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A b s t r a c t - - I n  this paper we deal with the problem of reconstructing surfaces from unorganized 
sets of points, while capturing the significant geometry details of the modelled surface, such as edges, 
flat regions, and corners. This is obtained by exploiting the good approximation capabilities of 
the radial basis functions (RBF), the local nature of the method proposed in [1], and introducing 
information on shape features and data anisotropies detected from the given surface points. 

The result is a shape-preserving reconstruction, given by a weighted combination of locally aniso- 
tropic interpolants. For each local interpolant the anisotropy is obtained by replacing the Euclidean 
norm with a suitable metric which takes into account the local distribution of the points. Thus 
hyperellipsoid basis functions, named anisotropic RBFs, are defined. Results from the application of 
the method to the reconstruction of object surfaces in IRa are presented, confirming the effectiveness 
of the approach. @ 2006 Elsevier Ltd. All rights reserved. 

K e y w o r d s - - R a d i a l  basis function, Shape preserving, Surface reconstruction, Local interpolation. 

1. I N T R O D U C T I O N  

Surface reconstruct ion is concerned with the generat ion of continuous models  from unorganized 

sets of points.  This  problem arises in a wide range of scientific and engineering applicat ions,  as 

well as in computer  graphics and computer  vision where these points  come from the digi ta l izat ion 
of model  surfaces. Creat ing accurate  models of real objects  from digi tal  scans or surface sketching 

is current ly  the subject  of intensive research. In these cases, in order to ob ta in  high qual i ty  surface 
reconstruct ions,  it is very impor tan t  to recover the surface shape, especial ly for objects  wi th  sharp 

features (edges, corners, spikes, etc.). 

In this  paper ,  we will focus on the reconstruct ion of implici t  surfaces t ha t  accura te ly  capture  

and reproduce the shape of the  data .  The implici t  representa t ion is based on a local use of radial  

basis functions (RBFs)  and we propose an anisotropic extension of these functions to allow the 

surface to locally follow the geometry  of the data .  

More precisely, the  reconstruct ion problem we consider here can be posed as follows. 

This work has been supported by MIUR-Cofin 2002, ex60% project, and by University of Bologna "Funds for 
selected research topics". 
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----- X N Let ft be a compact set and let the distinct point sets X0 = {x~}N° i and X1 { i}i=No+l C 
~2 C R 3 be given. The set X0 represents the digitalisation of an object surface, that is, the 
points xi are on the unknown surface, while the off-surface point set X1 is simply a mathematical 
instrument allowing us to use an implicit approach to the reconstruction problem. Both sets can 
be provided, e.g., by a 3D laser scanner, if the line-of-sight to the scanner is used during the 
acquisition phase. We associate with the data set X = X0 [.J X1 a set ~ E ]R of corresponding 
values of a signed-distance function, namely, fi = 0, i = 1 , . . . ,N0  and fi = di  7 ~ O, i - -  

No + 1 , . . . ,  N, where di > 0 for points outside the object surface and di < 0 for points inside. 
The implicit shape-preserving reconstruction problem consists of determining a function F(x) 

which implicitly models the unknown surface by satisfying the interpolation conditions 

F(x~) - 0, i = 1 , . . . ,  No (on-surface constraints), (1) 

F(xi) = d~, i - No + 1 , . . . ,  N (off-surface constraints), (2) 

and which has the property that its zero-set F0 = {x E IRa; F(x) = 0} preset'yes the local 
behaviour of the surface points. 

This distance function F(x) gives us an implicit, but analytical representation of the object 
surface, allowing it to be evaluated anywhere to produce a mesh at the desired resolution, thus 
offering a meshfree 3D reconstruction. 

In this paper, we consider radial basis functions for the implicit representation of object sur- 
faces, since these functions represent a well-established tool for multivariate scattered data in- 
terpolation. Several works exist in the literature devoted to the reconstruction of surfaces using 
RBFs starting from unorganized point sets (see, e.g., [2-5]). However, most of these works cal- 
culate the implicit surface globally, by solving a large and sometimes dense linear system, with 
consequent limitations of the number of points that can be processed and with related problems 
regarding stability and computational cost. Another lack in the global reconstruction with RBFs 
seems to be the difficulty to globally model the different local behaviors of the surface points near 
object shape features. The implicit function, in fact, should fit the data, so that the shape of its 
zero-set follows at best the local geometry of the object surface, that is, it accurately captures 
structured features such as corners, edges, and flat regions. To obtain this result, it would be 
necessary to scale the radial basis functions differently, according to the local data density, or to 
distort the shape of some basis functions to capture local anisotropies, which identify particular 
features, in the data. Unfortunately, adapting the basis functions is, in general, not allowed in the 
global case, as the solvability of the interpolation problem is no longer guaranteed. Even if this 
problem has been considered in [6], and sufficient conditions are given for its unique solvability, 
it seems rather difficult to apply these conditions in practice. 

