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1. Introduction

Let u € C with u # 1. Then the Frobenius-Euler polynomials are defined by generating function as
follows:

T—-u ,, ¢
pra— t— ZHn(x | u)a (see [2,4]). (1)

n=0

Fu(t,x) =

In the special case, x =0, H,(0 | u) = H,(u) are called the n-th Frobenius-Euler numbers (see [4]).
By (1), we get

Hn(xlu)=2(7>x”_lH1(u) forn e Z, =NU{0}. (2)
1=0
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Thus, by (1) and (2), we get the recurrence relation for Hy(u) as follows:

n 1—u ifn=0,
Ho(u) =1, (Hw) +1) —an(u)—{O ifn >0, (3)
with the usual convention about replacing H(u)" by H,(u) (see [4,10,12,15]).
The Bernoulli and Euler polynomials can be defined by

b oy - " 2 . = "
et—le :an(x)m7 ef+1e :;EH(X)E

In the special case, x =0, B,(0) = B, are the n-th Bernoulli numbers and E,(0) = E, are the n-th
Euler numbers.
The formula for a product of two Bernoulli polynomials are given by

o0
m n BorBmn—2r(X) me1  min!
Bm(X)Bn(x) = n m)|)————————— -1 —B , 4
m(X) By (%) ;((Zr) +(2r) ) e T 4)
where m+n>2 and (7) = n!(n’fin)! = mm=D-m-ntD) (see [2,3]).

From (1), we note that Hp(x | —1) = E,(x). In [10], Nielson also obtained similar formulas for
En(x)Em(x) and Em (x) By (X).

In view point of (4), Carlitz has considered the following identities for the Frobenius-Euler poly-
nomials as follows:

1—a)(1—
Hm(x|05)Hn(x|ﬂ):Hm+n(X|a,3)%
a(1—B) o (m
T ap §<r>Hr(a)Hm+n—r(Xlaﬁ)
BL—B) & (n
+ 1—ap Sg(;(s)HS(.B)Hm+n—s(X|Ol,3), (5)

where o, e C with ¢ #1, 8 #1 and o8 # 1 (see [4]).
In particular, if « #1 and a8 =1, then

m

Hn(x | ) Ha(x | ) =—(1-a) Y (T)Hr«x)
r=1

Bmtn—r+1(X)
m+n—r+1

n

~(1-a )Y C) Hs(a™") Bmin—s+1(%)

m+n—s—+1
s=1

m!n!

__1\n+1
D

(1 — )Hptns1 ().

For r € N, the n-th Frobenius-Euler polynomials of order r are defined by generating function as
follows:



2856 T. Kim / Journal of Number Theory 132 (2012) 2854-2865

FI(t,%) = Fy(t,%) x Fy(t,X) x -+ x Fy(t, X)

r-times
1-u 1-u 1—u)
= X X oee X e
<ef—u> <ef—u> <ef—u>
r-times
o0 tn
:ZH,([)(XW); foru e Cwithu # 1. (6)

n=0

In the special case, x =0, H,<,r) Olu) = H,ﬁr) (u) are called the n-th Frobenius-Euler numbers of order r
(see [1-14,16]).

In this paper we derive non-linear differential equations from (1) and we study the solutions of
non-linear differential equations. Finally, we give some new and interesting identities and formulae
for the Frobenius-Euler polynomials of higher order by using our non-linear differential equations.

2. Computation of sums of the products of Frobenius-Euler numbers and polynomials

In this section we assume that

1
F=F@t)=———, and FN({t,x)=Fx---xFe" forNeN. (7)
et —u —_—
N-times
Thus, by (7), we get
dF(t) —et 1
dt (et —u)? et —u (et —u)? (8)
By (8), we get
FO@t, x) = FVt)e™* = —F(t,x) + uF%(t,x), and FD +F=uF? (9)
Let us consider the derivative of (8) with respect to t as follows:
2uFF' =F' 4+ F'. (10)
Thus, by (10) and (8), we get
2W2F3 —2uF?=F"+F'. (11)
From (11), we note that
253 ) / ) d*F
2W F° =F“ +3F +2F, whereF =5z (12)
Thus, by the derivative of (12) with respect to t, we get
2W?3F?F = F® +3F® 4+ 2FD and F® =uF?—F. (13)

By (13), we see that



T. Kim / Journal of Number Theory 132 (2012) 2854-2865 2857

3iF4F = F® 4+ 6F@ + 11FD +6F. (14)
Thus, from (14), we have
3WAFA(t, x) = FO(t, x) + 6F D (t, x) + 11FV(t, x) + 6F (¢, X).
Continuing this process, we set
N-1
(N=DuNTFN =3 " ap (N F®, (15)
k=0
where F0 = ©F and N e N,

Now we try to find the coefficient a,(N) in (15). From the derivative of (15) with respect to t, we
have

N-1 N
NwN=TFNTTED =3 " (N FED =3 " (NF®. (16)
k=0 k=1
By (8), we easily get
NwN=TENTFD = NuN=TEN=T (42 — F) = NN FNH - NwN=TEN, (17)

