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Abstract

The Fourier duality is an elegant technique to obtain sampling formulas in Paley—Wiener spaces.
In this paper it is proved that there exists an analogue of the Fourier duality technique in the setting
of shift-invariant spaces. In fact, any shift-invariant spagewith a stable generatar is the range
space of a bounded one-to-one linear operat(hetweenLZ(O, 1) and LZ(R). Thus, regular and
irregular sampling formulas i, are obtained by transforming, via, expansions ir.2(0, 1) with
respect to some appropriate Riesz bases.
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1. Introduction

The Whittaker-Shannon—Kotel'nikov sampling theorem states that any fungtion
the classical Paley—Wiener spde@/,,,
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PW, :={f € L?(R) N C(R): suppf C [-m, 71},

i.e., bandlimited tq—, 7], may be reconstructed from its samp{g%n)},<z on the inte-
gers as

o0
fy= Y fmsinar—n), (1)
n=—0oo
where sinc denotes the cardinal sine function, Gine sinxt/xt.

This theorem and its humerous offspring have been proved in many different ways,
e.g., using Fourier expansions, the Poisson summation formula, contour integrals, etc. (see,
for instance, [11,19]). But the most elegant proof is probably the one due to Hardy [10],
using that the Fourier transforth is an isometry betweeRW,, and L2[—x, ]. For any
f € PW, one has

—iwt

N

1 [
=— Wdw=(f, — , R,
O «/E_/ Jmedw <f \/Z>L2[—n,n'] a

so any valuef (#,) of f is the inner product iL?[—x, ] of f and the complex expo-
nentiale % //27r. The key point in Hardy’s proof is that an expansion converging in
L?[—7, 7] is transformed byF 1 into another expansion which converges in the topology
of PW,,. This implies, in particular, that it converges absolutely and uniformlR oRecall
that the Paley—Wiener spaP®V,, is a reproducing kernel Hilbert space (RKHS) whose re-
producing kernel i (z, s) = sinat — s). This technique has been coined in [11, p. 56]
as theFourier duality in Paley—Wiener spaces. Thus, expandjﬁgvith respect to the
orthonormal basige=""* /+/27 },cz and transforming by 1 we obtain the Shannon
sampling formula (1). An irregular sampling formulalRW,, at a sequencg,, }, <z, of real
points may be obtained by perturbating the orthonormal b@st§® /v/27 },,cz in such

a way that the sequence of complex exponenfiaté»® /</2 },cz forms a Riesz basis
for PW,.. This is the case if, for instance, the sequefié,c7z C R verifies the Kadec
condition: sup.z |t, — n| < 1/4. Moreover, the Paley—Wiener—Levinson sampling theo-
rem states that any functiofie PW,, can be recovered from its samplgs(z,)},cz by
means of the Lagrange-type interpolation series

G(1)

f@®)= Z f(l‘n)m,

n=—0oo

whereG stands for the infinite produdt (1) := (t — 10) [ 101 (1 — t/t,)(1 — 1 /1_,) [18].

On the other hand, the Paley—Wiener spRW&, is a particular case of a shift-invariant
space, i.e., a closed subspacé.f{R) generated by the integer shifts of a single function

¢ € L%(R). Whenever the sequen¢e(- — n)},cz forms, at least, a frame sequence in
L2(R) (i.e., it is a frame for its closed linear span), the corresponding shift-invariant space
can be described as

V, = { Za,, (- —n): {an) eEZ(Z)}.

nez
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The generatop is stable if the sequende(- —n)},cz is a Riesz basis fov,,. For PW,,
a stable generator is= sinc. Wavelet subspaces are important examples of shift-invariant
spaces generated by the scaling function of the corresponding multiresolution analysis. See
[3,4,15] for the general theory of shift-invariant spaces and their applications. In addition,
sampling theory in shift-invariant spaces and, in particular, in wavelet subspaces has been
largely studied in the recent years. Let us cite, for instance, the works of Aldroubi and
Grochenig [1], Aldroubi and Unser [2], Chen, Itoh and Shiki [6,7], Janssen [13], Sun and
Zhou [16,20], or Walter [14,17] among others.

