

Identities involving Frobenius-Euler polynomials arising from non-linear differential equations

Taekyun Kim
Department Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea

A R T I C L E I N F O

Article history:

Received 24 January 2012
Revised 16 May 2012
Accepted 16 May 2012
Available online 4 August 2012
Communicated by David Goss

Keywords:

Euler numbers
Frobenius-Euler numbers and polynomials Sums product of Euler numbers Differential equations

1. Introduction

Let $u \in \mathbb{C}$ with $u \neq 1$. Then the Frobenius-Euler polynomials are defined by generating function as follows:

$$
\begin{equation*}
F_{u}(t, x)=\frac{1-u}{e^{t}-u} e^{x t}=\sum_{n=0}^{\infty} H_{n}(x \mid u) \frac{t^{n}}{n!} \quad(\text { see }[2,4]) . \tag{1}
\end{equation*}
$$

In the special case, $x=0, H_{n}(0 \mid u)=H_{n}(u)$ are called the n-th Frobenius-Euler numbers (see [4]). By (1), we get

$$
\begin{equation*}
H_{n}(x \mid u)=\sum_{l=0}^{n}\binom{n}{l} x^{n-l} H_{l}(u) \quad \text { for } n \in \mathbb{Z}_{+}=\mathbb{N} \cup\{0\} . \tag{2}
\end{equation*}
$$

[^0]Thus, by (1) and (2), we get the recurrence relation for $H_{n}(u)$ as follows:

$$
H_{0}(u)=1, \quad(H(u)+1)^{n}-u H_{n}(u)= \begin{cases}1-u & \text { if } n=0, \tag{3}\\ 0 & \text { if } n>0,\end{cases}
$$

with the usual convention about replacing $H(u)^{n}$ by $H_{n}(u)$ (see [4,10,12,15]).
The Bernoulli and Euler polynomials can be defined by

$$
\frac{t}{e^{t}-1} e^{x t}=\sum_{n=0}^{\infty} B_{n}(x) \frac{t^{n}}{n!}, \quad \frac{2}{e^{t}+1} e^{x t}=\sum_{n=0}^{\infty} E_{n}(x) \frac{t^{n}}{n!}
$$

In the special case, $x=0, B_{n}(0)=B_{n}$ are the n-th Bernoulli numbers and $E_{n}(0)=E_{n}$ are the n-th Euler numbers.

The formula for a product of two Bernoulli polynomials are given by

$$
\begin{equation*}
B_{m}(x) B_{n}(x)=\sum_{r=0}^{\infty}\left(\binom{m}{2 r} n+\binom{n}{2 r} m\right) \frac{B_{2 r} B_{m+n-2 r}(x)}{m+n-2 r}+(-1)^{m+1} \frac{m!n!}{(m+n)!} B_{m+n} \tag{4}
\end{equation*}
$$

where $m+n \geqslant 2$ and $\binom{m}{n}=\frac{m!}{n!(m-n)!}=\frac{m(m-1) \cdots(m-n+1)}{n!}$ (see $[2,3]$).
From (1), we note that $H_{n}(x \mid-1)=E_{n}(x)$. In [10], Nielson also obtained similar formulas for $E_{n}(x) E_{m}(x)$ and $E_{m}(x) B_{n}(x)$.

In view point of (4), Carlitz has considered the following identities for the Frobenius-Euler polynomials as follows:

$$
\begin{align*}
H_{m}(x \mid \alpha) H_{n}(x \mid \beta)= & H_{m+n}(x \mid \alpha \beta) \frac{(1-\alpha)(1-\beta)}{1-\alpha \beta} \\
& +\frac{\alpha(1-\beta)}{1-\alpha \beta} \sum_{r=0}^{m}\binom{m}{r} H_{r}(\alpha) H_{m+n-r}(x \mid \alpha \beta) \\
& +\frac{\beta(1-\beta)}{1-\alpha \beta} \sum_{s=0}^{n}\binom{n}{s} H_{s}(\beta) H_{m+n-s}(x \mid \alpha \beta), \tag{5}
\end{align*}
$$

where $\alpha, \beta \in \mathbb{C}$ with $\alpha \neq 1, \beta \neq 1$ and $\alpha \beta \neq 1$ (see [4]).
In particular, if $\alpha \neq 1$ and $\alpha \beta=1$, then

