

Available online at www.sciencedirect.com

J. Math. Anal. Appl. 294 (2004) 206-214

Journal of MATHEMATICAL ANALYSIS AND APPLICATIONS

www.elsevier.com/locate/jmaa

Strong convergence of averaging iterations of nonexpansive nonself-mappings

Shin-ya Matsushita a,* and Daishi Kuroiwa b

^a Graduate School of Mathematics and Computer Science, Faculty of Science and Engineering, Shimane University, Japan

Received 27 December 2001

Available online 2 April 2004

Submitted by A. Cellina

Abstract

Let C be a closed convex subset of Hilbert space H, T a nonexpansive nonself-mapping from C into H, and x_0, x, y_0, y elements of C. In this paper, we study the convergence of the two sequences generated by

$$x_{n+1} = \frac{1}{n+1} \sum_{j=0}^{n} (\alpha_n x + (1 - \alpha_n)(PT)^j x_n) \quad \text{for } n = 0, 1, 2, \dots,$$

$$y_{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} P(\alpha_n y + (1 - \alpha_n)(TP)^j y_n)$$
 for $n = 0, 1, 2, ...,$

where $\{\alpha_n\}$ is a real sequence such that $0 \le \alpha_n \le 1$, and P is the metric projection from H onto C. © 2004 Elsevier Inc. All rights reserved.

Keywords: Fixed point; Nonexpansive nonself-mapping; Strong convergence; Metric projection

E-mail addresses: shin-ya@cis.shimane-u.ac.jp (S. Matsushita), kuroiwa@cis.shimane-u.ac.jp

b Department of Mathematics and Computer Science, Faculty of Science and Engineering, Shimane University, Japan

^{*} Corresponding author.

1. Introduction

Let H be a Hilbert space, C a nonempty closed convex subset of H, S a nonexpansive mapping from C into itself such that the set F(S) of all fixed points of S is nonempty. Shimizu and Takahashi [4] studied the convergence of iteration process for a family of nonexpansive mappings in a Hilbert space. Using an idea of Shimizu and Takahashi [4], Shioji and Takahashi [5] studied the strong convergence of the sequence $\{x_n\}$ in the framework of a Banach space. We restate the sequence $\{x_n\}$ as follows:

$$x_{n+1} = \alpha_n x + (1 - \alpha_n) \frac{1}{n+1} \sum_{i=0}^n S^j x_i$$
 for $n = 0, 1, 2, ...,$ (1)

where x_0 , x are elements of C, and $\{\alpha_n\}$ is a sequence such that $0 \le \alpha_n \le 1$. They proved that $\{x_n\}$ converges strongly to an element of fixed point of S which is nearest to x in the framework of a Hilbert space. But this approximation method is not suitable for some nonexpansive nonself-mappings. On the other hand, the authors [2] studied the strong convergence of the two sequences generated by

$$x_1 = x \in C,$$
 $x_{n+1} = \alpha_n x + (1 - \alpha_n) PT x_n$ for $n = 1, 2, ...,$ (2)

$$y_1 = y \in C,$$
 $y_{n+1} = P(\alpha_n y + (1 - \alpha_n) T y_n)$ for $n = 1, 2, ...,$ (3)

where P is the metric projection from H onto C, and T is a nonexpansive nonself-mapping from C into H. We proved that $\{x_n\}$ and $\{y_n\}$ converge strongly to fixed points of T when F(T) is nonempty.

In this paper, we study the two type iteration processes which are mixed iteration processes of (1)–(3) as follows:

$$x_{n+1} = \frac{1}{n+1} \sum_{j=0}^{n} (\alpha_n x + (1 - \alpha_n)(PT)^j x_n) \quad \text{for } n = 0, 1, 2, \dots,$$
 (4)

$$y_{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} P(\alpha_n y + (1 - \alpha_n)(TP)^j y_n) \quad \text{for } n = 0, 1, 2, \dots,$$
 (5)

where x_0, x, y_0, y are elements of C, P is the metric projection from H onto C, and T is a nonexpansive nonself-mapping from C into H. To prove our results, we use the nowhere normal outward condition. It was first presented by Halpern and Bergman [1]. This boundary condition is very simple but great importance in our proof. By using nowhere normal outward condition, we first consider the sequence $\{x_n\}$ generated by (4) and prove that $\{x_n\}$ converges strongly as $n \to \infty$ to an element of fixed point of T when F(T) is nonempty, further we consider the sequence $\{y_n\}$ generated by (5) and prove that $\{y_n\}$ converges strongly as $n \to \infty$ to an element of fixed point of T when F(T) is nonempty.

