyses comparing

front protrusions and cell body of chemotactic cells (Pertz et al.,

2008; Wang et al., 2007). Front/back polarity shares some

components with the stable cell polarity found in epithelial cells

(apical/basal) and other polarized cells (Pegtel et al., 2007). But

for guided, migrating cells, the polarity must be designed to

either turn over or be steerable.

The control circuitry for eukaryotic cell migration is also char-

acterized by feedback regulation at many levels, including from

migration output to input. When cells migrate, localized signals

can be detected in the front and in the back (Figure 1). Local

accumulation of the plasma membrane lipid PIP3, product of

phosphoinositide 3-kinase (PI3K) activity, has attracted much

attention because—in some cells—its accumulation is stimu-

lated by guidance signaling and it an excellent front marker along

with protrusion and actin polymerization (Van Haastert and

Devreotes, 2004). Characteristic of the back in many cells is

higher activity of myosin and of the small GTPase RhoA (Wong

et al., 2006). The front and the back signaling outputs are each

subject to positive feedback regulation as well as mutual
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Figure 2. Relationship between Guidance Input and Cell Polarity in
Chemotaxis
(A)–(C) shows the initial situation for three possible scenarios, and (A0)–(C0)
shows the situation after reaction to the attractant gradient.
(A) Without the attractant, the cell is unpolarized. Slightly asymmetric attrac-
tant stimulates front features relative more on the up-gradient side and/or
back features on the down-gradient side. Positive self-reinforcement and
mutual inhibition (possibly via a diffusible inhibitor) causes sorting to two
domains, which may happen stochastically as the attractant is uniform. This
strategy is used by some professional migrators (Van Haastert and Devreotes,
2004).
(B) Even without or in uniform attractant, the cell is inherently polarized. The
attractant causes local signaling event stochastically, but the frequency
depends on the local concentration: only the front domain will respond with
local protrusion, allowing the cell to turn (slightly). A strategy seen in fibroblast
and dendritic cells (Arrieumerlou and Meyer, 2005).
(C) New protrusions are formed by splitting of existing main front protrusion
(pseudopod) or triggered by other stochastic events. The protrusion going
up-gradient or with the highest level of signal is stabilized, the other(s) retract.
This is seen for single cells and collectives. Retraction is not well understood,
but may be linked to nonproductive adhesion.
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negative cross-regulation (Weiner et al., 2002; Wong et al., 2006;

Xu et al., 2003). The front is particularly linked to high activity of

the GTPase Rac, and the recent generation of a photo-activat-

able form of Rac (Wu et al., 2009) has elegantly shown that

elevated Rac activity can be sufficient for front directional activity

in both single cells and cell groups (Wang et al., 2010; Wu et al.,

2009; Yoo et al., 2010). These experiments also confirmed the

positive feedback between Rac and PI3K activity and the general

negative relationship between Rac and Rho GTPases. Another

front/back mutually inhibitory loop, via effects on plasma

membrane recruitment, involves PI3K and the phosphatase

PTEN that catalyzes the opposite reaction (Funamoto et al.,

2002; Iijima and Devreotes, 2002). Although elegant in design,

this mechanism seems not to be general. For example in neutro-

phils, PTEN appears to have a different but very fascinating role

in chemotaxis: helping immune cells prioritize their guidance

responses such that they ignore general cytokine attractants

when they are close to an actual target: a bacterium (Heit

et al., 2008). Overall, there is some understanding of front/back

polarity, but much remains to be understood and may differ

between various migratory cells. One key issue is whether there

is one central polarity controlling all migratory features and

receiving all guidance input or whether it is all parallel processing

with extensive crosstalk.