$$
\begin{aligned}
H_{m}(x \mid \alpha) H_{n}\left(x \mid \alpha^{-1}\right)= & -(1-\alpha) \sum_{r=1}^{m}\binom{m}{r} H_{r}(\alpha) \frac{B_{m+n-r+1}(x)}{m+n-r+1} \\
& -\left(1-\alpha^{-1}\right) \sum_{s=1}^{n}\binom{n}{s} H_{s}\left(\alpha^{-1}\right) \frac{B_{m+n-s+1}(x)}{m+n-s+1} \\
& +(-1)^{n+1} \frac{m!n!}{(m+n+1)!}(1-\alpha) H_{m+n+1}(\alpha) .
\end{aligned}
$$

For $r \in \mathbb{N}$, the n-th Frobenius-Euler polynomials of order r are defined by generating function as follows:

$$
\begin{align*}
F_{u}^{r}(t, x) & =\underbrace{F_{u}(t, x) \times F_{u}(t, x) \times \cdots \times F_{u}(t, x)}_{r \text {-times }} \\
& =\underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{r \text {-times }} e^{x t} \\
& =\sum_{n=0}^{\infty} H_{n}^{(r)}(x \mid u) \frac{t^{n}}{n!} \text { for } u \in \mathbb{C} \text { with } u \neq 1 . \tag{6}
\end{align*}
$$

In the special case, $x=0, H_{n}^{(r)}(0 \mid u)=H_{n}^{(r)}(u)$ are called the n-th Frobenius-Euler numbers of order r (see [1-14,16]).

In this paper we derive non-linear differential equations from (1) and we study the solutions of non-linear differential equations. Finally, we give some new and interesting identities and formulae for the Frobenius-Euler polynomials of higher order by using our non-linear differential equations.

2. Computation of sums of the products of Frobenius-Euler numbers and polynomials

In this section we assume that

$$
\begin{equation*}
F=F(t)=\frac{1}{e^{t}-u}, \quad \text { and } \quad F^{N}(t, x)=\underbrace{F \times \cdots \times F}_{N-\text { times }} e^{x t} \quad \text { for } N \in \mathbb{N} \text {. } \tag{7}
\end{equation*}
$$

Thus, by (7), we get

$$
\begin{equation*}
F^{(1)}=\frac{d F(t)}{d t}=\frac{-e^{t}}{\left(e^{t}-u\right)^{2}}=-\frac{1}{e^{t}-u}+\frac{u}{\left(e^{t}-u\right)^{2}}=-F+u F^{2} . \tag{8}
\end{equation*}
$$

By (8), we get

$$
\begin{equation*}
F^{(1)}(t, x)=F^{(1)}(t) e^{t x}=-F(t, x)+u F^{2}(t, x), \quad \text { and } \quad F^{(1)}+F=u F^{2} . \tag{9}
\end{equation*}
$$

Let us consider the derivative of (8) with respect to t as follows:

$$
\begin{equation*}
2 u F F^{\prime}=F^{\prime \prime}+F^{\prime} \tag{10}
\end{equation*}
$$

Thus, by (10) and (8), we get

$$
\begin{equation*}
2!u^{2} F^{3}-2 u F^{2}=F^{\prime \prime}+F^{\prime} . \tag{11}
\end{equation*}
$$

From (11), we note that

$$
\begin{equation*}
2!u^{2} F^{3}=F^{(2)}+3 F^{\prime}+2 F, \quad \text { where } F^{(2)}=\frac{d^{2} F}{d t^{2}} . \tag{12}
\end{equation*}
$$

Thus, by the derivative of (12) with respect to t, we get

$$
\begin{equation*}
2!u^{2} 3 F^{2} F^{\prime}=F^{(3)}+3 F^{(2)}+2 F^{(1)}, \quad \text { and } \quad F^{(1)}=u F^{2}-F \tag{13}
\end{equation*}
$$

By (13), we see that

$$
\begin{equation*}
3!u^{3} F^{4} F=F^{(3)}+6 F^{(2)}+11 F^{(1)}+6 F \tag{14}
\end{equation*}
$$

Thus, from (14), we have

$$
3!u^{4} F^{4}(t, x)=F^{(3)}(t, x)+6 F^{(2)}(t, x)+11 F^{(1)}(t, x)+6 F(t, x) .
$$