2. Preliminaries and notations

Throughout this paper, we denote the set of all nonnegative integers by **N**. Let *H* be a real Hilbert space with norm $\|\cdot\|$ and inner product $\langle\cdot,\cdot\rangle$. Let *C* be a closed convex subset

of H, and T a nonself-mapping from C into H. We denote the set of all fixed points of T by F(T). T is said to nonexpansive if

$$||Tx - Ty|| \le ||x - y||$$
 for all $x, y \in C$.

From condition of C, there is a mapping P from H onto C which satisfies

$$||x - Px|| = \min_{y \in C} ||x - y|| \quad \text{for all } x \in H.$$
 (6)

This mapping P is said to the metric projection from H onto C. We know that the metric projection is nonexpansive and that a mapping P from H onto C satisfies (6) if and only if $\langle x - Px, y - Px \rangle \le 0$ for each $y \in C$ and $x \in H$. T is said to satisfy nowhere normal outward condition ((NNO) for short) if

$$Tx \in S_x^c$$
 for all $x \in C$,

where *P* is the metric projection from *H* onto *C* and $S_x = \{y \in H \mid y \neq x, Py = x\}$. Concerning (NNO) condition, we know the following [2]:

Proposition 1. Let H be a Hilbert space, C a nonempty closed convex subset of H, P the metric projection from H onto C, and T a nonself-mapping from C into H. Suppose that T satisfies (NNO) condition. Then F(T) = F(PT).

Proposition 2. Let H be a Hilbert space, C a nonempty closed convex subset of H, and T a nonexpansive nonself-mapping from C into H. If F(T) is nonempty then T satisfies (NNO) condition.

The following lemma is a similar result which is proved by Shimizu and Takahashi [3]. In a similar way, we can show this lemma.

Lemma 1. Let H be a Hilbert space, C a nonempty closed convex subset of H, and S a nonexpansive mapping from C into itself such that F(S) is nonempty. Let $\{x_n\}$ be a sequence in C such that $\{x_{n+1} - \frac{1}{n+1} \sum_{j=0}^{n} S^j x_n\}$ converges strongly to 0, and let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$ such that $\{x_{n_i}\}$ converges weakly to $x \in C$. Then x is a fixed point of S.

Proof. We show that $\{S^lx\}$ converges strongly to x. If not, there exist a positive number ε and a subsequence $S^{lk}x$ of $\{S^lx\}$ such that $\|S^{lk}x - x\| \ge \varepsilon$ for each k. Since $\{x_{n_i}\}$ converges weakly to x, for each $y \in C$ with $y \ne x$, we have

$$\liminf_{i\to\infty} \|x_{n_i} - x\| < \liminf_{i\to\infty} \|x_{n_i} - y\|.$$

Let $r = \liminf_{i \to \infty} \|x_{n_i} - x\|$ and choose $\delta > 0$ such that $\delta < \sqrt{r^2 + \varepsilon^2/4} - r$. Then, there exists a subsequence $\{x_{m_i}\}$ of $\{x_{n_i}\}$ such that $\|x_{m_i} - x\| < r + \delta/6$ for every i. On the other hand, we have

$$||x_{m_i} - S^l x|| \le ||x_{m_i} - \frac{1}{m_i} \sum_{i=0}^{m_i - 1} S^j x_{m_i - 1}||$$

$$+ \left\| \frac{1}{m_i} \sum_{j=0}^{m_i - 1} S^j x_{m_i - 1} - S^l \left(\frac{1}{m_i} \sum_{j=0}^{m_i - 1} S^j x_{m_i - 1} \right) \right\|$$

$$+ \left\| S^l \left(\frac{1}{m_i} \sum_{j=0}^{m_i - 1} S^j x_{m_i - 1} \right) - S^l x \right\|$$

$$\leq 2 \left\| x_{m_i} - \frac{1}{m_i} \sum_{j=0}^{m_i - 1} S^j x_{m_i - 1} \right\| + \left\| x_{m_i} - x \right\|$$

$$+ \left\| \frac{1}{m_i} \sum_{i=0}^{m_i - 1} S^j x_{m_i - 1} - S^l \left(\frac{1}{m_i} \sum_{i=0}^{m_i - 1} S^j x_{m_i - 1} \right) \right\|.$$

