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SUMMARY

Although regulators of the Wnt/planar cell polarity
(PCP) pathway are widely expressed in vertebrate
nervous systems, their roles at synapses are un-
known. Here, we show that Vangl2 is a postsynaptic
factor crucial for synaptogenesis and that it copreci-
pitates with N-cadherin and PSD-95 from synapse-
rich brain extracts. Vangl2 directly binds N-cadherin
and enhances its internalization in a Rab5-depen-
dent manner. This physical and functional interaction
is suppressed by b-catenin, which binds the same
intracellular region of N-cadherin as Vangl2. In hippo-
campal neurons expressing reduced Vangl2 levels,
dendritic spine formation as well as synaptic marker
clustering is significantly impaired. Furthermore,
Prickle2, another postsynaptic PCP component,
inhibits the N-cadherin-Vangl2 interaction and is
required for normal spine formation. These results
demonstrate direct control of classic cadherin by
PCP factors; this control may play a central role in
the precise formation and maturation of cell-cell
adhesions at the synapse.

INTRODUCTION

Synapse formation in the CNS is mediated by intercellular

communication between axonal growth cones and the soma or

dendrites of their target neurons. Small knot-like protrusions

referred to as dendritic spines are formed on the postsynaptic

side of the excitatory synapses (Segal, 2005). By regulating the

synthesis, transport, and activity of the synaptic proteins within,

spines function as one of the storage sites of synaptic strength

where the efficacy of the neurotransmission can be potentiated
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or depressed for learning and memory (Okabe, 2012). The num-

ber of spines correlates with brain function. For example, their

densities are drastically reduced in the brain tissues of humans

or mice with dementia (Ferrer and Gullotta, 1990; Perez-Cruz

et al., 2011). Characterization of molecules that control spine

formation will therefore illuminate the cell biological basis of

memory formation and loss (Yoshihara et al., 2009).

Synaptic cell adhesion molecules cooperatively modulate the

membrane interactions required for spine formation. One such

critical player is N-cadherin, a calcium-dependent homophilic

cell adhesion molecule predominantly expressed in the nervous

system (Arikkath and Reichardt, 2008; Takeichi and Abe, 2005;

Togashi et al., 2002). N-cadherin is linked to the actin cytoskel-

eton through b-catenin whose regulated distribution is required

for spine morphogenesis (Murase et al., 2002). Catenins support

spine formation by clustering cadherin molecules and inhibiting

their internalization from the cell surface (Le et al., 1999).

Although postsynaptic N-cadherin is endocytosed at a high

rate (Tai et al., 2007), the molecular nature of the driving force

for this internalization is unknown.

Wnt signaling plays diverse roles in animal development and is

divided into canonical and noncanonical pathways (Wallingford

and Habas, 2005). Noncanonical signaling involves several intra-

cellular pathways that act independently of b-catenin and regu-

late cytoskeletal dynamics and cell adhesion (Wallingford and

Habas, 2005). The noncanonical Wnt/planar cell polarity (PCP)

pathway functions similar to the Drosophila PCP pathway

through Frizzled (Fz) and Dishevelled (Dvl) to activate Rho and

Rac small GTPases. In this pathway, the Strabismus/Van

Gogh-Prickle protein complex antagonizes Fz-Dvl signaling. As

for the regulation of cell-cell adhesion, the noncanonical Wnt

ligand Wnt11 controls the cell surface level of E-cadherin

through Rab5c-dependent endocytosis in zebrafish gastrulation

(Ulrich et al., 2005). However, the molecular mechanism by

which the noncanonical Wnt signaling regulates endocytosis of

classic cadherin remains obscure.
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Figure 1. Vangl2 Is a Postsynaptic Factor of the CNS Synapse

(A) Vangl2 (red) colocalizes with the synaptic markers (green) in cultured hippocampal neurons (synaptophysin: 42.5%, n = 106; PSD-95: 61.7%, n = 94, from four

images in one representative experiment for each). Note that Vangl2 is slightly misalignedwith the presynapticmarker at some puncta (arrows). The a-Vangl2 Abs

were diluted 1:200 for IF. The signal using a 1:1,000 dilution was too faint to obtain clear images.