From (16) and (17), we can derive the following equation (18):

N
NWNFNHT = NN = DN TN 43 g (N F®
k=1
N—-1 N
=NY aNFY +3 g1 (NFY. (18)
k=0 k=1
In (15), replacing N by N + 1, we have
N
NWNFNH =3 " (N + 1HF®. (19)
k=0
By (18) and (19), we get
N N-1 N
D aN+DF® =NuNFN T =N " a(NFO +> g (NF®. (20)
k=0 k=0 k=1

By comparing coefficients on the both sides of (20), we obtain the following equations:
Nag(N) =ap(N+1), an(N+1)=an_1(N). (21)

For 1 <k<n-1, we have

ag(N +1) = Nag(N) 4+ ag—1(N), (22)
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where ag(N) =0 for k > N or k < 0. From (21), we note that

agp(N +1)=Nag(N)=N(N —1)ap(N—1)=---=N(N —1)---2a9(2).
By (8) and (15), we get

1
F+F =uf?=> ayF* =a@)F +a12)FV.
k=0

By comparing coefficients on the both sides of (24), we get

ap2)=1, and a1(2)=1.

From (23) and (25), we have ag(N) = (N — 1)!. By the second term of (21), we see that

aN(N+D=an1(N)=ay2(N-1D)=---=a:12)=1.

Finally, we derive the value of ai(N) in (15) from (22).
Let us consider the following two variable function with variables s, t:

N
g(t,s)= Z Z ak(N)ms , Wwhere |t|<1.
N>10<k<N-1
By (22) and (27), we get

N
Y Y s

N>10<k<N—1

= > Na1<+1<N+1> ’<+Z > ak<N>—s

N>10<kN-1 N>10<kN-1

tN
=2 > Nawa(N) s +8(t.s).

N>10<k<N—1
It is not difficult to show that

N
> Y Naw st

N>10<k<N-1

1 e
ZEZ Z Nak+1(N)m5 Z Z ak(N)(N )

N>10<k<N—1 S N> 1<k<N

1 tNsk a(N)tV\ 1 NN
s < 2 ak(N)(N )f(N-l)!)‘}Z( > w71 _t>

N>1 N0o<k<N N>1

(Z ()tN]k—l)—t( €9-1)
Ny 1) T BNV T )

N>10<k<N

0<k<N

v:\:w

(23)

(24)

(25)

(26)

(27)

(28)

(29)
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From (28) and (29), we can derive the following equation:

Yo Y N+ 1)

N>10<k<N-1

Nk

1
(g (t,s) — —) + g(t,s). (30)

The left hand side of (13)

=y > akH(N)(N oS

N>21<k<N-2

=> > ak(N)(N <Z > ak(N>(N o )

N2>21<k<N-1 N>21<k<N-1

1 N—] tN—l
Z;(Z( > ak<N>—(N oS~ M 1),>>

N>2 Nogk<N—1

Y am- e ag) L) - l(g’(t $— L) 31)
(N—1)! 1—¢) s\ ESY 7% )

By (30) and (31), we get

t ! ‘(t L _! ‘(t L (32
g(,S)+§<g(,S)—§>—;<g(,5)—ﬁ). )

Thus, by (32), we easily see that

t—1 t—1 1

1—t
s(1—t)
By (33), we get

1
g, S)+ g '(t,s) = -5 (34)
To solve (34), we consider the solution of the following homogeneous differential equation:
t—1
Thus, by (35), we get
—g(t,s)= —g (t, s). (36)

By (33), we get
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gts) s

g(t,s)  1-—t

From (37), we have the following equation:
logg(t,s) = —slog(1 —t)+C.
By (38), we see that
g(t,s)=es1980-0,  where 1 =eC.
By using the variant of constant, we set
A =A(t,s).

From (39) and (40), we note that

L A(t, s)e—slog1=0)
gt,s) = % =\(t, S)efslogﬂ,t) n ()?S

where A/ (t,s) = %.
Multiplying both sides of Eq. (41) by % we get

t—1 t—1
Tg'(t, s)+g(t,s) = )L/Tefslog(lft).

From (34) and (42), we get

1 t—1
N S

e—slog(l —t).

Thus, by (43), we get
V=Xt =0-0"
If we take indefinite integral on both sides of (44), we get
,\:/,\’dt:/(l —t)“dt:—%(l -1’ +Cy,

where Cq is constant.
By (39) and (45), we easily see that

1
g(t,s) =esloed=0 (—;(1 — 0%+ c1>.