In particular,

$$\begin{split} & \left\| \frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1} - S^{l} \left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1} \right) \right\| \\ & \leqslant \left\| \frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1} - S^{l} \left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1} \right) \right\| + \frac{1}{m_{i}} \|x_{m_{i}-1} - S^{m_{i}} x_{m_{i}-1}\| \\ & + \left\| S^{l} \left(\frac{1}{m_{i}} \sum_{j=1}^{m_{i}} S^{j} x_{m_{i}-1} \right) - S^{l} \left(\frac{1}{m_{i}} \sum_{j=0}^{m_{i}-1} S^{j} x_{m_{i}-1} \right) \right\| \\ & \leqslant \left\| \frac{1}{m_{i}} \sum_{i=1}^{m_{i}} S^{j} x_{m_{i}-1} - S^{l} \left(\frac{1}{m_{i}} \sum_{i=1}^{m_{i}} S^{j} x_{m_{i}-1} \right) \right\| + \frac{2}{m_{i}} \|x_{m_{i}-1} - S^{m_{i}} x_{m_{i}-1}\|. \end{split}$$

Since $\{x_{m_i-1}\}$ and $\{S^{m_i}x_{m_i-1}\}$ are bounded, there exists a positive integer i_1 such that

$$\frac{1}{m_i} \|x_{m_i-1} - S^{m_i} x_{m_i-1}\| < \frac{\delta}{6}$$

for each $i \ge i_1$. Since $\{x_{m_i-1}\}$ is bounded, by Lemma 3 in [3] there exists a positive integer L_0 , such that for every $l \ge L_0$, there exists a positive integer i_l satisfying

$$\left\| \frac{1}{m_i} \sum_{j=1}^{m_i} S^j x_{m_i - 1} - S^l \left(\frac{1}{m_i} \sum_{j=1}^{m_i} S^j x_{m_i - 1} \right) \right\| < \frac{\delta}{6}$$

for each $i \ge i_l$. Since $\lim_{n \to \infty} \|x_{n+1} - \frac{1}{n+1} \sum_{j=0}^n S^j x_n\| = 0$, there exists a positive integer i_0 such that

$$\left\| x_{m_i} - \frac{1}{m_i} \sum_{i=0}^{m_i - 1} S^j x_{m_i - 1} \right\| < \frac{\delta}{6}$$

for all $i \ge i_0$. So, for any $l \ge L_0$ and $i \ge \max\{i_l, i_0, i_1\}$, we have

$$||x_{m_i} - S^l x|| < 2 \times \frac{\delta}{6} + r + \frac{\delta}{6} + \frac{\delta}{6} + 2 \times \frac{\delta}{6} = r + \delta.$$

Choose $l_k \ge L_0$. Then for $i \ge \max\{i_{l_k}, i_0, i_1\}$, we have

$$\left\| x_{m_i} - \frac{S^{l_k} x + x}{2} \right\|^2 = 2 \left\| \frac{x_{m_i} - S^{l_k} x}{2} \right\|^2 + 2 \left\| \frac{x_{m_i} - x}{2} \right\|^2 - \left\| \frac{S^{l_k} x - x}{2} \right\|^2$$

$$< \frac{(r+\delta)^2}{2} + \frac{(r+\delta/2)^2}{2} - \frac{\varepsilon^2}{4} < (r+\delta)^2 - \frac{\varepsilon^2}{4} < r^2.$$

This implies

$$\liminf_{i \to \infty} \left\| x_{m_i} - \frac{S^{l_k} x + x}{2} \right\| < r.$$

However, we have $\frac{S^{l_k}x+x}{2} \neq x$ from $\|S^{l_k}x-x\| \geqslant \varepsilon$, then we obtain $\liminf_{i\to\infty} \|x_{m_i}-x\| < \liminf_{i\to\infty} \|x_{m_i} - \frac{S^{l_k}x+x}{2}\|$, this is a contradiction. Therefore, $\{S^lx\}$ converges strongly to x. This implies, for each $\varepsilon > 0$, there exists a positive number l_0 such that

$$||S^l x - x|| \leqslant \frac{\varepsilon}{2}$$

for each $l \ge l_0$. So, we have that if $l \ge l_0 + 1$, then

$$||Sx - x|| \le ||S^{l-1}x - x|| + ||S^lx - x|| \le \varepsilon.$$

Since ε is arbitrary, we get that Sx = x. \square

3. Strong convergence theorems

In this section, we prove two strong convergence theorems. To prove our results, we use the method employed in [6,7].