To overcome the limitations imposed by a global approach, in [1], a local RBF interpolation 
method has been proposed, which allows for efficiently dealing with very large data sets. 

The main idea of this local method is to divide the global domain f~ into smaller overlapping 
domains {f~j}~=l ..... x where the RBF interpolation problem can be solved locally. Associated 
with this covering, a family of nonnegative weight functions {wj}j=l,N, with limited support 
supp(wj) _C f~j, is constructed, with the additional property that ~ j  wj = 1 in the entire 
domain f~. The local solutions are finally blended together, using these weighting coefficients to 
obtain a smooth, locally defined global interpolant. 

In [7], the performance of this local RBF interpolation method has been tested for the re- 
construction of large data sets and an efficient hole-filling procedure has also been proposed, 
exploiting the local nature of the method. 

In this paper we consider a generalization of the proposal in [1] in order to deal with local 
anisotropy in the data. The basic idea is to consider small homogeneous subsets of data on which 
to evaluate the local interpolants, and, for each of them, to replace the Euclidean metric by a 
suitable metric in R d, which allows the RBF to be distorted into functions with hyperellipsoids 
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as level sets. In this way the problems arising in the global approach are avoided, since the 
same metric is considered for all RBFs used in each local interpolation. The corresponding linear 
system is thus uniquely solvable. Moreover, in order to follow the anisotropy of the data, all the 
weight functions are also distorted, according to the same metric, but  without  destroying their 
original properties. 

An important  step in this new approach is to choose the metric in order to model the local 
data  anisotropy. Following a popular signal processing method for feature extraction, we perform, 
for each local da ta  set, the principal component analysis of the covariance matrix, in order to 
determine the direction of the data  anisotropy. Then the most natural  choice is to use the inverse 
of the covariance matrix to define the appropriate metric. The effectiveness of this choice is 
confirmed by several experimental results. 

The rest of the paper is organized as follows. In Section 2 we present some theoretical results on 
anisotropie interpolation with RBFs in R d. In Section 3 we introduce anisotropie interpolation in 
the local method presented in [1] and the properties of the modified weight functions are proved. 
In Section 4, we restrict ourselves to the case of surface reconstruction in R3: we first give an 
overview of the me~hod we used to classify the local features of surface points, then we present 
results of the application of this detected information both to suitably scale the RBFs, and to 
deal with anisotropic RBFs in the local interpolation processes. 

2.  A N I S O T R O P I C  I N T E R P O L A T I O N  

W I T H  R A D I A L  B A S I S  F U N C T I O N S  
X N ]~d N = = {fi}i=l C Let f t b e a c o l n p a c t s e t ,  X { i}i=l c ~ t c  be a set of distinct nodes, a n d ~  IR 

be a set of function values. Let us denote by Fd~ the space of d-variate polynomials of order not 
exceeding m. The RBF interpolant of the data  

(Xi, N f~)}i=l, xi E X,  f.i • ~, (3) 

with conditionally positive definite radial function qD : N_>0 --~ IR of order m _> 0 is given by 

N ± 
R(x) --  aj (Ifx- xjlf2) + (4) 

j = l  i=1 

where n = dimlP <,  and {Pi}i=l . . . . . . .  is a basis for Pal. The coefficients aj, j = 1 , . . .  ,N ,  and bi, 
i = 1 , . . . ,  n, are obtained from the conditions R(xi)  = fi, i = 1 , . . . ,  N,  i.e., by solving the linear 
system 

Aa + Pb = f, 

p T a +  0 = 0, (5) 

with 

A = ( ~ ( H x i  - xjl l2))i , j=l . . . . .  N, 

P = ( p j ( x ~ ) ) i = l  .. . . .  N,  ~ = 1  . . . . . . .  

