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1. Introduction

Let u ∈C with u �= 1. Then the Frobenius–Euler polynomials are defined by generating function as
follows:

Fu(t, x) = 1 − u

et − u
ext =

∞∑
n=0

Hn(x | u)
tn

n! (see [2,4]). (1)

In the special case, x = 0, Hn(0 | u) = Hn(u) are called the n-th Frobenius–Euler numbers (see [4]).
By (1), we get

Hn(x | u) =
n∑

l=0

(
n

l

)
xn−l Hl(u) for n ∈ Z+ = N∪ {0}. (2)
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Thus, by (1) and (2), we get the recurrence relation for Hn(u) as follows:

H0(u) = 1,
(

H(u) + 1
)n − uHn(u) =

{
1 − u if n = 0,

0 if n > 0,
(3)

with the usual convention about replacing H(u)n by Hn(u) (see [4,10,12,15]).
The Bernoulli and Euler polynomials can be defined by

t

et − 1
ext =

∞∑
n=0

Bn(x)
tn

n! ,
2

et + 1
ext =

∞∑
n=0

En(x)
tn

n! .

In the special case, x = 0, Bn(0) = Bn are the n-th Bernoulli numbers and En(0) = En are the n-th
Euler numbers.

The formula for a product of two Bernoulli polynomials are given by

Bm(x)Bn(x) =
∞∑

r=0

((
m

2r

)
n +

(
n

2r

)
m

)
B2r Bm+n−2r(x)

m + n − 2r
+ (−1)m+1 m!n!

(m + n)! Bm+n, (4)

where m + n � 2 and
(m

n

) = m!
n!(m−n)! = m(m−1)···(m−n+1)

n! (see [2,3]).
From (1), we note that Hn(x | −1) = En(x). In [10], Nielson also obtained similar formulas for

En(x)Em(x) and Em(x)Bn(x).
In view point of (4), Carlitz has considered the following identities for the Frobenius–Euler poly-

nomials as follows:

Hm(x | α)Hn(x | β) = Hm+n(x | αβ)
(1 − α)(1 − β)

1 − αβ

+ α(1 − β)

1 − αβ

m∑
r=0

(
m

r

)
Hr(α)Hm+n−r(x | αβ)

+ β(1 − β)

1 − αβ

n∑
s=0

(
n

s

)
Hs(β)Hm+n−s(x | αβ), (5)

where α,β ∈C with α �= 1, β �= 1 and αβ �= 1 (see [4]).
In particular, if α �= 1 and αβ = 1, then

Hm(x | α)Hn
(
x | α−1) = −(1 − α)

m∑
r=1

(
m

r

)
Hr(α)

Bm+n−r+1(x)

m + n − r + 1

− (
1 − α−1) n∑

s=1

(
n

s

)
Hs

(
α−1) Bm+n−s+1(x)

m + n − s + 1

+ (−1)n+1 m!n!
(m + n + 1)! (1 − α)Hm+n+1(α).

For r ∈ N, the n-th Frobenius–Euler polynomials of order r are defined by generating function as
follows:
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F r
u(t, x) = Fu(t, x) × Fu(t, x) × · · · × Fu(t, x)︸ ︷︷ ︸

r-times

=
(

1 − u

et − u

)
×

(
1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

r-times

ext

=
∞∑

n=0

H (r)
n (x | u)

tn

n! for u ∈C with u �= 1. (6)

In the special case, x = 0, H (r)
n (0 | u) = H(r)

n (u) are called the n-th Frobenius–Euler numbers of order r
(see [1–14,16]).

In this paper we derive non-linear differential equations from (1) and we study the solutions of
non-linear differential equations. Finally, we give some new and interesting identities and formulae
for the Frobenius–Euler polynomials of higher order by using our non-linear differential equations.