How does graded guidance input make cells move in the right

direction and what is the relationship to front and back cell

features? There are several views on this, which in part reflects

the different cell types that have been analyzed. One view is that

guidance signals directly set up the front/back polarity of the

cell, for example by front-biased PI3K or Rac activation, and

the original small differences between levels of signaling in the

front and back are amplified until it becomes all or none, front

or back (Parent and Devreotes, 1999) (Figure 2A). The amplifica-

tion could follow a local excitation/global inhibition model,

which is theoretically satisfying, but, as yet, not experimentally

validated. Alternatively, the mutual inhibition of front and back

features discussed above could be responsible. Another view

is that the polarity of the migrating cell is inherent and not

directly affected by the graded guidance signals. The guidance

signal, in turn, is not part of a global comparison network, but its

local concentration controls the frequency of small, stochastic

front signaling events (Figure 2B). When tested computationally,

this model also provides effective directional movement in

gradients (Arrieumerlou and Meyer, 2005). Finally, observations

of guided cells indicate that guidance controls the persistence

of large cellular protrusions. For Dictyostelium cells (Andrew

and Insall, 2007) and neurons migrating in the mammalian brain

(Martini et al., 2009), front protrusions often split in two: the one

pointing most effectively up the attractive gradient is maintained

and the other is retracted (Figure 2C). In migrating cell clusters,

we found that the difference between protrusions from front

cells (pointing toward the attractant) and those from back cells

(pointing away) is their lifetime, as well as the effectiveness

of their grip on the substrate (Poukkula et al., 2011). Together,

these studies indicate that protrusions have an inherent

retraction tendency, and guidance input may counteract this

tendency. In summary, the final cellular output of guidance

signaling can take a number of conceptually different forms:

reorientation of the front/back polarity, incremental additions
of front features, and less-well-understood features of overall

protrusion stability.

Spatial visualization of signaling activities is very informative in

the analysis of chemotaxis. But increased sophistication of the

methodology also changes what is observed and distributions
Developmental Cell 20, January 18, 2011 ª2011 Elsevier Inc. 11
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that appeared simple are suddenly not. Such updating has

happened in several areas. One observationwas that of transient

local bursts of PIP3 accumulation in addition to the general front

enrichment (Arrieumerlou and Meyer, 2005). This contributed

to the second view of guidance input discussed above but

maintains PIP3 accumulation as a front characteristic. Another

front activator with complex spatio/temporal distribution is the

Scar/WAVE complex, a Rac-regulated activator of the Arp2/3

complex and, hence, of actin polymerization. TIRF microscopy

allowed visualization of membrane recruitment of the Scar

complex, which occurred in apparent traveling waves (Millius

et al., 2009; Weiner et al., 2007). Interestingly, Scar recruitment

was modulated by feedback from F-actin. Also, wave character-

istics reflected both internal cell polarity and chemotactic gradi-

ents, supporting their relevance for directionality of migration.

With respect to back characteristics, it has long been appreci-

ated that cytoplasmic Ca2+ is elevated in the back (Brundage

et al., 1991; Hahn et al., 1992). More recently, ‘‘flickers’’ or local

bursts of Ca2+ have been observed in the front of migrating cells

and responding spatially to graded guidance cue (Wei et al.,

2009). It is not yet clear how direct the link between Ca2+ flickers

and guidance signaling is, but it may involve local IP3 production.

This explains how some Ca2+-regulated processes can occur in

the front with others in the back, but it obviously blurs the most

simplistic front/back distinction. Similarly complicated is the

case of the small GTPase Rho, which, at least in fibroblasts, is

not only active at the back but also at the front of the cell (Pertz

et al., 2006). A recent detailed spatial/temporal analysis indi-

cated that active Rho was more closely linked to the protrusive

front of the cell than active Rac (Machacek et al., 2009). So while

the front/back dichotomy remains relevant, the real distinction

for these signaling components may be in network characteris-

tics and dynamics rather than in absolute distributions.