(B)WB analysis of Vangl2 distribution in the subfractionated brain samples. BH, brain homogenate; SF, synaptosomal fraction; SMF, synapticmembrane fraction;

PSD, postsynaptic density. Ten micrograms of protein from each fraction was analyzed using a-Vangl2, N-cadherin, Synaptophysin, PSD-95, and b-actin Abs.

(C) Synaptic localization of Vangl2 in the neonatal (P5: upper panels) and adult (P56: lower panels) mouse hippocampal CA1 region just apical to the pyramidal cell

layer. Localization of PSD-95 (green), Vangl2 (red), and the merged views are shown in highly magnified images.

(D and E) Vangl2 accumulates at synapses during postnatal development. Immunopositive puncta were counted in a 100 mm2 square and averaged (n = 10

squares from four mice for each stage). Quantification of the densities of the Vangl2- and PSD-95-positive puncta (D), and the ratio of Vangl2-positive clusters of

PSD-95 (E) are shown in the bar graphs.

Data are presented as mean ± SD. Significant differences (p < 0.05) versus a one stage younger group calculated using Student’s t test are marked with an

asterisk. For identification of synapses, several examples of the colocalized puncta are indicated by arrowheads. Scale bars: (A) 20 and 5 mm for upper and lower

panels, respectively, (C) 2 mm.
In vertebrate development, PCP regulates tissue morpho-

genesis, including establishment of the uniform orientation of

cochlear hair cells, control of epidermal hair patterning, and

the convergent extension movements of mesodermal and

neuroectodermal cells (Wallingford and Habas, 2005). In the

differentiated neurons, regulators of the Wnt/PCP pathway

are required for the normal extension and guidance of

growing axons (Shafer et al., 2011; Zhou et al., 2008). Here,

we report another role for the PCP regulators in animal

development; Vangl2 and Prickle2 (Pk2) are required for the

normal development of synapses. The formation and matura-

tion of cadherin-based cell-cell junctions at the synapse may

be precisely controlled by crosstalk between the N-cadherin-

b-catenin cell adhesion system and the Vangl2-Pk2 PCP

complex.

RESULTS

Synaptic Protein Vangl2 Identified
Mouse homologs of core Wnt/PCP-related factors, except

Vangl1, are widely transcribed in the developing nervous system

(Tissir and Goffinet, 2006). To determine their role in the neural

circuits, we analyzed their immunolocalizations in rat hippocam-

pal neurons cultured for 23 days. We found that Vangl2 localized

in a punctate pattern, which was speculated to be related to the

synapse. As expected, Vangl2 colocalized with general synaptic
markers, such as synaptophysin (Figure 1A) or SV2 (Figure S1A),

and primarily with PSD-95 (Figure 1A), a postsynaptic marker of

the excitatory synapse. Vangl2 also colocalized with gephyrin,

an inhibitory synapse component (Figure S1A). The colocaliza-

tion of Vangl2 and PSD-95 involved their physical interaction

(Figure S1B). Furthermore, the synaptic immunosignals of

Vangl2 were specific because they were undetectable in cells

expressing small hairpin RNA (shRNA) constructs targeting the

rat Vangl2 gene (Figures S1C and S1D). These results demon-

strate that Vangl2 is a synaptic component of mammalian

CNS, if not completely specific.

To determine the site of Vangl2 localization in a synapse, we

performed western blot (WB) analysis of brain extracts, which

were fractionated using sucrose density gradient centrifugation

(Figure 1B) (Cohen et al., 1977). Synaptophysin, a synaptic

vesicle protein localized at the presynaptic axon terminus, was

enriched in the synaptic membrane fraction (SMF) and was not

detectable in PSD. In contrast, postsynaptic proteins such as

PSD-95 were enriched in the PSD fraction. Compared with

PSD-95, Vangl2 was similarly enriched, suggesting that Vangl2

is a component of PSD. Localization of Vangl2 was distinct

from that of N-cadherin (Figure 1B) that resides at the pre- and

postsynaptic sides of the synapse. The specific synaptic locali-

zation of Vangl2 was confirmed by detection of GFP-Vangl2

(Devenport et al., 2011) as clusters only on the postsynaptic

side of synapses (Figure S1E).
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Figure 2. Role of Vangl2 in Normal Development of Dendritic Spines

and Synapse Formation

(A and B) Dendritic spines of cultured rat hippocampal neurons. For quantifi-

cation, actin-GFP was cotransfected with the shRNA constructs. A human

cDNA (hVangl2) was cotransfected in the rescue experiments. Representative

images are shown in (A), and the quantification of spine density is presented in

the bar graphs (B).