2. Computation of sums of the products of Frobenius–Euler numbers and polynomials

In this section we assume that

F = F (t) = 1

et − u
, and F N(t, x) = F × · · · × F︸ ︷︷ ︸

N-times

ext for N ∈ N. (7)

Thus, by (7), we get

F (1) = dF (t)

dt
= −et

(et − u)2
= − 1

et − u
+ u

(et − u)2
= −F + uF 2. (8)

By (8), we get

F (1)(t, x) = F (1)(t)etx = −F (t, x) + uF 2(t, x), and F (1) + F = uF 2. (9)

Let us consider the derivative of (8) with respect to t as follows:

2uF F ′ = F ′′ + F ′. (10)

Thus, by (10) and (8), we get

2!u2 F 3 − 2uF 2 = F ′′ + F ′. (11)

From (11), we note that

2!u2 F 3 = F (2) + 3F ′ + 2F , where F (2) = d2 F

dt2
. (12)

Thus, by the derivative of (12) with respect to t , we get

2!u23F 2 F ′ = F (3) + 3F (2) + 2F (1), and F (1) = uF 2 − F . (13)

By (13), we see that
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3!u3 F 4 F = F (3) + 6F (2) + 11F (1) + 6F . (14)

Thus, from (14), we have

3!u4 F 4(t, x) = F (3)(t, x) + 6F (2)(t, x) + 11F (1)(t, x) + 6F (t, x).

Continuing this process, we set

(N − 1)!uN−1 F N =
N−1∑
k=0

ak(N)F (k), (15)

where F (k) = dk F
dtk and N ∈ N.

Now we try to find the coefficient ak(N) in (15). From the derivative of (15) with respect to t , we
have

N!uN−1 F N−1 F (1) =
N−1∑
k=0

ak(N)F (k+1) =
N∑

k=1

ak−1(N)F (k). (16)

By (8), we easily get

N!uN−1 F N−1 F (1) = N!uN−1 F N−1(uF 2 − F
) = N!uN F N+1 − N!uN−1 F N . (17)

From (16) and (17), we can derive the following equation (18):

N!uN F N+1 = N(N − 1)!uN−1 F N +
N∑

k=1

ak−1(N)F (k)

= N
N−1∑
k=0

ak(N)F (k) +
N∑

k=1

ak−1(N)F (k). (18)

In (15), replacing N by N + 1, we have

N!uN F N+1 =
N∑

k=0

ak(N + 1)F (k). (19)

By (18) and (19), we get

N∑
k=0

ak(N + 1)F (k) = N!uN F N+1 = N
N−1∑
k=0

ak(N)F (k) +
N∑

k=1

ak−1(N)F (k). (20)

By comparing coefficients on the both sides of (20), we obtain the following equations:

Na0(N) = a0(N + 1), aN(N + 1) = aN−1(N). (21)

For 1 � k � n − 1, we have

ak(N + 1) = Nak(N) + ak−1(N), (22)
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where ak(N) = 0 for k � N or k < 0. From (21), we note that

a0(N + 1) = Na0(N) = N(N − 1)a0(N − 1) = · · · = N(N − 1) · · · 2a0(2). (23)

By (8) and (15), we get

F + F ′ = uF 2 =
1∑

k=0

ak(2)F (k) = a0(2)F + a1(2)F (1). (24)

By comparing coefficients on the both sides of (24), we get

a0(2) = 1, and a1(2) = 1. (25)

From (23) and (25), we have a0(N) = (N − 1)!. By the second term of (21), we see that

aN(N + 1) = aN−1(N) = aN−2(N − 1) = · · · = a1(2) = 1. (26)

Finally, we derive the value of ak(N) in (15) from (22).
Let us consider the following two variable function with variables s, t:

g(t, s) =
∑
N�1

∑
0�k�N−1

ak(N)
tN

N! sk, where | t |< 1. (27)