Clearly PI3K, as well as Rac and Rho GTPases, are important

for cell migration, and their activity states are nicely detectable

and, hence, experimentally attractive. But as the discussion of

front/back polarity illustrates, what they report can be far

removed from the actual guidance signal. Sowhat does the initial

intracellular guidance signal look like in migrating cells? This

important question remains largely unanswered, in part because

it is technically challenging to report unamplified signaling

events. As discussed below, single-molecule tracking can be

used to follow receptors, but the activity state is usually unclear.

For Dictyostelium cells, G protein signaling in response to cAMP

gradients has been monitored directly and showed a shallow

intracellular gradient (Xu et al., 2005) reflecting a shallow

ligand-binding gradient (Ueda et al., 2001). Detection of active

guidance receptor was recently achieved for a receptor tyrosine

kinase guiding cell migration in vivo, but in this case, receptor

activity appeared to be modified by cell-cell interactions in addi-

tion to the ligand input (Janssens et al., 2010). Going forward,

direct visualization of guidance signaling in multiple systems,

including with optimized live activity probes, should help further

clarify the logic of signal perception andmechanism of transmis-

sion into downstream signals.

Shaping Guidance Input and Output by Trafficking
Guidance receptor signaling events at the cell surface may be

faithful transmissions of the extracellular ligand concentration
12 Developmental Cell 20, January 18, 2011 ª2011 Elsevier Inc.
transformed only by the probability of ligand engagement and

dependent on the Kd for the ligand-receptor interaction.

However, receptor concentration is not always uniform and

may be modified by trafficking or other relocalization events in

a signaling-dependent manner. If an attractant receptor is tar-

geted to the front of a cell, guidance decisions could become

consolidated, ‘‘locking in’’ the direction or at least not allowing

minor ligand fluctuations to alter directionality. Guidance

signaling has been thoroughly studied in axonal growth cones,

providing possible insights for guided cell migration. The same

guidance cues can steer growth cones and migrating cells,

and there is significant overlap in the cellular processes involved.

One difference is that growth cones have a fixed and inherent

back: the connection to the axon shaft (Figure 3). In growth

cones of spinal cord neurons, activation of the GABA receptor

is chemoattractive. Over time, the receptor becomes enriched

toward the gradient source (Figure 3A0). Single molecule imaging

by quantum dots showed that this enrichment occurred by

a biased movement of receptors in this direction, dependent

on receptor activity and microtubules (Bouzigues et al., 2007).

Subsequent modeling found that such positive enrichment

makes the directional response resistant to short-lived fluctua-

tions in ligand concentration (Bouzigues et al., 2010). This could

ensure that turning responses are more robust in noisy, complex

environments. Also, as the biased transport seems to reflect

development of an underlying microtubule bias, this effect could

allow cross-regulation of guidance receptors, as well as of other

directional cues.

Guidance receptors may also be redistributed in the cell via

endocytosis and recycling. It was previously shown that endocy-

tosis of a receptor tyrosine kinase could shape guidance

signaling and cell migration in vivo (Jekely et al., 2005). Recent

visualization of active receptors demonstrated directly that

both receptor density and degree of receptor activation was

spatially controlled in this manner (Janssens et al., 2010). A

requirement for recycling controlled by Rab11 was also indi-

cated. In agreement with the notion of Rab11-dependent recy-

cling enhancing directional signals, Rab11 inhibition in epithelial

cells diminished directional movement, although random move-

ment was stimulated (Prigozhina and Waterman-Storer, 2006).

Finally, trafficking may affect the signaling properties of guid-

ance receptors: downstream pathways may preferentially be

activated from the plasma membrane or from an internal

compartment and, thus, require receptor endocytosis. Such

spatial selectivity has been shown for numerous receptors in

different contexts.