Continuing this process, we set

$$
\begin{equation*}
(N-1)!u^{N-1} F^{N}=\sum_{k=0}^{N-1} a_{k}(N) F^{(k)} \tag{15}
\end{equation*}
$$

where $F^{(k)}=\frac{d^{k} F}{d t^{k}}$ and $N \in \mathbb{N}$.
Now we try to find the coefficient $a_{k}(N)$ in (15). From the derivative of (15) with respect to t, we have

$$
\begin{equation*}
N!u^{N-1} F^{N-1} F^{(1)}=\sum_{k=0}^{N-1} a_{k}(N) F^{(k+1)}=\sum_{k=1}^{N} a_{k-1}(N) F^{(k)} \tag{16}
\end{equation*}
$$

By (8), we easily get

$$
\begin{equation*}
N!u^{N-1} F^{N-1} F^{(1)}=N!u^{N-1} F^{N-1}\left(u F^{2}-F\right)=N!u^{N} F^{N+1}-N!u^{N-1} F^{N} \tag{17}
\end{equation*}
$$

From (16) and (17), we can derive the following equation (18):

$$
\begin{align*}
N!u^{N} F^{N+1} & =N(N-1)!u^{N-1} F^{N}+\sum_{k=1}^{N} a_{k-1}(N) F^{(k)} \\
& =N \sum_{k=0}^{N-1} a_{k}(N) F^{(k)}+\sum_{k=1}^{N} a_{k-1}(N) F^{(k)} . \tag{18}
\end{align*}
$$

In (15), replacing N by $N+1$, we have

$$
\begin{equation*}
N!u^{N} F^{N+1}=\sum_{k=0}^{N} a_{k}(N+1) F^{(k)} \tag{19}
\end{equation*}
$$

By (18) and (19), we get

$$
\begin{equation*}
\sum_{k=0}^{N} a_{k}(N+1) F^{(k)}=N!u^{N} F^{N+1}=N \sum_{k=0}^{N-1} a_{k}(N) F^{(k)}+\sum_{k=1}^{N} a_{k-1}(N) F^{(k)} . \tag{20}
\end{equation*}
$$

By comparing coefficients on the both sides of (20), we obtain the following equations:

$$
\begin{equation*}
N a_{0}(N)=a_{0}(N+1), \quad a_{N}(N+1)=a_{N-1}(N) \tag{21}
\end{equation*}
$$

For $1 \leqslant k \leqslant n-1$, we have

$$
\begin{equation*}
a_{k}(N+1)=N a_{k}(N)+a_{k-1}(N), \tag{22}
\end{equation*}
$$

where $a_{k}(N)=0$ for $k \geqslant N$ or $k<0$. From (21), we note that

$$
\begin{equation*}
a_{0}(N+1)=N a_{0}(N)=N(N-1) a_{0}(N-1)=\cdots=N(N-1) \cdots 2 a_{0}(2) \tag{23}
\end{equation*}
$$

By (8) and (15), we get

$$
\begin{equation*}
F+F^{\prime}=u F^{2}=\sum_{k=0}^{1} a_{k}(2) F^{(k)}=a_{0}(2) F+a_{1}(2) F^{(1)} \tag{24}
\end{equation*}
$$

By comparing coefficients on the both sides of (24), we get

$$
\begin{equation*}
a_{0}(2)=1, \quad \text { and } \quad a_{1}(2)=1 \tag{25}
\end{equation*}
$$

From (23) and (25), we have $a_{0}(N)=(N-1)$!. By the second term of (21), we see that

$$
\begin{equation*}
a_{N}(N+1)=a_{N-1}(N)=a_{N-2}(N-1)=\cdots=a_{1}(2)=1 \tag{26}
\end{equation*}
$$

Finally, we derive the value of $a_{k}(N)$ in (15) from (22).
Let us consider the following two variable function with variables s, t :

$$
\begin{equation*}
g(t, s)=\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N}}{N!} s^{k}, \quad \text { where }|t|<1 . \tag{27}
\end{equation*}
$$

By (22) and (27), we get

$$
\begin{align*}
& \sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} a_{k+1}(N+1) \frac{t^{N}}{N!} s^{k} \\
& \quad=\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} N a_{k+1}(N+1) \frac{t^{N}}{N!} s^{k}+\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N}}{N!} s^{k} \\
& \quad=\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} N a_{k+1}(N) \frac{t^{N}}{N!} s^{k}+g(t, s) \tag{28}
\end{align*}
$$