It is well known that  system (5) is uniquely solvable, as long as the following additional assumption 
holds: 

rank(P)  = n < N. (6) 

Let M now be a d x d nonsingular real matrix and Y C R d the set Y - {Yi; Yi = Mxi, x i  E X } .  

If we consider the RBF interpolation problem on the transformed data  

{(Yi, N f i )} i=l,  Yi C Y, fi  E .~, (7) 
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it  is s t ra ightforward to see tha t  it  is still uniquely solvable, since the  nonsingular  ma t r ix  M 

represents  an affine t ransformat ion,  and the new set Y satisfies re la t ion (6), too. 

This new R B F  interpolant  takes the  form 

N n 

R(y)  = E ~ i~( j Jy  - yylh)  + E f l ipi(y)  
j = l  i=1  

and can be character ized as follows. 

X N THEOREM 1. L e t  {( i, f i ) } i = l ,  x i  ~ X C f~ C [~d, f i  ~ ~ C R be  a d a t a  se t  f o r  w h i c h  the  l inear  

system (5) is uniquely solvable. Let M be a nonsingular d x d m a t r i x  that maps  the sets X and ft 
into the sets Y and ~, respectively. Then 

R(y) =R~(x) ,  

w h e r e  
N n 

R T ( x )  -- Z ~j~(llx- x~lIT)+ ~ ~p~(x) (s) 
j = l  i = l  

is the "anisotropic" RBF interpolant on the original data, and T = MT M. 

PROOF. Since M is nonsingular,  the ma t r ix  T is a posit ive definite matr ix .  Thus the function 

I I  liT : R ~ -~ m>_0, defined as 

IIxlIT = ~ = V / x T M T M x  = I IMxl l~,  

is a norm of N d. Now, recalling tha t  the  space ]P~ of mul t ivar ia te  polynomials  is aflhne invariant,  

the  result  follows immediately.  | 

The  previous result  shows tha t  the  R B F  in terpolant  on the  t ransformed d a t a  can be seen as 
a metr ic  ad jus ted  R B F  interpolant  on the original data .  This observat ion justifies the following 
definition. 

DEFINITION 1. Let ~hj(.) = ~(11. -xjll2) be a radial basis function with center  xj ,  and let T be 
a symmetric positive definite matrix. We define anisotropic radial basis function as 

eT,j(') = ~ ( l l - x j l l r ) ,  

namely a function whose level sets are hyperellipsoids, centered in xj ,  and associated with the 
quadratic form (x - x j ) - T ( x  - x j ) .  

The  anisotropic  RBF in terpolant  RT(X) does not, in general,  coincide with  i ts isotropic ver- 
sion R(x) ,  unless the mat r ix  T is the ident i ty  matr ix .  In fact, as pointed out  in [8], R B F  
interpolants  are not  affine invariant.  Therefore it is necessary to s tudy  the aspects  of s tabi l i ty  

and accuracy of approximat ion  of this  anisotropic interpolant .  The  cri t ical  quanti t ies  tha t  need 
to be considered are the  separa t ion  dis tance qy and the fill d is tance hy of the  new set Y, which 

are defined by 

1 
- ~ -  min IlYi-YjlI2, qY 2 l<_i<j<N hy = sup rain I l Y -  Yill2. 

ye l l  l <_i<N 

Their  value characterizes the densi ty of the  set Y, and is therefore s t rongly  dependent  on the 
t ransformat ion  mat r ix  M. In par t icular ,  the following theorem gives the  relat ion between these 
quanti t ies  and the separa t ion  and fill distances of the original set X.  
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THEOREM 2. Let M be a d x d nonsingular mat r ix  that maps the sets  X and ~2 into the sets Y 
and ~), respectively, and let T = M-CM be the associated symmetr ic ,  positive de/~nite matr ix ,  

whose eigenralues are hi, i = 1 , . . . ,  d. The separa t ion  and 1~11 dis tances  of  the sets X and Y 
satisfy 

AV/~minqx < q y  < AX / ~m~qx  , 

~v/V22m~hx <_ hy <_ av/TZxm~xhX. 

(9) 

(10) 

PROOF. Set d i j  = x i  - x j  and a~j = Yi - Yj. We have tha t  ~ i j  = Mdi j .  Since 

lla~jll~ _ d~Tdij 
d 2 It ~Jil2 d ~ d i j  

by using the Rayleigh quot ient  propert ies,  it follows 

d ~ T  dij <_ A . . . .  