Obviously, membrane endocytosis, exocytosis, and recycling

can have multiple roles in directed migration. In addition to

shaping signaling by transporting guidance receptors, move-

ment of specific adhesion molecules may be regulated, as may

movement of membrane material as such. For example, in fast-

moving Dictyostelium, the plasma membrane turns over fast in

order to make dynamic protrusions and motility is blocked by

inhibition of endocytosis or exocytosis (Traynor and Kay, 2007;

Zanchi et al., 2010). Also, experiments looking at guidance of

growth cones have shown that graded presence of attractive

cues can promote local exocytosis (Figure 3B), whereas repul-

sive cues can promote locally increased endocytosis (Figure 3C),

both effects that would help shape the membrane such that the
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Figure 3. Effect of Receptor Redistribution and Other Trafficking on
Guided Movement
All examples are shown as guided movement of a growth cone, but could be
moving cells. (A)–(C) shows the initial situations and (A0)–(C0) after reaction to
the gradient.
(A) The attractant receptor (here GABA-R) becomes enriched at the higher
concentration of ligand, for example by signal-dependent biased movement
along an underlying, signaling-biased cytoskeleton. If the attractant gradient
temporarily collapses, directionality is kept due to the nonuniform receptor
distribution.
(B) Endocytosis happens everywhere, but exocytosis is stimulated at regions
with higher local attractant stimulus (here, the upper part of the growth cone).
This leads to increased surface area on the up-gradient side, decreased
surface area on the down-gradient side, and thus, turning toward the attrac-
tant source as shown in (B0).
(C) Exocytosis happens everywhere, but endocytosis is stimulated at regions
with higher local repellant stimulus. The net effect is loss of surface area on the
up-gradient side, leading to turning away from the repellant source as shown in
(C0). For both (B) and (C), vesicle traffickingmay include guidance receptors (as
in A) and/or specific adhesion molecules. Selective trafficking of productive
adhesion molecules can give biased adhesion toward (B) or away (C) from
the attractant or repellant source, respectively.
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growth cone turns in the right direction (Kolpak et al., 2009;

Tojima et al., 2007, 2010) (Figure 3B0 and 3C0). Localized traf-

ficking effects on integrin adhesion molecules have been

observed in similar experiments, at least in response to chemo-
repulsion (Hines et al., 2010). For invasive migration of tumor

cells, a Rab11 familymember called Rab25 appears to be impor-

tant, possibly due to its ability to promote recycling of specific

integrins to the front of the cell (Caswell et al., 2007). These find-

ings confirm that spatially controlled endocytosis and exocytosis

can be important cellular outputs in directional migration.

Given that both guidance receptors and the molecules repre-

senting cellular output in directional migration are controlled

by membrane trafficking, this raises the possibility that the

effects could be closely connected. Perhaps one set of mole-

cules is ‘‘hitchhiking’’ with the other. However, studies have so

far focused exclusively on one aspect or the other, so it is difficult

to gauge the overall significance of this.

Guidance by Touch and Clasp
The principle of locally acting and nonsecreted guidance cues

has long been appreciated in the study of growth cone guidance

(Tessier-Lavigne andGoodman, 1996). For example, signaling of

Ephrins and Eph receptors, which is cell-contact-dependent

signaling, controls guidance as well as cell movement in vivo

(Poliakov et al., 2004). More recently, similar effects were

observed for nerve regeneration as well (Parrinello et al., 2010).

Restricted presence or graded distribution of permissive versus

nonpermissive substrates for migration can also result in guid-

ance: a type of guidance is called haptotaxis. The substrate

may be other cells or it may be ECM. The ECM may, in turn,

be modulated biochemically or mechanically (Provenzano

et al., 2008) by other cells. The physical properties of the

substrate may be sensed and used to select direction, a process

called durotaxis. Finally, transient mechanical prodding can

polarize cells (Verkhovsky et al., 1999). physical obstacles can

actively reorient cell directionality and affect the intracellular

signaling when doing so (Weiner et al., 2007). What all these

effects have in common is that they represent contact-depen-

dent communication. Communication by touch has two salient

features: it is inherently localized and it can link directly to the

physical properties of the interacting parties. These features

are both particularly relevant for directional cell migration. Local-

ized signaling is useful for a process that is spatially controlled,

like guided migration. Also, cell migration is a process that

requires exertion of physical force to move cells forward or

even invade tissues. When force is exerted, tension may be

sensed. The combination of being local and being linked to

cellular force allows potentially much closer linking of the input

and output in contact-dependent steering of cell migration.