The main aim in this paper is to show that the Fourier duality for Paley—Wiener spaces
can be generalized to the case of a shift-invariant spaceith a stable generatar. To
this end, we define a bounded one-to-one linear opefatoetweenZ.?(0, 1) and L2(R)
as

T:L%0,1) — L%(R)
F— f such that.f(t) = <F, Kt)LZ(O,l)’

where the kernel transforme R — K, € L?(0, 1) is given by the Zak transform ap
namely,K;(x) := Z¢(t, x), a.e.x € (0, 1). Recall that the Zak transform ¢f € L2(R) is
formally defined agZf)(t,w) ==, ., f(t + n)e~2rinw ¢y e R. The shift-invariant
spaceV,, coincides with the range space Bf Thus, sampling expansions If, can be
seen as transformed expansions¥iaf expansions ii.2(0, 1) with respect to appropriate
Riesz bases. Taking into account the definitiolofhese bases should have the particular
form {K;, },ez. Taking the sampling point$, = a +n},cz, we obtain the regular sampling
in V,,, whereas perturbing this sequence{gs=a + n + 6, },cz, we obtain the irregular
sampling. These steps will be carried out throughout the remaining sections.

2. Preliminarieson shift-invariant spaces
Let ¢ € L2(R) be a stable generator for the shift-invariant space

Vo = { Y an 9 —n): {an) € EZ(Z)} C LA(®),
nez
i.e., the sequendg (- —n)},ez is a Riesz basis fov,. A Riesz basis in a separable Hilbert
space is the image of an orthonormal basis by means of a bounded invertible operator.
Recall that the sequenée(- —n)},cz is a Riesz sequence, i.e., a Riesz basid/fpoif and
only if

O<l@llo< 1Pl < 00,

where||® ||o denotes the essential infimum of the functibiw) := >, ., [¢(w + k|2 in
[0, 1], and||® ||« its essential supremum. Furthermoffé,|jo and| @ ||~ are the optimal
Riesz bounds [8, p. 143].
We assume along the paper that, for eaetR, the series ", ., lo(t — n)|2 converges.
Thus, by using the Riesz’ subsequence theorem [8, p. 39] we can choose the pointwise
limit f(t) := ) ,czan ¢(t —n) for eachr € R, as the representative element of the
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class), .z an ¢(- —n)in L2(R). Moreover, ifg is a continuous function and the series
Y onezlo(t — n)|? converges uniformly in compact subsetsfyfwe can take any e Ve
as a continuous function iR.

Besides)V, is a RKHS since the evaluation functionals are bounded,inndeed, for
each fixedt € R we have

[f0f* < ||<1>|| Z|¢(z—n)| 112 f&Vy, @

where we have used Cauchy—Schwartz’s inequalityf @ = »_,.; a, ¢(t —n), and the
Riesz basis condition

1®ll0) lanl® < IfIP < NPlloo Y lanl?,  f € V.

nez nez

Inequality (2) shows that convergence in thé(R)-norm implies pointwise conver-
gence inR. The convergence is uniform in subsets of the real line whéfg|?

> ez lo(t —n)|? is bounded.

The reproducing kernel df, is given byk(t,s) =, .7 ¢(t —n) ¢*(s — n) where the
sequencde™(- — n)},cz denotes the dual Riesz basis{gf(- — n)},cz. Recall that the
functiong* has Fourier transform* = ¢,/ @ [2].

1200,) —

3. A linear transform defining a shift-invariant space

For eachr € R, consider the functio; € L2(0, 1) defined by the Fourier series

Kt — Z mg—Zninx.
nez
Notice thatK;(x) = Z¢(t, x) a.e.x € (0, 1), whereZ denotes the Zak transform @f See
[9,12] for properties and uses of the Zak transform.
Thus, for eachF € L2(0, 1) we can define the function

f:R—C,
t—> f(t):=(F, Ki)12(0,1)-

If we denote byT the linear transform which maps € L2(0, 1) into f, i.e., T(F) = f,
then we can identify the range spaceloés the shift-invariant,,, i.e., T (L2(0, 1)) = Vo
Indeed, forF € L2(0, 1) we have that

[T(F)]@) = (F, KD) 1200 = Y _(F e ™) 2010 1), 1ER,

nez

which belongs tdV,,. Furthermore, for eaclf € V,, there exists a sequen¢s,} € 02(7)
such thatf = 3", ., an@(- + n) in L2(R). Since{e~27"*}, .7 is an orthonormal basis in
L?(0, 1), there exists a functiol € L2(0, 1) such that(F, e=27"%) 5 4 ;) = a,, for every
n € Z. Hence,T (F) = f. Moreover, the following result holds:
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Theorem 1. The mapping’ is an invertible bounded operator betwekA(0, 1) and V.