By (22) and (27), we get

∑
N�1

∑
0�k�N−1

ak+1(N + 1)
tN

N! sk

=
∑
N�1

∑
0�k�N−1

Nak+1(N + 1)
tN

N! sk +
∑
N�1

∑
0�k�N−1

ak(N)
tN

N! sk

=
∑
N�1

∑
0�k�N−1

Nak+1(N)
tN

N! sk + g(t, s). (28)

It is not difficult to show that

∑
N�1

∑
0�k�N−1

Nak+1(N)
tN

N! sk

= 1

s

∑
N�1

∑
0�k�N−1

Nak+1(N)
tN

N! sk+1 = 1

s

∑
N�1

∑
1�k�N

ak(N)
tN

(N − 1)! sk

= 1

s

∑
N�1

( ∑
0�k�N

ak(N)
tN sk

(N − 1)! − a0(N)tN

(N − 1)!
)

= 1

s

∑
N�1

( ∑
0�k�N

ak(N)
tN

(N − 1)! sk − tN
)

= t

s

( ∑
N�1

∑
0�k�N

ak(N)
tN−1sk

(N − 1)! − 1

1 − t

)
= t

s

(
g′(t, s) − 1

1 − t

)
. (29)
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From (28) and (29), we can derive the following equation:

∑
N�1

∑
0�k�N−1

ak+1(N + 1)
tN sk

N! = t

s

(
g′(t, s) − 1

1 − t

)
+ g(t, s). (30)

The left hand side of (13)

=
∑
N�2

∑
1�k�N−2

ak+1(N)
tN−1

(N − 1)! sk

=
∑
N�2

∑
1�k�N−1

ak(N)
tN−1sk−1

(N − 1)! = 1

s

( ∑
N�2

∑
1�k�N−1

ak(N)
tN−1

(N − 1)! sk
)

= 1

s

( ∑
N�2

( ∑
0�k�N−1

ak(N)
tN−1

(N − 1)! sk − a0(N)
tN−1

(N − 1)!
))

= 1

s

( ∑
N�2

∑
0�k�N−1

ak(N)
tN−1

(N − 1)! sk − t

1 − t

)

= 1

s

( ∑
N�1

∑
0�k�N−1

ak(N)
tN−1

(N − 1)! sk − a0(1) − t

1 − t

)
= 1

s

(
g′(t, s) − 1

1 − t

)
. (31)

By (30) and (31), we get

g(t, s) + t

s

(
g′(t, s) − 1

1 − t

)
= 1

s

(
g′(t, s) − 1

1 − t

)
. (32)

Thus, by (32), we easily see that

0 = g(t, s) + t − 1

s
g′(t, s) + 1 − t

s(1 − t)
= g(t, s) + t − 1

s
g′(t, s) + 1

s
. (33)

By (33), we get

g(t, s) + t − 1

s
g′(t, s) = −1

s
. (34)

To solve (34), we consider the solution of the following homogeneous differential equation:

0 = g(t, s) + t − 1

s
g′(t, s). (35)

Thus, by (35), we get

−g(t, s) = t − 1

s
g′(t, s). (36)

By (33), we get
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g′(t, s)

g(t, s)
= s

1 − t
. (37)

From (37), we have the following equation:

log g(t, s) = −s log(1 − t) + C . (38)

By (38), we see that

g(t, s) = e−s log(1−t)λ where λ = eC . (39)

By using the variant of constant, we set

λ = λ(t, s). (40)

From (39) and (40), we note that

g′(t, s) = dg(t, s)

dt
= λ′(t, s)e−s log(1−t) + λ(t, s)e−s log(1−t)

1 − t
s

= λ′(t, s)e−s log(1−t) + g(t, s)

1 − t
s, (41)

where λ′(t, s) = dλ(t,s)
dt .