Theorem 1. Let H be a Hilbert space, C a nonempty closed convex subset of H, P_1 the metric projection from H onto C, T a nonexpansive nonself-mapping from C into H such that F(T) is nonempty, and $\{\alpha_n\}$ a sequence of real numbers such that $0 \le \alpha_n \le 1$, $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $\{x_n\}$ is given by $x_0, x \in C$ and

$$x_{n+1} = \frac{1}{n+1} \sum_{i=0}^{n} (\alpha_n x + (1 - \alpha_n)(P_1 T)^j x_n) \quad \text{for } n = 0, 1, 2, \dots$$

Then $\{x_n\}$ converges strongly to $P_2x \in F(T)$, where P_2 is the metric projection from C onto F(T).

Proof. Since F(T) is nonempty, then T satisfies (NNO) condition. Let $z \in F(T)$, $M = \max\{||x-z||, ||x_0-z||\}$. Then we have

$$||x_1 - z|| = ||\alpha_0 x + (1 - \alpha_0)x_0 - z|| \le \alpha_0 ||x - z|| + (1 - \alpha_0)||x_0 - z|| \le M.$$

If $||x_n - z|| \le M$ for some $n \in \mathbb{N}$, then we can show that $||x_{n+1} - z|| \le M$ similarly. Therefore, by induction, we obtain $||x_n - z|| \le M$ for all $n \in \mathbb{N}$ and hence $\{x_n\}$ is bounded. Also, from

$$\left\| x_{n+1} - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j x_n \right\|$$

$$= \left\| \frac{1}{n+1} \sum_{j=0}^{n} (\alpha_n x + (1 - \alpha_n) (P_1 T)^j x_n) - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j x_n \right\|$$

$$\leqslant \alpha_n \left\| x - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j x_n \right\|,$$

we have $\{x_{n+1} - \frac{1}{n+1} \sum_{i=0}^{n} (P_1 T)^j x_n\}$ converges strongly to 0. Next, we shall prove that

$$\limsup_{n \to \infty} \langle P_2 x - x_n, P_2 x - x \rangle \leqslant 0. \tag{7}$$

Let $\{x_{n_i}\}$ be a subsequence of $\{x_n\}$ such that

$$\lim_{i\to\infty}\langle P_2x-x_{n_i},P_2x-x\rangle=\limsup_{n\to\infty}\langle P_2x-x_n,P_2x-x\rangle,$$

and there exists $\{x_{n_{i_j}}\}$ which is a subsequence of $\{x_{n_i}\}$ converging weakly as $j \to \infty$ to $w \in C$. From Lemma 1 and Proposition 1, we obtain $w \in F(T)$. Then we have

$$\limsup_{n \to \infty} \langle P_2 x - x_n, P_2 x - x \rangle = \lim_{j \to \infty} \langle P_2 x - x_{n_{i_j}} P_2 x - x \rangle$$
$$= \langle P_2 x - w P_2 x - x \rangle \leq 0.$$

By (7), for any $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that

$$\langle P_2 x - x_n, P_2 x - x \rangle < \varepsilon \tag{8}$$

for all $n \ge m$. On the other hand, from

$$x_{n+1} - P_2 x + \alpha_n (P_2 x - x) = \frac{1}{n+1} \sum_{j=0}^n (\alpha_n x + (1 - \alpha_n) (P_1 T)^j x_n) - (\alpha_n x + (1 - \alpha_n) P_2 x),$$

this implies

$$||x_{n+1} - P_2 x||^2 \le \left\| \frac{1}{n+1} \sum_{j=0}^n (\alpha_n x + (1-\alpha_n)(P_1 T)^j x_n) - (\alpha_n x + (1-\alpha_n)P_2 x) \right\|^2$$

$$+ 2\alpha_n \langle x_{n+1} - P_2 x, x - P_2 x \rangle$$

$$\le \left\{ (1-\alpha_n) \frac{1}{n+1} \sum_{j=0}^n \left\| (P_1 T)^j x_n - P_2 x \right\| \right\}^2$$

$$+ 2\alpha_n \langle x_{n+1} - P_2 x, x - P_2 x \rangle$$

$$\le (1-\alpha_n)^2 ||x_n - P_2 x||^2 + 2\alpha_n \langle x_{n+1} - P_2 x, x - P_2 x \rangle$$