Increased interest in the role of contact-dependent communi-

cation for directional migration has come in part from the study

of collective migration. Collectively migrating cells physically

interact with one another in addition to their interactions with

the substrate. These interactions can be in the form of cell-cell

adhesion and mechanical coupling, static or dynamic, or may

primarily be signaling interactions. In parallel, studies of mechan-

ical aspects of cell signaling have lead to the identification

of molecules, in addition to the well-established membrane

channels, that respond to tension and other mechanical input

(Giannone and Sheetz, 2006; Ingber, 2006; Orr et al., 2006).

Importantly, this is now being coupled with the development

of tools that will allow better reporting of tension and forces.

Until now, forces have generally been reported indirectly, via
Developmental Cell 20, January 18, 2011 ª2011 Elsevier Inc. 13



A

C

B

Rac*

Rho*

N-cadherin

2

1

3

2

1

3

4

path

barrier

path

attractant

Figure 4. Contact-Dependent Guidance Effects in Collective
Migration
These effects are in addition to those illustrated in previous figures. Some
contact effects are also relevant for solitary cell migration: the positive, permis-
sive effect of a path as well as constraining effects or barriers.
(A) Illustration of signaling seen in neural crest cells, where N-cadherin-depen-
dent cell-cell contact induces local inhibition of front features (protrusion) via
local Rho activation. This also involves non-canonical Wnt signaling. This will
polarize/orient a cell with free edges.
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deformation of specialized substrates (Dembo et al., 1996; du

Roure et al., 2005; Galbraith and Sheetz, 1997), which has signif-

icant limitations. Recently, a very promising FRET-based live

intracellular tension sensor probe has been developed, based

on vinculin and its properties as a tension-sensitive, focal adhe-

sion component (Grashoff et al., 2010). At cell-cell interactions,

a key component of cadherin-based adherence junctions, called

alpha-catenin, also appears to undergo tension-dependent

conformational change (Yonemura et al., 2010). Perhaps

these changes can also be reported live. With the right tools,

mechano-sensing together with the other aspects of communi-

cation by touch should become a very fruitful area for the study

of directed cell migration.

The role of cell-cell contact in specific collective migrations

has been addressed by a number of recent studies. Neural crest

cells migrate directionally in ‘‘streams’’ in vivo, with frequent

dynamic interactions between the cells (Kulesa and Fraser,

2000; LaBonne and Bronner-Fraser, 1999). For Xenopus neural

crest, explants and in vivo analyses indicated that these cells

affect one another with what may be called local contact-inhibi-

tion-of-locomotion at the site of interaction (Carmona-Fontaine

et al., 2008) (Figure 4A). The induced signal depends on nonca-

nonical Wnt signaling and locally induces Rho activation.

Considering the front/back polarity discussed above, this can

be interpreted as locally inducing a back feature, which could

direct cell migration at least in part by forcing front activity to

be elsewhere. A subsequent study confirmed that Rac activity

was inhibited at the sites of cell-cell contact, forcing front

activities to be only at the free, noncontacted edges of cells

(Theveneau et al., 2010) (Figure 4A). Similar ‘‘free edge’’ logic

is likely to apply to directed movement of sheets of cells, which

are not guided in the classical sense (see Rorth, 2009). If the

migrating cell stream is inherently polarized, such cell-contact

constraints can provide instructive information for directionality

(Figure 4B), in particular in combination with external permissive

cues or constraints.