(C–E) Characterization of the hippocampus of Lpt/+ mice. (C) WB analysis of

protein samples obtained from the P4 hippocampus of wild-type and Lpt/+

mutant mice using actin as a loading control. Note the significant reduction of

Vangl2 expression. (D) Pyramidal neurons in the hippocampal CA1 region
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Vangl2 is widely expressed in the adult mouse hippocampus

(Figures S1F–S1H). As seen in Figures 1C and S1J, 23.9% ±

3.7% and 49.5% ± 8.8% of the Vangl2-positive puncta colocal-

ized with PSD-95 at the apical dendrites of the neonatal (post-

natal day 5, P5) and adult (P56) hippocampal CA1 region,

respectively (n = 4 images for each stage. In each image, 100

puncta were counted). During development, the density of the

PSD-95 puncta and the ratio of Vangl2-colocalized clusters of

PSD-95 increased from P5 (53.0 ± 9.1 puncta; 22.3% ± 1.1%),

P10 (108 ± 20 puncta; 31.7% ± 5.9%) to P14 (128 ± 9 puncta;

44.0% ± 1.8%), and plateaued by P17 (129 ± 6 puncta;

45.4% ± 3.1%) (Figure S1I and quantified in Figures 1D and

1E), indicating that synaptic accumulation of Vangl2 correlated

with hippocampal synaptogenic activity.

Vangl2 Is Required for Normal Dendritic Spine
Formation and Synaptogenesis
To determine the role of Vangl2, two shRNAs (sh1 and 2) specific

for rat Vangl2 mRNA (Figure S1C) were transfected into neurons.

In these neurons, the number of dendritic spines, identified as

protrusions emitting GFP fluorescence, was significantly lower

than that in the control shRNA (ctrl1 and 2) transfected neurons

(ctrl1: 4.8 ± 1.4 spines/10 mm; ctrl2: 4.8 ± 1.7 spines/10 mm; sh1:

1.9 ± 1.0 spines/10 mm; sh2: 1.5 ± 0.8 spines/10 mm; n = 20 neu-

rons each) (Figures 2A and 2B). The reduction of spine density

was partially rescued by cotransfection with human Vangl2

cDNA (sh1 + hVangl2: 3.9 ± 1.4 spines/10 mm; sh2 + hVangl2:

2.6 ± 1.0 spines/10 mm) (Figures 2A and 2B), which was not

recognized by the rat shRNAs (Figure S1C), indicating that

defective spine formation was a specific consequence of

reduced Vangl2 expression. Although Vangl2 regulates certain

types of cell polarity, we did not observe impaired axon-dendrite

polarity as shown in Figure S2, excluding the possibility that the

spine phenotype is a secondary effect of the altered identity of

neuronal processes.

To assess the significance of these observations, we deter-

mined whether normal spine formation in vivo requires Vangl2.

A mouse strain harboring a mutation in Vangl2 is known as

loop-tail (Lpt) (Kibar et al., 2001b). Because Lpt homozygotes

are embryonic lethal, we analyzed the hippocampi of heterozy-

gotes. WB analysis revealed that Vangl2 expression decreased

by approximately 50% compared with the wild-type (Figure 2C),

consistent with results for embryonic whole brains (Guyot et al.,

2011) and with the findings that the stability of mutant Vangl2 is

markedly diminished (Gravel et al., 2010). Although the overall

formation of neuronal processes in the hippocampus revealed
(3 weeks old) were analyzed using Golgi’s method. Low- and high-power

magnifications (upper and lower panels, respectively) of dendrite images are

shown. (E) Quantification of spine densities along the apical dendrites.