It is not difficult to show that

$$
\begin{align*}
& \sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} N a_{k+1}(N) \frac{t^{N}}{N!} s^{k} \\
& \quad=\frac{1}{s} \sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} N a_{k+1}(N) \frac{t^{N}}{N!} s^{k+1}=\frac{1}{s} \sum_{N \geqslant 1} \sum_{1 \leqslant k \leqslant N} a_{k}(N) \frac{t^{N}}{(N-1)!} s^{k} \\
& \quad=\frac{1}{s} \sum_{N \geqslant 1}\left(\sum_{0 \leqslant k \leqslant N} a_{k}(N) \frac{t^{N} s^{k}}{(N-1)!}-\frac{a_{0}(N) t^{N}}{(N-1)!}\right)=\frac{1}{s} \sum_{N \geqslant 1}\left(\sum_{0 \leqslant k \leqslant N} a_{k}(N) \frac{t^{N}}{(N-1)!} s^{k}-t^{N}\right) \\
& \quad=\frac{t}{s}\left(\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N} a_{k}(N) \frac{t^{N-1} s^{k}}{(N-1)!}-\frac{1}{1-t}\right)=\frac{t}{s}\left(g^{\prime}(t, s)-\frac{1}{1-t}\right) \tag{29}
\end{align*}
$$

From (28) and (29), we can derive the following equation:

$$
\begin{equation*}
\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} a_{k+1}(N+1) \frac{t^{N} s^{k}}{N!}=\frac{t}{s}\left(g^{\prime}(t, s)-\frac{1}{1-t}\right)+g(t, s) \tag{30}
\end{equation*}
$$

The left hand side of (13)

$$
\begin{align*}
& =\sum_{N \geqslant 2} \sum_{1 \leqslant k \leqslant N-2} a_{k+1}(N) \frac{t^{N-1}}{(N-1)!} s^{k} \\
& =\sum_{N \geqslant 2} \sum_{1 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N-1} s^{k-1}}{(N-1)!}=\frac{1}{s}\left(\sum_{N \geqslant 2} \sum_{1 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N-1}}{(N-1)!} s^{k}\right) \\
& =\frac{1}{s}\left(\sum_{N \geqslant 2}\left(\sum_{0 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N-1}}{(N-1)!} s^{k}-a_{0}(N) \frac{t^{N-1}}{(N-1)!}\right)\right) \\
& =\frac{1}{s}\left(\sum_{N \geqslant 2} \sum_{0 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N-1}}{(N-1)!} s^{k}-\frac{t}{1-t}\right) \\
& =\frac{1}{s}\left(\sum_{N \geqslant 1} \sum_{0 \leqslant k \leqslant N-1} a_{k}(N) \frac{t^{N-1}}{(N-1)!} s^{k}-a_{0}(1)-\frac{t}{1-t}\right)=\frac{1}{s}\left(g^{\prime}(t, s)-\frac{1}{1-t}\right) . \tag{31}
\end{align*}
$$

By (30) and (31), we get

$$
\begin{equation*}
g(t, s)+\frac{t}{s}\left(g^{\prime}(t, s)-\frac{1}{1-t}\right)=\frac{1}{s}\left(g^{\prime}(t, s)-\frac{1}{1-t}\right) \tag{32}
\end{equation*}
$$

Thus, by (32), we easily see that

$$
\begin{equation*}
0=g(t, s)+\frac{t-1}{s} g^{\prime}(t, s)+\frac{1-t}{s(1-t)}=g(t, s)+\frac{t-1}{s} g^{\prime}(t, s)+\frac{1}{s} . \tag{33}
\end{equation*}
$$

By (33), we get

$$
\begin{equation*}
g(t, s)+\frac{t-1}{s} g^{\prime}(t, s)=-\frac{1}{s} . \tag{34}
\end{equation*}
$$

To solve (34), we consider the solution of the following homogeneous differential equation:

$$
\begin{equation*}
0=g(t, s)+\frac{t-1}{s} g^{\prime}(t, s) . \tag{35}
\end{equation*}
$$