Proof. The operatorfT is bijective since it maps the orthonormal bagis%%i"*},.7 in
L2(0,1) into the Riesz basi$p(t + n)},ez in V,. Concerning the continuity, foF e
L2(0, 1), we have

2

<NPlloo Y |(F. e727m)|?

2
T(F) =
“ ” L2(R) L2®) ~

Z(F’ efzmrlx)LZ(o,l)‘/’(’ +n)

nez
2
= @10l F 2201,

where we have used the upper Riesz basis conditiofyfeHn)},cz. O

Having in mind the periodicity relations of the Zak transform, the funciGrsatisfies
Kipm(x) = e K, (x) in L?(0, 1), wherer € R andm € Z.
Now, for f € V,, considerF = T~1(f) € L?(0, 1). For each: € Z we have

T[F(0)e ™)) = (Fe™  Ki()) 2001y = (Fs Kimn)1201) = £t = ).

SinceT is a bounded invertible operator, the sequelnfie —n)},.cz is a Riesz basis fov,,

if and only if { F (x)e%""*}, .7 is a Riesz basis fok2(0, 1). The following theorem which

can be found in [5, Theorem 2.2] gives a characterization of Bessel sequences, Riesz bases
and frames inL2(0, 1) having the form{F (x)eZ""*}, 7. From now on,|| F|l« (respec-

tively || F|lo) will denote the essential supremum (respectively infimumyofin (0, 1).

Theorem 2. Given a functionF € L2(0, 1), the following results hold

(@) The sequencgF (x)e?""*}, 7 is a Bessel sequenceirf(0, 1) if and only if the func-
tion F satisfieq| F||oo < 00.

(b) The sequencéF (x)e?""*}, . is a Riesz basis foL2(0, 1) if and only if the func-
tion F satisfiesO < || Fllo < || Flleo < 00. In this case, the optimal Riesz bounds of
{F(x)e?" "%}, ez, are | Fl|3 and || F|1Z..

(c) Tr21e sequencF (x)eZ" "%}, ., is a frame inL2(0, 1) if and only if is a Riesz basis for
L?(0,1).

Thus we have the following corollary iv,.
Corollary 1. Given a functiong € V,,, considerG = T~1(g) € L?(0,1). Then, the se-
guence(g(t — n)}nez is a Riesz basis fov, if and only if0 < ||Gllo < |G llec < 0.
4. Regular samplingin shift-invariant spaces

Regular sampling inV,, arises by considering appropriate Riesz base& (0, 1).

Namely, for a fixeda € [0, 1), the regular samples &t + n},cz of f €V, are given
by
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fla+n =(F, Katn) 1202 = (F. Ka€®"™) 201, n€EZ,

where F = T~1(f). The sequencék, (x)ezm’”},,ez in L2(0, 1) has the biorthonormal
sequencde? ™ /K, (x)}nez provided ¥K, € L?(0,1). Hence, stable regular sampling
in V,, reduces to studying whenever the seque{rIC@(x)eZ”’”x}nez is a Riesz basis for
L?(0, 1), and this depends on the functidf, as stated in Theorem 2. Expandifig=
T-1(f) with respect to the Riesz basfg®"* /K, (x)},ez, Via the invertible bounded
operatorT, we obtain a regular sampling formula f¢r

Lemma l. Givena € [0, 1), there exists a functiof, € V,, satisfying the interpolation con-
dition S, (a +n) = 8,0, Wheren € Z, if and only if the functiori/ K, belongs tal2(0, 1).
In this caseS, = T (1/K,).