(F–I) Cultured hippocampal neurons fixed using methanol at 17 or 18 days

in vitro (DIV) were immunostained with a-synaptophysin (red) and a-PSD-95

(green) Abs (F). Densities of puncta for the synaptic markers along the den-

drites were significantly reduced in Vangl2-silenced neurons (G–I). Data for

DIV17 neurons are shown.

Data are presented as mean ± SD. Significant differences (p < 0.05) versus

control groups calculated using Student’s t test are marked (*: versus ctrl2 or

wild-type; #: versus sh1 or sh2, respectively). Scale bars, 5 mm (A and F), 50 mm

for (D, upper panels), and 5 mm (D, lower panels).



by Golgi staining was not markedly affected in the mutant (Fig-

ure 2D, upper panels), dendritic spine density was decreased

(Figures 2D, lower panels, and 2E) (+/+: 6.1 ± 2.6 spines/10 mm;

lpt/+: 4.5 ± 1.4 spines/10 mm; n = 25 neurons each). Because

Vangl2 expressed from the Lpt allele exerts a dominant-negative

effect onVangl function (Yin et al., 2012),we conclude that forma-

tion of normal dendritic spines in vivo requires Vangl family-medi-

ated function, as shown for Vangl2 in cultured neurons.

Because Vangl2 coprecipitated with PSD-95 (Figure S1B), we

investigated whether Vangl2 regulates synapse formation by

affecting synaptic marker clustering (Figure 2F) (Takahashi

et al., 2011). Immunofluorescence microscopy showed that

Vangl2-silenced neurons had significantly reduced density of

puncta for the presynaptic marker synaptophysin (ctrl2: 36.5 ±

12.8 clusters/100 mm; sh1: 20.7 ± 7.8 clusters/100 mm; sh2:

25.5 ± 6.6 clusters/100 mm; n = 20 neurons each) (Figure 2G)

as well as for the postsynaptic marker PSD-95 (ctrl2: 49.6 ±

11.7 clusters/100 mm; sh1: 28.9 ± 8.3 clusters/100 mm; sh2:

34.2 ± 11.0 clusters/100 mm; n = 20 neurons each) (Figure 2H).

The density of puncta positive for both markers was also

reduced (ctrl2: 23.8 ± 7.7 clusters/100 mm; sh1: 10.8 ± 3.4 clus-

ters/100 mm; sh2: 14.3 ± 5.6 clusters/100 mm; n = 20 neurons

each) (Figure 2I). These results demonstrated that Vangl2 is

required for the normal synaptogenesis in the CNS.

Vangl2 Is Associated with N-Cadherin at the Synapse
To address the molecular mechanism of regulation of spine and

synapse formation by Vangl2, we analyzed Vangl2-associated

proteins at the synapse using coimmunoprecipitation (coIP).

The purified PSD fraction was solubilized with 1% NP-40 and

immunoprecipitated (IPed) with a-Vangl2 antibodies (Abs). Vangl

proteins function at cell-cell junctions (Strutt and Strutt, 2007).

Therefore, we determined whether synaptic adhesion molecules

implicated in postsynaptic differentiation or spine formation

formed immunoprecipitates (IPs) with Vangl2. Neuroligin-1

(Graf et al., 2004; Scheiffele et al., 2000) or SynCAM (Biederer

et al., 2002) was not detected in the IPs, in contrast to N-cadherin

(Togashi et al., 2002) (Figure 3A). The interaction was assessed

using cotransfection in HEK293T cells that do not express either

protein significantly (Figures 3B, 3C, S3A, and S3B). N-cadherin

did not form detectable complexes with stargazin, another tetra-

spanin protein (Figures 3B and 3C), and neuroligins were not

coIPed with Vangl2 (Figure S3C), indicating the specificity of

the Vangl2-N-cadherin interaction.