Thus, by (35), we get

$$
\begin{equation*}
-g(t, s)=\frac{t-1}{s} g^{\prime}(t, s) \tag{36}
\end{equation*}
$$

By (33), we get

$$
\begin{equation*}
\frac{g^{\prime}(t, s)}{g(t, s)}=\frac{s}{1-t} \tag{37}
\end{equation*}
$$

From (37), we have the following equation:

$$
\begin{equation*}
\log g(t, s)=-s \log (1-t)+C \tag{38}
\end{equation*}
$$

By (38), we see that

$$
\begin{equation*}
g(t, s)=e^{-s \log (1-t)} \lambda \quad \text { where } \lambda=e^{C} \tag{39}
\end{equation*}
$$

By using the variant of constant, we set

$$
\begin{equation*}
\lambda=\lambda(t, s) \tag{40}
\end{equation*}
$$

From (39) and (40), we note that

$$
\begin{align*}
g^{\prime}(t, s) & =\frac{d g(t, s)}{d t}=\lambda^{\prime}(t, s) e^{-s \log (1-t)}+\frac{\lambda(t, s) e^{-s \log (1-t)}}{1-t} s \\
& =\lambda^{\prime}(t, s) e^{-s \log (1-t)}+\frac{g(t, s)}{1-t} s \tag{41}
\end{align*}
$$

where $\lambda^{\prime}(t, s)=\frac{d \lambda(t, s)}{d t}$.
Multiplying both sides of Eq. (41) by $\frac{t-1}{s}$, we get

$$
\begin{equation*}
\frac{t-1}{s} g^{\prime}(t, s)+g(t, s)=\lambda^{\prime} \frac{t-1}{s} e^{-s \log (1-t)} \tag{42}
\end{equation*}
$$

From (34) and (42), we get

$$
\begin{equation*}
-\frac{1}{s}=\lambda^{\prime} \frac{t-1}{s} e^{-s \log (1-t)} \tag{43}
\end{equation*}
$$

Thus, by (43), we get

$$
\begin{equation*}
\lambda^{\prime}=\lambda^{\prime}(t, s)=(1-t)^{s-1} \tag{44}
\end{equation*}
$$

If we take indefinite integral on both sides of (44), we get

$$
\begin{equation*}
\lambda=\int \lambda^{\prime} d t=\int(1-t)^{s-1} d t=-\frac{1}{s}(1-t)^{s}+C_{1} \tag{45}
\end{equation*}
$$

where C_{1} is constant.
By (39) and (45), we easily see that

$$
\begin{equation*}
g(t, s)=e^{-s \log (1-t)}\left(-\frac{1}{s}(1-t)^{s}+C_{1}\right) \tag{46}
\end{equation*}
$$

Let us take $t=0$ in (46). Then, by (27) and (46), we get

$$
\begin{equation*}
0=-\frac{1}{s}+C_{1}, \quad C_{1}=\frac{1}{s} . \tag{47}
\end{equation*}
$$

Thus, by (46) and (47), we have

$$
\begin{align*}
g(t, s) & =e^{-s \log (1-t)}\left(\frac{1}{s}-\frac{1}{s}(1-t)^{s}\right)=\frac{1}{s}(1-t)^{-s}\left(1-(1-t)^{s}\right) \\
& =\frac{(1-t)^{-s}-1}{s}=\frac{1}{s}\left(e^{-s \log (1-t)}-1\right) . \tag{48}
\end{align*}
$$

From (48) and Taylor expansion, we can derive the following equation (49):

$$
\begin{align*}
g(t, s) & =\frac{1}{s} \sum_{n \geqslant 1} \frac{s^{n}}{n!}(-\log (1-t))^{n}=\sum_{n \geqslant 1} \frac{s^{n-1}}{n!}\left(\sum_{l=1}^{\infty} \frac{t^{l}}{l}\right)^{n} \\
& =\sum_{n \geqslant 1} \frac{s^{n-1}}{n!}\left(\sum_{l_{1}=1}^{\infty} \frac{t^{l_{1}}}{l_{1}} \times \cdots \times \sum_{l_{n}=1}^{\infty} \frac{t^{l_{n}}}{l_{n}}\right) \\
& =\sum_{n \geqslant 1} \frac{s^{n-1}}{n!} \sum_{N \geqslant n}\left(\sum_{l_{1}+\cdots+l_{n}=N} \frac{1}{l_{1} l_{2} \cdots l_{n}}\right) t^{N} . \tag{49}
\end{align*}
$$