Let us take t =0 in (46). Then, by (27) and (46), we get

(37)

(38)

(39)

(40)

(41)

(42)

(43)

(44)

(45)

(46)
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1 1
0=—=+0C, C=-. (47)
S S

Thus, by (46) and (47), we have

gt9) =e*“°g“*f>(} —ta- t)S) = -0 (1-a-v)

A=0"5=1 1, _uq_
= C o (et ), (48)

From (48) and Taylor expansion, we can derive the following equation (49):

R n st (&
gt=—-) —(-log-0)'=3 —-(>

n>1 n>1 I=1

sn—1 1
] ( [ 1 )tN‘ (49)
n>1 " Non 1720 n

li+-+n=N

Thus, by (49), we get

sk 1
wo=Yoin T (X )

N hilp -l

k>0 NZk+1 Nt =
N! 1 tN
=Z< Z k+1)! Z L ---1 >msk' (50)
N>1 1 0<k<N—1 el =N 2L

From (27) and (50), we can derive the following equation (51):

N! 1

e D DR
(k+1)! =N hiy - -lgq

ap(N) = (51)

Therefore, by (15) and (51), we obtain the following theorem.

Theorem 1. For u € C withu # 1, and N € N, let us consider the following non-linear differential equation
with respect to t:

N-1

N 1 1
Fo=m7 g 2 oo o (52)

k=0 li+-+lg1=N 172 k+1

where F® () = % and FN(t) = F(t) x - - x F(t). Then F(t) = - is a solution of (52).
—_—

el—u

N-times

Let us define F® (t, x) = F® (t)et*. Then we obtain the following corollary.
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Corollary 2. For N € N, we set

N

FN@t, x) =

Iy ---1
ety =n 12 e

From (1) and (6), we note that

1—u_°°H ¢n q
pr— —HZ(:) n() . an

(;:Z) X (:t:tll) NEEE <1—u> ZHéN)(u)—

N-times

where H,(IN) (u) are called the n-th Frobenius-Euler numbers of order N.
By (7) and (54), we get

Po= () < (o) o ()
o) Ne—y) e —u

N-times

_ 1 1—u 1—u 1—u
T (1—uN (ef—u>x<ef—u>xmx(ef—u>

N-times

)NZ (N)(u)— and

1—u 1 1 tl
F(t)=<ef—u><1—u)= 1—-u ZHZ(U)E'

1=0

From (55), we note that

FO@) = & F(t) ZH1+k(U)

Therefore, by (52), (55) and (56), we obtain the following theorem.

Theorem 3. For N e N, n € Z., we have

lily - Ik

e S Sl AN - Hp ()
Hn (”)_N< u ) Xg 1<+1)' Z ‘

i+l =N

(53)

(54)

(55)

(56)
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From (55), we can derive the following equation:

iH(N)(U)tn 1—-u 1—-u 1—-u
P X X o X
0 T et —u el —u el —u

N-times
00 I 0 I
t t'N
=( D Hy ) xx | D Hyw—
1! IN!
=0 IN=0
_ i( 3 Hy, W Hi, (W) - - Hiy (u)n!) ¢
- Ul In! !
=0 My 4t Iy=0 11 .11. IN. n!
> n tn
=> > Hi, (u) -+ Hyy (u) ) = (57)
l], ceey lN! n!
n=0 “lj+—+ly=0
Therefore, by (57), we obtain the following corollary.
Corollary 4. For N e N,n € Z, we have
n
> Hy, (u)Hy, () -+ Hyy (u)
I, ..., IN!
li+-+In=n
N-1N-1
—N(l —u> Z 1 Z Hpqr(w)
- ! ’
u pard (k+1)! Lt =N Lily - -l
By (53), we obtain the following corollary.
Corollary 5. For N e N, n € Z, we have
1 \N-TNT 1 non
(N) — n—m
Hy (x|u)=N< ) eI D e Z( )Hm+,<(u)x :
!
u 0 (k+ 1)! A Lily - lgsq o \m
From (6), we note that
o0
1—-u 1—-u 1—-u
YoH xw— = x XX e
! et—u et —u et —u
n=0
N-times
p— — m_
- ZH” (u)n! ZX m!
n=0 m=0
oo n
n t"
:Z<Z< )X"IHI(N)(u))—. (58)
l n!
n=0 \ |I=0

By comparing coefficients on both sides of (58), we get



2864 T. Kim / Journal of Number Theory 132 (2012) 2854-2865

HY =Y <7>x”_’Hl(N)(u). (59)
=0

By the definition of notation, we get

o0 tl [o¢] Xm
(k) _ M X __ - - 4m
FOEx0 =FP e = (Z Hi J{ D2t
=0 m=0
oo n
n g\t
n=0 \I=0 ’
From (6), we note that
x
t" 1—u 1—u
S HPn = (1) g
n! et —u et —u
n=0
N-times
[o¢] [o.¢] [o.¢]
Hh (u) I4 HIN(U) In Xm m
11=0 In=0 m=0

) Hy, (U)th(u)---HlN(u)xmn,)ﬂ

11!11!--~1N!m! Jn!

M

li+-+y+m=n

n

o0 . N
:Z( Z <ll,...,lN,m>Hll(u)"'HlN(u)x )m (60)

n=0 *lj+--+Iy+m=n

By comparing coefficients on both sides of (58), we get

HYxwy= Y (1 ",N m)Hh(u)~-~H1N(u>xm.

li+-+In+m=n
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