Multiplying both sides of Eq. (41) by t−1
s , we get

t − 1

s
g′(t, s) + g(t, s) = λ′ t − 1

s
e−s log(1−t). (42)

From (34) and (42), we get

−1

s
= λ′ t − 1

s
e−s log(1−t). (43)

Thus, by (43), we get

λ′ = λ′(t, s) = (1 − t)s−1. (44)

If we take indefinite integral on both sides of (44), we get

λ =
∫

λ′ dt =
∫

(1 − t)s−1 dt = −1

s
(1 − t)s + C1, (45)

where C1 is constant.
By (39) and (45), we easily see that

g(t, s) = e−s log(1−t)
(

−1

s
(1 − t)s + C1

)
. (46)

Let us take t = 0 in (46). Then, by (27) and (46), we get
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0 = −1

s
+ C1, C1 = 1

s
. (47)

Thus, by (46) and (47), we have

g(t, s) = e−s log(1−t)
(

1

s
− 1

s
(1 − t)s

)
= 1

s
(1 − t)−s(1 − (1 − t)s)

= (1 − t)−s − 1

s
= 1

s

(
e−s log(1−t) − 1

)
. (48)

From (48) and Taylor expansion, we can derive the following equation (49):

g(t, s) = 1

s

∑
n�1

sn

n!
(− log(1 − t)

)n =
∑
n�1

sn−1

n!

( ∞∑
l=1

tl

l

)n

=
∑
n�1

sn−1

n!

( ∞∑
l1=1

tl1

l1
× · · · ×

∞∑
ln=1

tln

ln

)

=
∑
n�1

sn−1

n!
∑
N�n

( ∑
l1+···+ln=N

1

l1l2 · · · ln

)
tN . (49)

Thus, by (49), we get

g(t, s) =
∑
k�0

sk

(k + 1)!
∑

N�k+1

( ∑
l1+···+lk+1=N

1

l1l2 · · · lk+1

)
tN

=
∑
N�1

( ∑
0�k�N−1

N!
(k + 1)!

∑
l1+···+lk+1=N

1

l1l2 · · · lk+1

)
tN

N! sk. (50)

From (27) and (50), we can derive the following equation (51):

ak(N) = N!
(k + 1)!

∑
l1+···+lk+1=N

1

l1l2 · · · lk+1
. (51)

Therefore, by (15) and (51), we obtain the following theorem.

Theorem 1. For u ∈ C with u �= 1, and N ∈ N, let us consider the following non-linear differential equation
with respect to t:

F N(t) = N

uN−1

N−1∑
k=0

1

(k + 1)!
∑

l1+···+lk+1=N

1

l1l2 · · · lk+1
F (k)(t), (52)

where F (k)(t) = dk F (t)
dtk and F N (t) = F (t) × · · · × F (t)︸ ︷︷ ︸

N-times

. Then F (t) = 1
et−u is a solution of (52).

Let us define F (k)(t, x) = F (k)(t)etx . Then we obtain the following corollary.
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Corollary 2. For N ∈N, we set

F N(t, x) = N

uN−1

N∑
k=0

1

(k + 1)!
∑

l1+···+lk+1=N

1

l1l2 · · · lk+1
F (k)(t, x). (53)

Then etx

et−u is a solution of (53).

From (1) and (6), we note that

1 − u

et − u
=

∞∑
n=0

Hn(u)
tn

n! , and

(
1 − u

et − u

)
×

(
1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

N-times

=
∞∑

n=0

H (N)
n (u)

tn

n! , (54)

where H(N)
n (u) are called the n-th Frobenius–Euler numbers of order N .

By (7) and (54), we get

F N(t) =
(

1

et − u

)
×

(
1

et − u

)
× · · · ×

(
1

et − u

)
︸ ︷︷ ︸

N-times

= 1

(1 − u)N

(
1 − u

et − u

)
×

(
1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

N-times

= 1

(1 − u)N

∞∑
l=0

H (N)

l (u)
tl

l! , and

F (t) =
(

1 − u

et − u

)(
1

1 − u

)
= 1

1 − u

∞∑
l=0

Hl(u)
tl

l! . (55)

From (55), we note that

F (k)(t) = dk F (t)

dtk
=

∞∑
l=0

Hl+k(u)
tl

l! . (56)

Therefore, by (52), (55) and (56), we obtain the following theorem.