We next tested whether Vangl2 mutant proteins harboring

pointmutations or in-frame deletions formed complexes (Figures

3D–G). Binding required the C-terminal (CT) but not the N-termi-

nal (NT) intracellular domain (ICD) (Figures 3D and 3E, DCT and

DNT). A pull-down assay using purified recombinant proteins

confirmed these findings (Figure 3F). The CT of Drosophila Stra-

bismus/Van Gogh includes a conserved domain that binds to

Prickle (Jenny et al., 2003). Although deletion of the correspond-

ing region of mouse Vangl2 (amino acid residues 298–382) (Fig-

ure 3D) greatly diminished the interaction (Figures 3E and 3F,

DPkBD), Lpt mutations (S464N and D255E) (Kibar et al., 2001a;

Kibar et al., 2001b) or deletion of the PDZ-binding motif (DETSV)

at the CT end did not (Figure 3E). This indicates that the Prickle-

binding domain is required for association with N-cadherin.
Because Pk2 localizes to postsynapses (Hida et al., 2011), we

determined whether it affected the N-cadherin-Vangl2 interac-

tion. Compared with other molecules related to the Wnt/PCP

pathway or canonical Wnt signaling, coexpression of Pk2 con-

structs greatly decreased N-cadherin-Vangl2 interaction (Fig-

ure 3G). In this experiment, Pk2 was detected in the Vangl2 IPs

(Figure 3G), indicating that Pk2 affects the N-cadherin-Vangl2

interaction by binding to Vangl2. In the hippocampal neurons,

expression of Pk2-shRNA (Figure S3D) reduced the density of

dendritic spines (Figures 3H and 3I) (ctrl2: 4.5 ± 1.2 spines/

10 mm; pk2-shRNA: 3.0 ± 0.8 spines/10 mm; n = 20 neurons for

each), indicating that Pk2 is required for their normal formation,

as shown for Vangl2. The PkBD of Vangl2 is important for its pro-

tein localization. In the transfected neurons, GFP-Vangl2DPkBD

mainly distributed in the cell bodies (Figure S3E) in a granular

pattern of diffusion with very few colocalization with PSD-95 in

the proximal dendrites (Figure S3E, a). In the distal dendrites

(Figure S3E, b), its distribution was difficult to detect. These re-

sults indicate that the synaptic localization of Vangl2 requires

normal protein interaction through the PkBD.

We next identified the Vangl2-binding site within N-cadherin

(Figures 4A and 4B). The ICD of cadherin harbors a juxtamem-

brane dileucine motif required for the lateral transport of

E-cadherin (Miyashita andOzawa, 2007). This motif is conserved

in N-cadherin (amino acid residues 758 and 759) but is not

required for the interaction (LL/AA). Two stretches of acidic

amino acid residues (EED starting from residue 780 and ending

with DD at the CT) as well as the juxtamembrane domain core

region (JMDC), which are required for p120-catenin binding

(Arikkath and Reichardt, 2008; Elia et al., 2006), are also dispens-

able (EED/AAA, DDD, and DJMDC, respectively). In contrast, the

serine-rich b-catenin-binding region in N-cadherin ICD (Stappert

and Kemler, 1994) is required for the interaction (b-cat. BD (S/A):

serine residues within the amino acid residues from 863 to 878

are alanine substituted).

The Vangl2-N-cadherin interaction requires the b-catenin-

binding site; however, whether Vangl2-N-cadherin binding

occurs in concert with b-catenin or is exclusive is unknown.

Because HEK293T cells abundantly express b-catenin, we first

determined whether b-catenin was present in N-cadherin-

Vangl2 IPs (Figures 3B and 3C). b-catenin was not detectable

in IPs of FLAG-Vangl2 (Figure 3B), whereas a-N-cadherin Abs

coIPed Vangl2 and b-catenin (Figure 3C). These results indicate

that Vangl2-bound N-cadherin represents a subpopulation

distinct from that of b-catenin-bound N-cadherin, suggesting

that Vangl2 and b-catenin do not bind same N-cadherin mole-

cule simultaneously.

To determine whether Vangl2 and b-catenin compete for the

same N-cadherin-binding site, the level of endogenous b-cate-

nin was reduced using human b-catenin-shRNAs (Firestein

et al., 2008) (Figures 4C and 4D). When b-catenin levels were

reduced, increased amounts of N-cadherin associated with

Vangl2 were observed (sh1: 153% ± 31%; sh2: 208% ± 48%).