Proof. Assume that there exists a functiSp € V,, satisfying the interpolation condition
Su(a + n) = 8,0, Wheren € Z. For F, = T~(S,) we have
Sa(a+n) = (Fa, Ka4n)120.1) = (Far €7 " Ka)
1
= / Fa()Ka(x)e "™ dx = 5,0,
0

L2(0,1)

which implies thatF,(x)K,(x) = 1 a.e. in(0, 1), and consequently the functiony K,
belongs taL2(0, 1). i
Conversely, if YK, is in L2(0, 1), we defineS, = T'(1/K,). Forn € Z it satisfies

1 .
S (a + n) <I€ ’ K{l"rl’l = (17 ezrnnx>L2(o’l) = 8}1,0~ O

a >L2(O, 1

Thus we can characterize stable regular samplirig,in

Theorem 3. Considera € [0, 1) such that the functiod/K, € L?(0, 1). The following
conditions are equivalent

(@) O< [IKallo < 1Kalloo < 00.
(b) There exists a Riesz badis, },cz for V,, such that, for eachf € V,,, we have the
pointwise expansion

fO =Y fla+ms,), teR.

nez

Furthermore, in this case the sampling functions agr) = S,(r — n), where S, =
T(1/K,). The sampling series converges in th&R)-norm sense, absolutely and uni-
formly in subsets dR where| K, || is bounded.

Proof. First we prove that (a) implies (b). Considsy = T(1/K,). Condition (a) im-
plies that O< ||1/K.llo < |11/ K. ]leo < 00 and, as a consequence, Corollary 1 gives that
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{Sa(t — n)}uez is @ Riesz basis fov,,. For eachf e V,,, there exists a sequents, },cz
in ¢2(Z) such thatf (r) = Y nezanSa(t —n) where the convergence is also pointwise for
eachr € R sinceV, is a RKHS. Taking = a + m, and using the interpolatory condition
Sa(a +n) = 8,0, we obtain that,, = f(a +m) for anym € Z.

Conversely, assume that the condition (b) holds. Takitg = S,(t — m), m € Z, we
obtain thatS,,(z) = S,(t — m) and , as a consequende, (t+ — n)},cz iS a Riesz basis
for V,,. SinceS, = T(1/K,), Corollary 1 gives condition (a).

Absolute convergence comes from the inconditional character of a Riesz basis. The
uniform convergence is a standard result in the setting of the RKHS thenry.

A straightforward calculation gives the Fourier transfornspf Indeed,

¢(w)

————~——— a.e.ink.
Zy(a, w/2m)

Sa(w) =T (1/Ky)(w) =

5. Irregular sampling in shift-invariant spaces

Usually, one may consider irregular sampling as a perturbation of the regular sampling.
In the present setting, we can try to recover any funcfianV,, from its perturbed samples
{fla+n++6y)}nez, Wherea € [0, 1) and{s, },c7 is a sequence if—1, 1). Since

fla+n+8,)=(F, Katnts,) 1201, 1 €Z, WhereF =T 1(f) e L%0,1),

a challenge problem is to prove th@,1+s, }nez IS a Riesz basis fok2(0, 1).

One possibility is to use a perturbation technique on the Riesz BA&Sis, },cz =
{K.eZ" "%}, .7 which gives the sequence of regular samgl¢éga + n)},cz. As a con-
sequence, we need a perturbation result for those Riesz bag#0ril) appearing in
Theorem 2.

For an infinite matrixM = {m,, x}, x<z defining a bounded operator§A(Z) we denote
its operator norm agM || := SUH|C”42(Z)=1 IMcll2z)-

Theorem 4. Let F = Y, axe~2"** be in L2(0, 1) such thatO < ||Fllo < | Fllc <
o0. Let {F,}ncz be a sequence of functions Ir?(0, 1) with Fourier expansions, =

Y kez ax(n)e=27kx 5 e 7,. Suppose that the infinite matrix = {dn.k}n.kez With entries
dy i = an—k(n) —an—i, n, k € Z, satisfies the conditiofD |2 < || F |lo. Then, the sequence
{F,(x)eZ" "}, _, is a Riesz basis fok2(0, 1).

Proof. To this end we use the following result on perturbation of Riesz bases in a Hilbert
spaceH which can be found in [8, p. 354]: I¢lf;}72 , be a Riesz basis fdt with Riesz

boundsA, B, and let{g}?>; be a sequence iH. If there exists a constat < A such
that

o
SN —ge NIP<RISIZ foreachf e,
k=1

then{gi};2 ; is a Riesz basis fok.
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Foranyf = &je”"*in L?(0,1) we have

JEZ
Z|(Fn(x)€2m’nx — F(X)ezﬂinx’ f)|2
nez
2
= Z <Z(ak(n) — ak)ezﬂi(n—k)x, c—je27rijx>
nez’ ‘keZl =
2 2
= Z Z(anfk(n) —an-r)cx| = Z Zdn,ka =D C||§2(Z) <|IDIZ 1 f12
neZ' ke |

Taking into account that in our cage= ||F||(2), we obtain that F, (x)e?""*},c7 is a Riesz
basis forL2(0,1). O

As a consequence of the above perturbation theoreb? @, 1), we obtain an irregular
sampling result ir¥/,.