Theorem 3. For N ∈N, n ∈ Z+ , we have

H (N)
n (u) = N

(
1 − u

u

)N−1 N−1∑
k=0

1

(k + 1)!
∑

l1+···+lk+1=N

Hn+k(u)

l1l2 · · · lk+1
.
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From (55), we can derive the following equation:

∞∑
n=0

H (N)
n (u)

tn

n! =
(

1 − u

et − u

)
×

(
1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

N-times

=
( ∞∑

l1=0

Hl1(u)
tl

1

l1!

)
× · · · ×

( ∞∑
lN=0

HlN (u)
tlN

lN !

)

=
∞∑

n=0

( ∑
l1+···+lN=0

Hl1(u)Hl2(u) · · · HlN (u)n!
l1!l1! · · · lN !

)
tn

n!

=
∞∑

n=0

( ∑
l1+···+lN=0

(
n

l1, . . . , lN !
)

Hl1(u) · · · HlN (u)

)
tn

n! . (57)

Therefore, by (57), we obtain the following corollary.

Corollary 4. For N ∈N, n ∈ Z+ , we have

∑
l1+···+lN=n

(
n

l1, . . . , lN !
)

Hl1(u)Hl2(u) · · · HlN (u)

= N

(
1 − u

u

)N−1 N−1∑
k=0

1

(k + 1)!
∑

l1+···+lk+1=N

Hn+k(u)

l1l2 · · · lk+1
.

By (53), we obtain the following corollary.

Corollary 5. For N ∈N, n ∈ Z+ , we have

H (N)
n (x | u) = N

(
1 − u

u

)N−1 N−1∑
k=0

1

(k + 1)!
∑

l1+···+lk+1=N

1

l1l2 · · · lk+1

n∑
m=0

(
n

m

)
Hm+k(u)xn−m.

From (6), we note that

∞∑
n=0

H (N)
n (x | u)

tn

n! =
(

1 − u

et − u

)
×

(
1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

N-times

ext

=
( ∞∑

n=0

H (N)
n (u)

tn

n!

)( ∞∑
m=0

xm tm

m!

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
xn−l H (N)

l (u)

)
tn

n! . (58)

By comparing coefficients on both sides of (58), we get
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H (N)
n (x | u) =

n∑
l=0

(
n

l

)
xn−l H (N)

l (u). (59)

By the definition of notation, we get

F (k)(t, x) = F (k)(t)etx =
( ∞∑

l=0

Hl+k(u)
tl

l!

)( ∞∑
m=0

xm

m! tm

)

=
∞∑

n=0

(
n∑

l=0

(
n

l

)
Hl+k(u)xn−l

)
tn

n! .

From (6), we note that

∞∑
n=0

H (N)
n (x | u)

tn

n! =
(

1 − u

et − u

)
× · · · ×

(
1 − u

et − u

)
︸ ︷︷ ︸

N-times

ext

=
( ∞∑

l1=0

Hl1(u)
Hl1(u)

l1! tl1

)
× · · · ×

( ∞∑
lN=0

HlN (u)

lN ! tlN

) ∞∑
m=0

xm

m! tm

=
∞∑

n=0

( ∑
l1+···+lN+m=n

Hl1(u)Hl2(u) · · · HlN (u)

l1!l1! · · · lN !m! xmn!
)

tn

n!

=
∞∑

n=0

( ∑
l1+···+lN+m=n

(
n

l1, . . . , lN ,m

)
Hl1(u) · · · HlN (u)xm

)
tn

n! . (60)

By comparing coefficients on both sides of (58), we get

H (N)
n (x | u) =

∑
l1+···+lN+m=n

(
n

l1, . . . , lN ,m

)
Hl1(u) · · · HlN (u)xm.
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