Amin ~ d ;  dij 

tha t  is, 

AX/~mi~ IlXi -- Xj[12 _< ][Yi -- YyH2 --< AX/ r~I Ix i  -- XY[12. 

Relat ion (9) now follows, tak ing  the min imum over i and j .  

Analogously, for each x E fl and y = M x  E ~ we have 

X/~minllX- x~ll~ ~ Ily- y~l12 ~ ~x/~xl lx-  x~l[2, 

thus set t ing 

r(x) = n~in ll× -- x~ll2 

and tak ing  the min imum over i, we obta in  

and r ( y )  = mi in [lY - Y~II2 

~ r ( x )  _< r(y) _< , / ~  . . . .  r(x).  

Let t ing  y now vary over ~ ,  and correspondingly x over f~, and tak ing  the sup, we obta in  (10). | 
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Figure 1. Nonuniform da ta  set X (left) with qx  = 0.088, h x  ,~ 0.328; t ransformed 
da ta  set Y (right), obtained using M = [ - 2 . 2 2 , - 1 . 5 9 ; - 0 . 2 9 ,  0.41] with qy = 0.117, 
h y  ~ 0.272. 
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The previous analysis shows that  a "good" choice of the aftlne transformation represented by M 
can significantly improve the behaviour of the anisotropic RBF interpolant, concerning stability 
and accuracy of approximation according to the analysis given in [9-11]. In Section 4 we propose 
a possible choice for a transformation M,  which produces very satisfactory results. In Figure 1, 
we show a simple 2D example, where a set X of severely nonuniform data  is transformed into 

a quasi-uniform set Y, by choosing the transformation M,  according to the criterion given in 
Section 4. The transformed set Y presents an increased separation distance qy, with consequent 
reduction of the condition number of the RBF matrix 

A = ( ~ ( l l y ~  - y j t l 2 ) ) , , j = ~  . . . . .  N ,  

and a reduced fill distance hy, tha t  gives a better reproduction quality of the anisotropic RBF 
interpolant. 

3. L O C A L L Y  A N I S O T R O P I C  I N T E R P O L A T I O N  

In this section we introduce the concept of anisotropic radial basis functions in the reconstruc- 
tion method presented in [1] and [7]. Since that  method uses a weighted combination of local 
interpolants, based on inverse distance weights, we introduce a new metric, not  only in the RBF 
interpolants, but  also in the weight functions. This local strategy allows us to adapt  the metric 
to the different data  anisotropies, without needing to satisfy the strong conditions given in [6], 
where a global approach is considered. 

Let the compact  set i2, the set of distinct nodes X = N {x~}i= 1 C fl C R d, and the set of the 
corresponding function values -~ N = {fi}i=l C R b e g i v e n .  For e a c h x k  E X, k = 1 , . . . , N ,  we 
associate a symmetric positive definite matrix Tk = M~Mk and a set XT~ = {xi E X, i E Ik}, 
where Ik is the set of indexes of Nq - 1 suitable Tk-neighbours of xk, as well as xa itself. The term 
Tk-neighbours denotes that  the distance is measured using the norm induced by Tk and suitable 
means that  Tk is chosen so that  the corresponding elements of the set Yk = {Yi; Yi = Mkxi, 
x~ E XTk } satisfy certain conditions of uniform data  density (see [7] and the references therein 
for details). Then we compute the nodal anisotropic RBF interpolant (8) on the set XT~, namely 
satisfying 

]~Tk (Xi) = f~, i C Ik. 

Moreover, for each xk, we identify a hyperellipsoidal region of influence ~k, centered in xk, as 
the set of x E f~ s.t. 

IIx  - xkllz  < P k ,  

where Pk is chosen so that  the union of the sets f~k, k = 1 , . . . ,  N represents a covering of ft. 
Then we define the k TM compactly supported nodal anisotropic weight function as 

[(Pk - DTk (x))+ ] ~k WTk(X) with WTk(X) = [ ~ - k ~  ' (11) - 

E wT,(×) 
i = l  

where DTk(X) = ] ] x -  xk]]Tk and 7k is a positive number, which determines the regularity of 
the k th weight function. Finally, the locally anisotropie interpolant is given by 

N 

FA(x) -- E 17VTk (X)RTk (x) = E WTk (X)RT~ (x), (12) 
k = l  k E N ×  

where Nx is the set of indexes of all the nodes xe s.t. I I x -  xkIITk < Pk, nmnely, the nodes whose 
influence region f~k contains x. 