Thus, by (49), we get

$$
\begin{align*}
g(t, s) & =\sum_{k \geqslant 0} \frac{s^{k}}{(k+1)!} \sum_{N \geqslant k+1}\left(\sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}}\right) t^{N} \\
& =\sum_{N \geqslant 1}\left(\sum_{0 \leqslant k \leqslant N-1} \frac{N!}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}}\right) \frac{t^{N}}{N!} s^{k} . \tag{50}
\end{align*}
$$

From (27) and (50), we can derive the following equation (51):

$$
\begin{equation*}
a_{k}(N)=\frac{N!}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}} \tag{51}
\end{equation*}
$$

Therefore, by (15) and (51), we obtain the following theorem.
Theorem 1. For $u \in \mathbb{C}$ with $u \neq 1$, and $N \in \mathbb{N}$, let us consider the following non-linear differential equation with respect to t :

$$
\begin{equation*}
F^{N}(t)=\frac{N}{u^{N-1}} \sum_{k=0}^{N-1} \frac{1}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}} F^{(k)}(t), \tag{52}
\end{equation*}
$$

where $F^{(k)}(t)=\frac{d^{k} F(t)}{d t^{k}}$ and $F^{N}(t)=\underbrace{F(t) \times \cdots \times F(t)}_{N \text {-times }}$. Then $F(t)=\frac{1}{e^{t}-u}$ is a solution of (52).
Let us define $F^{(k)}(t, x)=F^{(k)}(t) e^{t x}$. Then we obtain the following corollary.

Corollary 2. For $N \in \mathbb{N}$, we set

$$
\begin{equation*}
F^{N}(t, x)=\frac{N}{u^{N-1}} \sum_{k=0}^{N} \frac{1}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}} F^{(k)}(t, x) . \tag{53}
\end{equation*}
$$

Then $\frac{e^{t x}}{e^{t}-u}$ is a solution of (53).
From (1) and (6), we note that

$$
\begin{align*}
& \frac{1-u}{e^{t}-u}=\sum_{n=0}^{\infty} H_{n}(u) \frac{t^{n}}{n!}, \quad \text { and } \\
& \underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N \text {-times }}=\sum_{n=0}^{\infty} H_{n}^{(N)}(u) \frac{t^{n}}{n!}, \tag{54}
\end{align*}
$$

where $H_{n}^{(N)}(u)$ are called the n-th Frobenius-Euler numbers of order N.
By (7) and (54), we get

$$
\begin{align*}
F^{N}(t) & =\underbrace{\left(\frac{1}{e^{t}-u}\right) \times\left(\frac{1}{e^{t}-u}\right) \times \cdots \times\left(\frac{1}{e^{t}-u}\right)}_{N-\text { times }} \\
& =\frac{1}{(1-u)^{N}} \underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N-\text { times }} \\
& =\frac{1}{(1-u)^{N}} \sum_{l=0}^{\infty} H_{l}^{(N)}(u) \frac{t^{l}}{l!}, \quad \text { and } \\
F(t) & =\left(\frac{1-u}{e^{t}-u}\right)\left(\frac{1}{1-u}\right)=\frac{1}{1-u} \sum_{l=0}^{\infty} H_{l}(u) \frac{t^{l}}{l!} . \tag{55}
\end{align*}
$$

From (55), we note that

$$
\begin{equation*}
F^{(k)}(t)=\frac{d^{k} F(t)}{d t^{k}}=\sum_{l=0}^{\infty} H_{l+k}(u) \frac{t^{l}}{l!} \tag{56}
\end{equation*}
$$

Therefore, by (52), (55) and (56), we obtain the following theorem.
Theorem 3. For $N \in \mathbb{N}, n \in \mathbb{Z}_{+}$, we have

$$
H_{n}^{(N)}(u)=N\left(\frac{1-u}{u}\right)^{N-1} \sum_{k=0}^{N-1} \frac{1}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{H_{n+k}(u)}{l_{1} l_{2} \cdots l_{k+1}} .
$$