for all $n \in \mathbb{N}$. By (8),

$$||x_{n+1} - P_2 x|| \le 2\alpha_n \varepsilon + (1 - \alpha_n) ||x_n - P_2 x||^2$$

$$= 2\varepsilon (1 - (1 - \alpha_n)) + (1 - \alpha_n) ||x_n - P_2 x||^2$$

$$\le 2\varepsilon (1 - (1 - \alpha_n))$$

$$+ (1 - \alpha_n) (2\varepsilon (1 - (1 - \alpha_{n-1})) + (1 - \alpha_{n-1}) ||x_{n-1} - P_2 x||^2)$$

$$= 2\varepsilon (1 - (1 - \alpha_n)(1 - \alpha_{n-1})) + (1 - \alpha_n)(1 - \alpha_{n-1}) ||x_{n-1} - P_2 x||^2$$

for all $n \ge m$. By induction, we obtain

$$||x_{n+1} - P_2 x||^2 \le 2\varepsilon \left(1 - \prod_{k=m}^n (1 - \alpha_k)\right) + \prod_{k=m}^n (1 - \alpha_k)||x_m - P_2 x||.$$

Therefore, from $\sum_{n=0}^{\infty} \alpha_n = \infty$, we have

$$\limsup_{n\to\infty} \|x_{n+1} - P_2 x\| \leqslant 2\varepsilon.$$

Since ε is arbitrary, we can conclude that $\{x_n\}$ converges strongly to P_2x . \square

Theorem 2. Let H be a Hilbert space, C a nonempty closed convex subset of H, P_1 the metric projection from H onto C, and T a nonexpansive nonself-mapping from C into H such that F(T) is nonempty, and $\{\alpha_n\}$ a sequence of real numbers such that $0 \le \alpha_n \le 1$, $\lim_{n\to\infty} \alpha_n = 0$ and $\sum_{n=0}^{\infty} \alpha_n = \infty$. Suppose that $\{y_n\}$ is given by $y_0, y \in C$ and

$$y_{n+1} = \frac{1}{n+1} \sum_{j=0}^{n} P_1 \left(\alpha_n y + (1 - \alpha_n) (T P_1)^j y_n \right) \quad \text{for } n = 0, 1, 2, \dots$$

Then $\{y_n\}$ converges strongly to $P_2y \in F(T)$, where P_2 is the metric projection from C onto F(T).

Proof. Since F(T) is nonempty, then T satisfies (NNO) condition. Let $z \in F(T)$, $M = \max\{\|y - z\|, \|y_0 - z\|\}$. Then we have

$$||y_1 - z|| = ||P_1(\alpha_0 y + (1 - \alpha_0) y_0) - z|| \le ||\alpha_0 y + (1 - \alpha_0) y_0 - z||$$

$$\le \alpha_0 ||y - z|| + (1 - \alpha_0) ||y_0 - z|| \le M.$$

If $||y_n - z|| \le M$ for some $n \in \mathbb{N}$. Then we can show that $||y_{n+1} - z|| \le M$ similarly. Therefore, by induction, we obtain $||y_n - z|| \le M$ for all $n \in \mathbb{N}$ and hence $\{y_n\}$ is bounded. Also, from

$$\left\| y_{n+1} - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j y_n \right\|$$

$$= \left\| \frac{1}{n+1} \sum_{j=0}^{n} P_1 \left(\alpha_n y + (1 - \alpha_n) (T P_1)^j y_n \right) - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j y_n \right\|$$

$$\leq \frac{1}{n+1} \sum_{j=0}^{n} \left\| P_1 \left(\alpha_n y + (1 - \alpha_n) (T P_1)^j y_n \right) - (P_1 T)^j y_n \right\|$$

$$\leq \frac{1}{n+1} \sum_{j=0}^{n} \|\alpha_n y + (1-\alpha_n)(TP_1)^j y_n - (TP_1)^j y_n\|
\leq \alpha_n \frac{1}{n+1} \sum_{j=0}^{n} \|y - (TP_1)^j y_n\|,$$

we obtain $\{y_{n+1} - \frac{1}{n+1} \sum_{j=0}^{n} (P_1 T)^j y_n\}$ converges strongly to 0. Next, we shall prove that $\limsup_{n \to \infty} \langle P_2 y - y_n, P_2 y - y \rangle \leqslant 0.$ (9)