In order to characterize (12) as the expected locally anisotropic interpolant, we require the 
anisotropic weight functions (11) to satisfy certain properties analogously to the Euclidean case. 
The following theorem establishes tha t  they satisfy the cardinality and part i t ion of unity prop- 
erties, as their Euclidean analogs, and like the latter have continuous partial derivatives which 
vanish at the interpolation nodes. 
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The anisotropic weight functions 17VT~ (x) defined in (11) satisfy the following prop- 

1. I/VT~ (X) >_ 0, f o r x e f ~  and s u p p ( l ~ T k ) = f l k ,  (13) 

2. 12dTk (xi) : 5ik, i, k = 1 , . . . ,  N, (14) 

3. E 1717Tk (X) = 1, for x ~ g/, (15) 
kENx 

4. l ira ~TT¢7//'Tk (X) = 0, for each xj E X, if 7k > 1. (16) 
X----~ Xj 

PROOF. Proper ty  1 follows immediately  from definition (11). By defining 

BT~(x) = [Pk - DT~(X)] ~k H [ piDT~(x)]'Y'' 
iENx, i7£k 

(lr) 

we have 
0, if k ¢ Nx, 

l/Vrk (X) ----- BT~ (X) if k C Nx, 
E Br, (x)' 

j E N x  

Now, Propert ies  2 and 3 follow immediately, noting tha t  

x E f l ,  

x c ft. (18) 

Brk (xj) = 0 ,  if j C k. (19) 

To prove Proper ty  4 we show tha t  for % > 1 

lira V[DT~ (×)]~ = 0, if k E Nx; 
x ~ x  k 

lim VBTk (x) = 0, if j E N×, 
X-'-*Xj 

j C k .  

(20) 

(21) 

In fact, 

V[DT~ (x)] "y~ = Vllx - xk "~ Tk 

= ~/k itx _ , ~ - 2  xklln Tk(x-- xk), 

and, when % > 1, we get (20). 
To prove (21), we consider 

v B ~ ( x )  = V[p~ - D~(x)7  ~ H [p~DT,(x)]~' 
iCNx, i ~k  

÷ [Pk-- DT~(X)]'rk EiGNx, i#k [ p:~V[DT'(X)]'t~ gCNx,Hg#i, eCk [peDTe(x)]'Ye] ' 

and we use (20) to obtain the result. 
P roper ty  4 now follows immediately using (20) and (21) in the expression of the gradient of 

WTk(X).  ! 

The propert ies of the locally anisotropic interpolant  FA(X) can now be easily derived. 

• The  da ta  interpolation proper ty  follows from the interpolation nature  of the nodal func- 
tions, and from the weight functions proper ty  (14). 
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• The shape reconstruction property follows from (14) and (16), which guarantee the in- 
terpolation of the first partial derivatives of the nodal functions at the data  points. In 
fact, 

vF (x,) = Z + (x )VRr  (xd] = vRr  (xd, 
k E  N x  

i = l , . . . , N .  

• For each x E f~, the approximation error of the anisotropic reconstruction EFA (x) can be 
bounded, in terms of the approximation errors of the nodal functions [10]. More precisely, 
denoting by enr~ (x) the error of the nodal function RT~, we have 

(x) = (x), 
k E N ×  

and using property (15) we get 

rain eR% (x) < EFA (X) < max eR~ (x). 
k E N x  - -  - -  k E N x  ~k  

• The regularity of FA(x) depends on the regularity of the nodal and weight functions that  
contribute to the reconstruction in x. In fact, if, for k = 1,..., N, RT~ E C e~(f~) and 
we set 2/ = minkENx{yk} and ~ = minkENx{gk}, we have tha t  FA(X)  E CS(f~), where 

s = rain{3', f}. 

Moreover this locally anisotropic interpolant owns intrinsic shape-preserving capabilities, since 
the locality of the approach allows us to adapt the reconstruction to the different data  features. 
This can be realized by acting on the free parameters at our disposal: 

• by choosing a suitable metric for each local interpolant; this makes it possible to adjust 
the shape of the RBF and the support  of the weight functions, in order to single out the 
most significative data  to reproduce the shape characteristics; 

• by acting on the smoothness of the interpolant, both changing the regularity of the RBF 
in the nodal functions and choosing different parameters % in the weight functions; this 
yields the shape-preserving reconstruction of smooth and sharp features of the data; 

• by using, for each local interpolant, RBFs chosen according to the da ta  behaviour and, if 
possible, by selecting different shape parameters in the RBF; this is the case for inverse 
multiquadric or multiorder radial basis functions, which can be scaled acting on their free 
parameters. 