From (55), we can derive the following equation:

$$
\begin{align*}
\sum_{n=0}^{\infty} H_{n}^{(N)}(u) \frac{t^{n}}{n!} & =\underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N-\text { times }} \\
& =\left(\sum_{l_{1}=0}^{\infty} H_{l_{1}}(u) \frac{t_{1}^{l}}{l_{1}!}\right) \times \cdots \times\left(\sum_{l_{N}=0}^{\infty} H_{l_{N}}(u) \frac{t^{l_{N}}}{l_{N}!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l_{1}+\cdots+l_{N}=0} \frac{H_{l_{1}}(u) H_{l_{2}}(u) \cdots H_{l_{N}}(u) n!}{l_{1}!l_{1}!\cdots l_{N}!}\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l_{1}+\cdots+l_{N}=0}\binom{n}{l_{1}, \ldots, l_{N}!} H_{l_{1}}(u) \cdots H_{l_{N}}(u)\right) \frac{t^{n}}{n!} . \tag{57}
\end{align*}
$$

Therefore, by (57), we obtain the following corollary.
Corollary 4. For $N \in \mathbb{N}, n \in \mathbb{Z}_{+}$, we have

$$
\begin{aligned}
& \sum_{l_{1}+\cdots+l_{N}=n}\binom{n}{l_{1}, \ldots, l_{N}!} H_{l_{1}}(u) H_{l_{2}}(u) \cdots H_{l_{N}}(u) \\
& =N\left(\frac{1-u}{u}\right)^{N-1} \sum_{k=0}^{N-1} \frac{1}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{H_{n+k}(u)}{l_{1} l_{2} \cdots l_{k+1}} .
\end{aligned}
$$

By (53), we obtain the following corollary.
Corollary 5. For $N \in \mathbb{N}, n \in \mathbb{Z}_{+}$, we have

$$
H_{n}^{(N)}(x \mid u)=N\left(\frac{1-u}{u}\right)^{N-1} \sum_{k=0}^{N-1} \frac{1}{(k+1)!} \sum_{l_{1}+\cdots+l_{k+1}=N} \frac{1}{l_{1} l_{2} \cdots l_{k+1}} \sum_{m=0}^{n}\binom{n}{m} H_{m+k}(u) x^{n-m} .
$$

From (6), we note that

$$
\begin{align*}
\sum_{n=0}^{\infty} H_{n}^{(N)}(x \mid u) \frac{t^{n}}{n!} & =\underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N-\text { times }} e^{x t} \\
& =\left(\sum_{n=0}^{\infty} H_{n}^{(N)}(u) \frac{t^{n}}{n!}\right)\left(\sum_{m=0}^{\infty} x^{m} \frac{t^{m}}{m!}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} x^{n-l} H_{l}^{(N)}(u)\right) \frac{t^{n}}{n!} \tag{58}
\end{align*}
$$

By comparing coefficients on both sides of (58), we get

$$
\begin{equation*}
H_{n}^{(N)}(x \mid u)=\sum_{l=0}^{n}\binom{n}{l} x^{n-l} H_{l}^{(N)}(u) \tag{59}
\end{equation*}
$$

By the definition of notation, we get

$$
\begin{aligned}
F^{(k)}(t, x)=F^{(k)}(t) e^{t x} & =\left(\sum_{l=0}^{\infty} H_{l+k}(u) \frac{t^{l}}{l!}\right)\left(\sum_{m=0}^{\infty} \frac{x^{m}}{m!} t^{m}\right) \\
& =\sum_{n=0}^{\infty}\left(\sum_{l=0}^{n}\binom{n}{l} H_{l+k}(u) x^{n-l}\right) \frac{t^{n}}{n!}
\end{aligned}
$$