The cell-cell adhesion molecule N-cadherin was required for

the touch-based communication in neural crest cells. And

surprisingly, cell-cell contact was essential for guided migration,

even in the presence of a graded source of the appropriate

chemo-attractant SDF. A specific cadherin was also shown to

be required for directionality of cerebellar neurons when per-

forming collective chain migration (Rieger et al., 2009). Interest-

ingly, for mesendoderm cells, cadherin-based contact was

required for collective migration, but not required when the

same cells were allowed to migrate as individual cells in the

embryo (Arboleda-Estudillo et al., 2010). These studies highlight
(B) For a polarized cell cluster (cell no. 2 is front), contact-dependent effects as
described in (A) (here shown as outwards-elevated Rac activity), together with
either a permissive ‘‘path’’ or constraining ‘‘barriers,’’ can be sufficient for guid-
ance: the cluster will move to the right. Gradients can also contribute.
(C) For a nonpolarized cell cluster, additional external information is needed for
directionality, such as the shown attractant gradient. Contact-dependent
effects may polarize each cell outwards, here shown to synergize with the
gradient effect to give highest Rac activity in the front of the front cell. The
gradient may act by local effects as in solitary migration or cell-based, making
cell no. 2 different from cell no. 4 by virtue of higher attractant signal levels
(collective guidance). A cellular difference, such as higher motility or pulling
force in cell no. 2, can give directional movement if the cluster is mechanically
coupled.
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Figure 5. Contact- and Force-Dependent Steering of Movement
The example of a giant Aplysia growth cone with a ‘‘restrained bead’’ is
shown, but a similar scenario may be seen in other cases of positive, adhe-
sion-dependent local interactions. The lamellar retrograde actin flow is loosely
coupled to adhesion at the cell surface (above and below) and will move
a bead covered with an abundant cell-cell adhesion molecule away from
the front. If the bead is physically held in place, or restrained, a tension depen-
dent signal develops that includes local activation of Src tyrosine kinase
(pY signal, red). This signal induces strong coupling to the underlying F-actin
network, attenuating retrograde flow and increases local traction, in the
clutch hypothesis described as an engaged clutch. A biophysical motor-
clutch model can describe such phenomena (Chan and Odde, 2008). These
cytoskeletal effects orient the stable central domain and thereby overall
growth of the structure.
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common features of contact-dependent effects in collective

migration as well as differences in how essential the collective

aspect is for directionality. Apart from the fact that both the

cell types and the mode of analysis differed in these studies, it

seems likely that the relative strength of diverse directional input

will vary in different situations. One can view this as continuity of

collective and individual migration phenomena; effects fromboth

can be integrated to provide guidance in vivo.

Guidance by touch can be positive as well as negative. One

useful system using large neurons from Aplysia was set up to

mimic the positive interaction of a guided growth cone with

target cells. A large bead was covered with the adhesion mole-

cule ApCAM, related to mammalian NCAM, and placed on top

of a growing, splayed out growth cone to interact via homophilic

adhesion (Figure 5). Unrestrained, the bead was carried back-

ward to the axon shaft by the so-called retrograde actin flow.

But if the bead was physically restrained, mimicking growth

cone attachment to another fixed object, it triggered a complex

cellular response ending in turning of the growth cone toward the

bead (Suter et al., 1998). The response had a time lag of a few

minutes and required Src kinase activity, with localized signaling

dependent on adhesion and traction force (Suter and Forscher,

2001). Further analyses have revealed the cytoskeletal changes

occurring in response to this local, positive touch-based

engagement (Schaefer et al., 2008). Overall, these studies sug-

gested that the key cellular output in such cases is engagement

of a ‘‘clutch’’ that couples cell-cell adhesion to the underlying

actin cytoskeleton in order to generate traction and thereby

directed movement. F-actin polymerization and treadmilling

are needed, but not directly regulated. Exactly how the clutch

works is unclear, but a biophysical motor-clutch model can

describe it (Chan and Odde, 2008). The requirement for tension

during the signaling phase of the ‘‘restrained bead’’ response

with ApCAM suggests that some engagement with the cytoskel-

eton is present from the start, but that this engagement changes

in type or strength as the cell responds.