4. 3D S H A P E  P R E S E R V I N G  S U R F A C E  R E C O N S T R U C T I O N  

In this section, we restrict ourselves to the 3D case, and we consider the problem of shape- 
preserving reconstruction of an unknown object surface, given a cloud of points describing this 
surface. 

A shape-preserving reconstruction typically maintains important  object features, such as edges, 
corners, and flat regions. The extraction of these features from an unorganized cloud of points 
requires a preprocessing step, which allows us to introduce information on the intrinsic object 
structures in the reconstruction process. For this reason, in Section 4.1 we propose a preproeessing 
procedure, based on a local use of principal component  analysis of the covariance matrix, which 
can be used to identify and classify object features [12]. Then we introduce this shape information 
by modifying the RBF parameters in the reconstruction method proposed in the previous section. 
Finally, we further use the covariance matrix to determine a suitable metric, which allows us to 
construct anisotropic radial basis functions, whose anisotropy reflects the local anisotropy of the 
data. 
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4.1. L o c a l  S u r f a c e  C las s i f i ca t ion  

Let the set of distinct points X0 = {x~}~°l C ft C ]R 3 be given, whose elements lie on an 
unknown surface. In this section, we describe a method that  makes use of principal component 
analysis to determine whether a point xk C X0 is part  of a planar region, part  of an edge, or 
occurs at a corner. 

Given a set of ng points of Xo near to xk, denoted by Neigh(xk) ~g = {xkj }j=a, the covariance 
matrix C of this set of points is 

C(xk) = ! Q Q q - ,  (22) 
n9 

where Q is the 3 x n 9 matrix 

Q = ( x k , - - ~ k  Xk~--Xk " '  x k ~ , - - X k )  

and 

~k = ng ~ xkj 

is the centroid of Neigh(xk). The 3 x 3 matrix C (xk) is symmetric and, in general, positive semidef- 
inite. This matrix can be factored as VkAkVZ, where Ak is diagonal and Vk is an orthonormal 
matrix. The diagonal elements of Ak are the eigenvalues A~ _> A2 >_ Aa k of C(xk) associated with 

a respectively, which are the columns of Vk. These mutually perpen- unit eigenvectors v~, v 2, vk, 
dicular eigenvectors define the three axis directions of a local coordinate frame with origin xk. 
We use the values of A~, A~, ~ to characterize the point xk. The local neighborhood in which 
we estimate C(xk) can be classified in four possible cases: 

• fiat: one eigenvalue, )3, is very small or equal to zero, and the other two eigenvalues A~, ,~  
have similar finite values, but  significantly greater than ,~3; the points Neigh(xk) are 
almost coplanar, and the two eigenvectors associated with ,~,  A~ form the plane that  fits 
the points; xk belongs to a flat region; 

• edge: two eigenvalues A~, A3 are very small or equal to zero, and A1 has a finite greater 
value. The corresponding eigenvector v 1 identifies the direction along which the points 
Neigh(xk) are distributed; xk is close to, or on, an edge and v~ is the orientation of the 
edge; 

1 .2~  

1 

0.8 

0 . 6 -  

0 . 4 ~  

0 .2 -  

0 -  

-0.2 - 

0.5 0 
1 1 

Figure 2. Different markers representing the features detected on a cube data set 
(No = 2168, ng = 7); (*) flat points, (o) edge points, and (~ )  corner points. 



1194 G. CASCIOLA et al. 

• corner: all three eigenvalues have finite, nearly equal values; the point set within Neigh(xk) 
is likely to be a corner; 

• null: no local structure is detected locally. 

As an example we show, in Figure 2, the result of our local surface classification method for a 
cube data  set. The different markers represent the different classification of the points. 