Theorem 5. Givena € [0, 1) such thatO < || Ksllo < |Kalloo < 00. LetA = {5,},e7 be a
sequence if—1, 1) such that the infinite matri® o = {d, r}» rez Whose entries are given

by

dpp:=9a@+n—k+6é)—¢pla+n—k), nkeZ,

satisfies|Dall2 < | Kqllo- Then, there exists a Riesz bags },.cz for V,, such that any
function f € V,, can be expanded as

fO=Y " fla+n+8)8:(), teR.

nez

The convergence of the series is absolute and uniform in subsé&swdfere || K;| is
bounded. Also, it converges in tiié(R)-norm sense.

Proof. Applying Theorem 4 to

Ko(x)=) ¢la+ke > and
keZ
Ky, (x) = Z(p(a Fhk+o)e T ez,
keZ
we obtain tha{K 45,7 },1cz, = {Ka-tn+s, Jnez IS @ Riesz basis fak2(0, 1). Denote by
{Gn}nez its dual Riesz basis. Now, givefie V,,, we expand the functiof = T-Y(f) e
L?(0, 1) with respect td G, },ez. Thus,

F =Y (F.Katnts,) 1201 Gn=Y_ fla+n+8,)G, inL?0,1).

nez nez

Applying the operatof’, we get
f= Z f@a+n+8)T(Gy) inL%R).

nez
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Furthermore, sincd is an invertible bounded operator, the sequeff,e= T (G,)},ez
is a Riesz basis fov,,. The pointwise convergence properties of the series come out as in
Theorem 3. O

The next result yields a uniform bound of the nofi® 4|2 regardless the sequence
A= {8n}neZ In [(X, ﬂ] C [_17 1]

Theorem 6. For any sequencé = {5,,},,cz in [, B8] the following inequality holds

IDallz<  sup Y |p(a+n+dy) —gla+n). 3)
{"}Caﬂ]néz

Proof. Assume that the second term in the above inequality is finite. Otherwise, the in-
equality trivially holds. For any = {ci}xez € £2(Z) we have

2
IDaclZog =D | D dnkck| <Y Y lduil lcil 1dnj1 1]

neZl' kel neZl,jel
e[ +|c,

=Y lallejl D ldnal ldnjl < ) > " ldnl I,

l,jeZ nez l,jeZ nez

2

=Y lal® ) lduwil ldn I < sup( > ldul |dn,,-|>||c||[2(z)

IeZ J.nez J.neZ

sup(Z \dy zl) D ldn il llelZ, -

nez JEZ

Having in mind that
D ldnjl =) |pla+j—k+8) —gla+j—k|

J€EZ JEZ
=Y |pla+n+8ux) —

nez

we obtain the desired resultO

A comment about the second term in (3) is in order. Namely, looking for an estimation
of the ratio between _, ., l¢(a +n +d,) — ¢(a + n)| and(sup, |d,)* for a fixed > 0,
led Chen et al. to introduce in [6] the classes of functibkx, 1.

Next we give a particular example when Theorem 6 works. Namely, suppose that the
stable generatar € C1(R) and for some > 0 it satisfiesy’(r) = O (|r|"1+?)) as|t| — co.
Then, it is easy to prove that, fére (0, 1],

My (8) 1= 3 made' (0] < My (D) < oo,
k

wherel(§) denotes the intervgh +k — 8, a + k + §8].
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Corollary 2. Let ¢ € C1(R) be a stable generator such thaf, (8) < oo, wheres :=
Sup,cz 16x1. Then, the conditiod M, (8) < || K,llo implies the existence of a Riesz basis
{Sn}nez for V, such that any function in this space can be expanded as

fO=Y fla+n+8)8@. rek.

nez

The convergence in the series is absolute and uniform in subsé&svdiere || K;| is
bounded. It converges also in tié(R)-norm sense.

Proof. The mean value theorem gives

sup Z|<p(a +n4dy) —la+n)| <8 My(®).
{dn}C[*S,S]nEZ

Theorem 5 concludes the proofm
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