Let $\{y_{n_i}\}$ be a subsequence of $\{y_n\}$ such that

$$\lim_{i \to \infty} \langle P_2 y - y_{n_i}, P_2 y - y \rangle = \limsup_{n \to \infty} \langle P_2 y - y_n, P_2 y - y \rangle,$$

and there exists $\{y_{n_{i_j}}\}$ which is a subsequence of $\{y_{n_i}\}$ converging weakly as $j \to \infty$ to $w \in C$. From Lemma 1 and Proposition 1, we obtain $w \in F(T)$. Then we have

$$\limsup_{n \to \infty} \langle P_2 y - y_n, P_2 y - y \rangle = \lim_{j \to \infty} \langle P_2 y - y_{n_{i_j}}, P_2 y - y \rangle$$
$$= \langle P_2 y - w, P_2 y - y \rangle \leq 0.$$

By (9), for any $\varepsilon > 0$, there exists $m \in \mathbb{N}$ such that

$$\langle P_2 y - y_n, P_2 y - y \rangle < \varepsilon \tag{10}$$

for all $n \ge m$. On the other hand, from

$$y_{n+1} - P_2 y + \alpha_n (P_2 y - y) = \frac{1}{n+1} \sum_{j=0}^n P_1 (\alpha_n y + (1 - \alpha_n) (T P_1)^j y_n)$$
$$- P_1 (\alpha_n y + (1 - \alpha_n) P_2 y),$$

this implies

$$||y_{n+1} - P_{2}y||^{2} \leq \left\| \frac{1}{n+1} \sum_{j=0}^{n} P_{1}(\alpha_{n}y + (1-\alpha_{n})(TP_{1})^{j}y_{n}) - P_{1}(\alpha_{n}y + (1-\alpha_{n})P_{2}y) \right\|^{2} + 2\alpha_{n}\langle y_{n+1} - P_{2}y, y - P_{2}y \rangle$$

$$\leq \left\{ \frac{1}{n+1} \sum_{j=0}^{n} \left\| P_{1}(\alpha_{n}y + (1-\alpha_{n})(TP_{1})^{j}y_{n}) - P_{1}(\alpha_{n}y + (1-\alpha_{n})P_{2}y) \right\| \right\}^{2} + 2\alpha_{n}\langle y_{n+1} - P_{2}y, y - P_{2}y \rangle$$

$$\leq \left\{ (1-\alpha_{n}) \frac{1}{n+1} \sum_{j=0}^{n} \left\| (TP_{1})^{j}y_{n} - P_{2}y \right\| \right\}^{2}$$

$$+ 2\alpha_{n}\langle y_{n+1} - P_{2}y, y - P_{2}y \rangle$$

$$\leq (1-\alpha_{n})^{2} \|y_{n} - P_{2}y\|^{2} + 2\alpha_{n}\langle y_{n+1} - P_{2}y, y - P_{2}y \rangle$$

$$\leq (1-\alpha_{n})^{2} \|y_{n} - P_{2}y\|^{2} + 2\alpha_{n}\langle y_{n+1} - P_{2}y, y - P_{2}y \rangle$$

for all $n \in \mathbb{N}$. By (10), $\sum_{n=0}^{\infty} \alpha_n = \infty$, and in the proof of Theorem 1, we can conclude that $\{y_n\}$ converges strongly to P_2y . \square

References

- [1] B.R. Halpern, G.M. Bergman, A fixed-point theorem for inward and outward maps, Trans. Amer. Math. Soc. 130 (1968) 353–358.
- [2] S. Matsushita, D. Kuroiwa, Approximation of fixed points of nonexpansive nonself-mappings, Sci. Math. Jpn. 57 (2003) 171–176.
- [3] T. Shimizu, W. Takahashi, Strong convergence theorem for asymptotically nonexpansive mappings, Nonlinear Anal. 26 (1996) 265–272.
- [4] T. Shimizu, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings, J. Math. Anal. Appl. 211 (1997) 71–83.
- [5] N. Shioji, W. Takahashi, A strong convergence theorem for asymptotically nonexpansive mappings in Banach spaces, Arch. Math. 72 (1999) 354–359.
- [6] W. Takahashi, Convex Analysis and Approximation of Fixed Points, Yokohama Publishers, Yokohama, 2000 (in Japanese).
- [7] R. Wittmann, Approximation of fixed points of nonexpansive mappings, Arch. Math. 58 (1992) 486–491.