It is worthwhile noting that  the above classification is surely effective for objects with well- 
defined geometry, while it can present some ambiguities for real or noisy data. In fact, in the latter 
case, it is difficult to decide if an eigenvalue is really dominant,  or if it is small. It is therefore 
necessary to choose some thresholds which are determinant for the classification, yielding, in this 
way, threshold dependent features. This is not the case if the object geometry is well identifiable. 
Another problem can be represented by the data  density. In fact, the principal component 
analysis requires a sufficient sampling density when two components of a surface are separated 
by a relatively small distance. In this case, the method can fail; tha t  is, it can incorrectly consider 
in Neigh(x) points from both components of the surface. 

4.2. 3D L o c a l l y  S c a l e d  R e c o n s t r u c t i o n  

The first approach we consider for a shape-preserving reconstruction consists of the introduc- 
tion of the previously identified shape information in the isotropic version of the reconstruction 
method, presented in Section 3. This can be realised by considering the RBFs  tha t  depend on 
some parameters, and by locally modifying these free parameters to appropriately model the local 
nature of the surface, while leaving the basis functions radially symmetric.  For example, using 
the inverse multiquadric I~BF 

~(r) = (,.~ + e2 )-1/2 

we can use the free parameter c as a shape parameter. Specifying c to be relatively small for 
corner and edge points, but  increasing it at planar points, we get a suitable scaling of the basis 
functions to obtain a smooth reconstruction, while preserving sharp features. Using multiple 
order RBF defined in [13] as 

~ ( r ) - -  4~52 r l + v  - w  w e - V ~ ' - v e - V / - ~ r  ' 

where 
1 + x / 1  - 4w252 1 - v / 1  - 4w252 

V z W ~ 
2T2  ' 2W2 ' 

(a) Constant shape parameter. (b) Feature adapted shape parameter. 

Figure 3. Reconstructions of the cube data set using isotropic inverse multiquadric 
RBFs. 
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we can influence the  free parameters  a and r by associat ing increased values for 5 and small  values 

for r at  corner and edge points,  while reducing 5 and increasing r values at  p lanar  points,  to let 

the basis function fall off less rap id ly  toward zero, and to make its center become increasingly 

smooth.  

For compact ly  suppor ted  RBF,  we can reduce the  suppor t  at  corner and edge points,  while 

enlarging it in the flat regions. 

The  effect of the local scaling of the inverse mul t iquadr ic  RBFs  is shown in Figure  3, where 

the  reconstruct ion of the  cube da t a  set by means of the  in terpolant  (12) with T = I ( identi ty 

matr ix)  is presented.  As a comparison,  we also display the  reconst ruct ion ob ta ined  using the same 
paramete r  for all local interpolants .  I t  is clear tha t  the  local reduct ion  of the shape paramete r  

in correspondence with the edges and corners yields an implici t  function, whose level set be t te r  

captures  the sharp features of the  object .  

4.3. 3D Locally Anisotropic Reconstruct ion 

We now consider a shape-preserving reconstruct ion of an objec t  surface based on the locally 
anisotropic  in terpolant  (12). The key point  is to choose, for each local in terpolant ,  a sui table 

metr ic  to allow us to model  the  local d a t a  anisotropy. To this aim, we make use of the covariance 

mat r ix  defined in (22), evaluated,  for each xk E X,  by considering the  n g  points  of X0 nearest  

to xk tha t  guarantee  the nonsingular i ty  of C(xk). This symmet r ic  posit ive definite ma t r ix  defines 

a set of ellipsoids, centered in xk, and whose semiaxis, oriented as the  eigenvectors, are of lengths 
propor t iona l  to the inverse of the  corresponding eigenvalues. In order to capture  the  anisotropy 

of the data ,  we need anisotropic radial  basis functions, whose aniso t ropy is the  same as the data ,  
namely, whose level sets are ellipsoids with semiaxis lengths direct ly  propor t iona l  to the  eigenval- 

ues. Therefore,  we choose the  mat r ix  Tk, defining the local anisot ropy of the  in terpolant  RTk (x), 

as being propor t iona l  to the inverse of the  covariance matr ix ,  i.e., 

(23) 

with sk > O, As a consequence, the t ransformat ion ma t r ix  M k  is given by 

fl/2A--]/2~/-T 
M k  ---- o k ~ k  vk " 

1 I 0.8 + +8 

0.6 ~10  
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0.4 0.4 2 • 
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-O,4  

- 0 . 6  

-0 .8  2 11 

-1 ~12 , , , 

-11 - 08  06  ~4  ~ }2  0 0.2 0.4 0.6 0.8 1 . . . . .  1.2 . . . .  8 .-0.6 ~ .4 -0 ,2  0 0.2 0.4 0.6 

(a) Set Xk and level sets of an anisotropic 
RBF. 