From (6), we note that

$$
\begin{align*}
\sum_{n=0}^{\infty} H_{n}^{(N)}(x \mid u) \frac{t^{n}}{n!} & =\underbrace{\left(\frac{1-u}{e^{t}-u}\right) \times \cdots \times\left(\frac{1-u}{e^{t}-u}\right)}_{N-\text { times }} e^{x t} \\
& =\left(\sum_{l_{1}=0}^{\infty} H_{l_{1}}(u) \frac{H_{l_{1}}(u)}{l_{1}!} t^{l_{1}}\right) \times \cdots \times\left(\sum_{l_{N}=0}^{\infty} \frac{H_{l_{N}}(u)}{l_{N}!} t^{l_{N}}\right) \sum_{m=0}^{\infty} \frac{x^{m}}{m!} t^{m} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l_{1}+\cdots+l_{N}+m=n} \frac{H_{l_{1}}(u) H_{l_{2}}(u) \cdots H_{l_{N}}(u)}{l_{1}!l_{1}!\cdots l_{N}!m!} x^{m} n!\right) \frac{t^{n}}{n!} \\
& =\sum_{n=0}^{\infty}\left(\sum_{l_{1}+\cdots+l_{N}+m=n}\binom{n}{l_{1}, \ldots, l_{N}, m} H_{l_{1}}(u) \cdots H_{l_{N}}(u) x^{m}\right) \frac{t^{n}}{n!} \tag{60}
\end{align*}
$$

By comparing coefficients on both sides of (58), we get

$$
H_{n}^{(N)}(x \mid u)=\sum_{l_{1}+\cdots+l_{N}+m=n}\binom{n}{l_{1}, \ldots, l_{N}, m} H_{l_{1}}(u) \cdots H_{l_{N}}(u) x^{m}
$$

Acknowledgments

The author would like to express his sincere gratitude to referee for his/her valuable suggestion and comments.

References

[1] I.N. Cangul, Y. Simsek, A note on interpolation functions of the Frobenius-Euler numbers, in: Application of Mathematics in Technical and Natural Sciences, in: AIP Conf. Proc., vol. 1301, Amer. Inst. Phys., Melville, NY, 2010, pp. 59-67.
[2] L. Carlitz, Eulerian numbers and polynomials, Math. Mag. 23 (1959) 247-260.
[3] L. Carlitz, Note on the integral of the product of several Bernoulli polynomials, J. Lond. Math. Soc. 34 (1959) 361-363.
[4] L. Carlitz, The product of two Eulerian polynomials, Math. Mag. 36 (1963) 37-41.
[5] K.-W. Hwang, D.V. Dolgy, T. Kim, S.H. Lee, On the higher-order q-Euler numbers and polynomials with weight alpha, Discrete Dyn. Nat. Soc. 2011 (2011) 354329, 12 pp.
[6] L.C. Jang, A study on the distribution of twisted q-Genocchi polynomials, Adv. Stud. Contemp. Math. 18 (2) (2009) $181-189$.
[7] T. Kim, q-generalized Euler numbers and polynomials, Russ. J. Math. Phys. 13 (3) (2006) 293-298.
[8] T. Kim, Some identities on the q-Euler polynomials of higher order and q-Stirling numbers by the fermionic p-adic integral on \mathbb{Z}_{p}, Russ. J. Math. Phys. 16 (2009) 484-491.
[9] T. Kim, New approach to q-Euler polynomials of higher order, Russ. J. Math. Phys. 17 (2) (2010) 218-225.
[10] N. Nielson, Traite elementaire des nombres de Bernoulli, Paris, 1923.
[11] H. Ozden, I.N. Cangul, Y. Simsek, Multivariate interpolation functions of higher-order q-Euler numbers and their applications, Abstr. Appl. Anal. 2008 (2008) 390857, 16 pp.
[12] H. Ozden, I.N. Cangul, Y. Simsek, Remarks on sum of products of (h,q)-twisted Euler polynomials and numbers, J. Inequal. Appl. (2008) 816129, 8 pp.
[13] C.S. Ryoo, Some identities of the twisted q-Euler numbers and polynomials associated with q-Bernstein polynomials, Proc. Jangjeon Math. Soc. 14 (2011) 239-348.
[14] Y. Simsek, Special functions related to Dedekind-type DC-sums and their applications, Russ. J. Math. Phys. 17 (2010) 495508.
[15] Y. Simsek, Complete sum of products of (h, q)-extension of Euler polynomials and numbers, J. Difference Equ. Appl. 16 (11) (2010) 1331-1348.
[16] Y. Simsek, O. Yurekli, V. Kurt, On interpolation functions of the twisted generalized Frobenius-Euler numbers, Adv. Stud. Contemp. Math. 15 (2007) 187-194.

[^0]: E-mail address: tkkim@kw.ac.kr.
 0022-314X/\$ - see front matter © 2012 Elsevier Inc. All rights reserved.
 http://dx.doi.org/10.1016/j.jnt.2012.05.033