How general are such force-dependent effects in directional

cell movement? Retrograde actin flow has been observed in

other cell types, and potential clutch engagement via adhesion

complexes has been investigated in some detail for epithelial

cells migrating in vitro (Hu et al., 2007; Ji et al., 2008). A similar

mechanism was also proposed for migration of germ cells

in vivo, with cadherin as the tension-bearing cell-cell adhesion

molecule (Kardash et al., 2010). These effects can be interpreted

as basic force-generatingmechanisms formovement but also as

potential sources of guidance input, or contact-based instructive

signals, for example, by triggering local Src activation. As such, it

is an example of how signaling input for directional movement

can be closely linked to the cellular output, spatially and bio-

physically.

Directionality by Constrained Motility
When contact-dependent communication is considered, the

distinction between permissive and instructive cues for direc-

tional migration can become fuzzy. As for neural crest cells dis-

cussed above, guidance of the lateral line primordium in fish

requires the secreted molecule SDF (Ghysen and Dambly-Chau-

diere, 2007), which is a known chemo-attractant. However, for

both of the collective migrations, the directionality of movement
may arise primarily from cell-cell interactions spatially constrain-

ing the production of free edges, with SDF possibly playing

permissive role (as in Figure 4B). Motility, on the other hand, is

generally considered permissive for cell migration. But if a group

of cells aremechanically coupled and interact such that there are

free edges only around the periphery, simply making one cell

more motile or more force-bearing than the rest can provide

directionality (Rorth, 2007) (see Figure 4C). Thus, it can be suffi-

cient to spatially augment or constrain motility to get directional

migration in collective cell migration. Tissue-constraints may

provide further information. For example, some collectively

migrating cancer cells invade tissues or ECMmatrix by following

a leading cell, reusing its path or tunnel (Friedl andGilmour, 2009;

Gaggioli et al., 2007). An interesting example of how the combi-

nation of motility control and tissue constraints can create direc-

tional movement was recently reported for axis elongation in

vertebrates (Benazeraf et al., 2010). In this study, it was found

that what at a first glance looked like guided, directional migra-

tion of mesoderm cells in response to graded FGF was some-

thing quite different. The individually migrating cells showed

FGF-controlled motility, that is, FGF stimulated random disper-

sion with no directional bias. As a result of the cellular motility

gradient and the constraints by neighboring tissues, the whole

axial tissue, even the ECM, stretched in one direction. So at

both cellular and tissue levels, constraints can control direction-

ality of movement.
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Concluding Remarks
Analogies can be useful when describing the relationship

between guidance and motility for directional cell migration:

motility is the motor, and guidance cues control the steering

wheel. Or, motility is the legwork, but the nose (guidance) smells

where the hotdog stand is. These analogies are apt for singular

movement in an otherwise unrestricted environment. But what

if there is only one road to travel on, or what if one is caught up

in a crowd exiting the Metro during rush hour? Then the source

of directionality becomes intertwined with substrate-interactions

and the mechanism of movement. In other words, input and

output are intimately connected and constraints are as informa-

tive as attractants. The latter analogies help describe important

aspects of the directional movement performed by animal cells

navigating their natural environment, the body. There is a lot of

information to consider and the migrating cells need to integrate

this in a productive way. The dynamic front/back polarity that is

essential for motility, whether it functions as a central processor

or as multiple parallel processes with extensive feedback, is

important in this context. Diverse input, whether soluble attrac-

tants or spatial constraints, can be both integrated and trans-

lated to cellular output via these extensive feedback loops. It

also helps ensure that conflicting information will not paralyze

the cell. Overall, this allows directional movement to be produc-

tive with anything from very subtle to very complex guidance

input. So whence directionality? Everywhere!
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