(b) Transformed set Yk and level sets of the 
corresponding isotropic RBF. 

Figure 4. 
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(a) Isotropic inverse multiquadric RBFs with (b) Anisotropic RBFs with feature-adapted 
constant shape parameter, shape parameters. 

Figure 5. Zoom of reconstructions of the cube data set. 

The normalization constant sk can be used to improve the stability and accuracy of the anisotropic 
RBF local interpolant by suitably scaling the eigenvalues of the matrix Tk. In fact, as stated in 
Theorem 2, the separation and fill distances of the transformed set Yk strictly depend on these 
eigenvalues. 

To demonstrate the effectiveness of our choice in capturing the data anisotropy, in Figure 4 
we show, for the 2D case, the level sets of an anisotropic RBF, deformed according to the data- 
dependent matrix T = sC-i(Xl). The corresponding set Y = {Yi; Y~ = Mxi, xi C X}, where 
M = s l / 2A-1 /2V  T, and s - (1/2)A . . . .  c(xl) is also shown. 

To illustrate the behavior of our method, a prototype algorithm has been implemented and 
tested both on synthetic data sets and on data from scanned objects. The visualization phase 
of the resulting surface is based on a marching cube algorithm, which uses the evaluation of the 
interpolant FA(x) on points of a uniform grid on the domain f/, containing the data points. 

To better appreciate the quality of the shape-preserving reconstruction provided by the method, 
we used a cube data set (No = 2168 and N1 = 820), where all the shape features are clearly 
present. The image in Figure 5b shows a detail of the reconstructed surface, obtained using 
anisotropic inverse multiquadric RBFs with feature-adapted shape parameters. For comparison, 
Figure 5a shows the reconstruction obtained using isotropic inverse multiquadrie RBFs and con- 
stant shape parameters. The differences between the two reconstructions are more evident at the 
edges and corners, since the introduction of the anisotropy of the data, both in the RBFs and in 
the weight functions, allows the reconstruction to present a sharper and better-defined geometric 
behavior. 

To show the performance of our algorithm on real scanned data sets, we present here the 
reconstruction of a 20cm tall model of the Statue of Liberty from an unorganized cloud of 
points, which consists of No = 78563 surface points and N1 = 40312 off surface points• 

The reconstruction of the Statue of Liberty realized using anisotropic multiquadric RBFs with 
feature-adapted shape parameters is shown in Figure 6. From the front and back views of the 
reconstruction we can appreciate the algorithm's ability to reproduce the features of the model. 

The detail of the crowned head, evaluated on a finer grid, is shown in Figure 7b, where we 
also show, as a comparison, the isotropic reconstruction with constant shape parameters (see 
Figure 7a). Again it is clear that the use of the shape and data anisotropy information yields a 
reconstruction that better captures sharp features, while smoothing out the flat regions of the 
c r o w n .  

Finally, we would like to note that the visualization of the reconstructed surface is strongly 
influenced by the method used for extracting the zero level set from the computed implicit 
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Figure 6. Reconstruct ions  of the  Sta tue  of Liberty da ta  set (No = 78563, n9 = 30) 
using anisotropic inverse mult iquadric  RBFs  with fea ture-adapted shape  parameter .  

(a) Isotropic reverse nmlt iquadric  RBFs  with con- (b) Anisotropic RBFs  with feature-adapted shape  
s tan t  shape  parameter ,  parameters .  

Figure 7. Detail  of the  reconstruct ions  of the  S ta tue  of Liberty da ta  set. 
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function. Using, for example, polygonalization of an isosurface of an implicit function can produce 
apparent faceting (space aliasing) which is a common problem arising from the discretization of 
a continuous domain. Such a faceting effect is more evident for a shape with sharp features. 
Since in this paper we focused on a reconstruction algorithm, we have not taken care of the 
visualization problem and we have simply used the most common marching cube algorithm for 
extracting the zero level set. Obviously, ray tracing and any more sophisticated polygonalization 
algorithm could be used in order to produce better quality images. For example, an adaptive 
resolution algorithm can be considered in which the discrete sampling rate adapts to the changing 
feature size of the isosurface being polygonized. A good review of adaptive methods can be found 
in [14]. 
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