Moreover, if the level of b-catenin was increased by coexpress-

ing chicken b-catenin (Murase et al., 2002), the association of

N-cadherin with Vangl2 decreased dose-dependently (Figures

4E and 4F; 0.2 mg of b-catenin plasmid DNA: 59.2% ± 14.4%;

0.5 mg: 47.5% ± 14.6%; 1.0 mg: 22.5% ± 8.3%). Therefore, the
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Figure 3. Vangl2 Interacts with N-Cadherin

(A) WB analysis of IPs of the PSD fraction using an a-Vangl2 Ab. Note the specific coIP of N-cadherin by the a-Vangl2 Ab. Actin was not detected in this complex,

indicating that the N-cadherin-Vangl2 complex is not associated with actin filament.

(B and C) WB analysis of cell lysates IPed using a-FLAG (B) or a-N-cadherin (C) Abs. Cells were cotransfected with an N-cadherin expression vector and either

FLAG-Vangl2 or FLAG-stargazin. (B) Note the absence of b-catenin in the a-FLAG IPs. (C) The coIPed level of b-catenin with a-N-cadherin Ab compared with the

input level was slightly reduced by introduction of FLAG-Vangl2.

(D–F) Determination of regions of Vangl2 required for N-cadherin interaction. (D) Schematic representation of the mutant constructs. (E) Cells were cotransfected

with the mutant FLAG-Vangl2 construct and wild-type N-cadherin, IPed with a-FLAG Abs, and then subjected toWB analysis with a-N-cadherin Abs to probe the

(legend continued on next page)
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Vangl2-N-cadherin interaction is competitively regulated by

b-catenin. We also observed a consistently reduced level of

b-catenin that associated with N-cadherin in cells overexpress-

ing Vangl2 (Figure 3C; 63.3% ± 3.1%; n = 4 experiments). More-

over, in the PSD fraction of the Lpt/+ mice, the level of b-catenin

coIPed with a-N-cadherin Abs was conversely increased (Fig-

ures 4G and 4H; 171% ± 27%), indicating that Vangl proteins

are required to regulate the N-cadherin-b-catenin interaction at

the PSD, where Vangl2 is highly enriched.

Vangl2 Enhances N-Cadherin Internalization
The N-cadherin-Vangl2 interaction reflects their subcellular

localization; in 53.1% of cotransfected cells (n = 64 cells from

one representative experiment), they partially colocalized with

intracellular vesicles (Figure 5A, green and red, respectively).

Further, at the border of theN-cadherin transfectants (Figure 5B),

increased vesicular localization was observed on the side with

significant expression of Vangl2 (Figure 5B, b; 78.3%; n = 23

adherence sites from two representative experiments). Because

N-cadherin functions at the cell surface, we hypothesized that

Vangl2 is involved in N-cadherin transport and therefore deter-

mined whether coexpression of Vangl2 affected the cell-surface

expression of N-cadherin.

We first used Abs against the extracellular domain (ECD) and

ICD of N-cadherin (Figure S4A) (Willingham, 2010). Briefly, trans-

fected cells were fixed using paraformaldehyde (PFA), stained

with a-ECD Abs, washed extensively, permeabilized with Triton

X-100, and then stained with a-ICD Abs. The Abs were detected

using secondary Abs conjugated to different fluorophores, and

their images were captured using the same exposure time and

gain for each fluorophore. We detect N-cadherin with the

a-ICD antibody (Ab) significantly only after permeabilization (Fig-

ures S4A and S4B), and a-ECD Abs did not stain intracellular

pool of N-cadherin well without permeabilization (Figures S4C

and S4D). The a-ECD Abs therefore did not stain the intracellular

pool of the ECD epitopes at the comparable level in this experi-

ment. By calculating the ratio of signal strengths generated by

a-ECD- to that by a-ICD Abs (Figure S4B), we quantified the

cell-surface expression of N-cadherin and found that it was

significantly reduced by cotransfection with Vangl2 (Figure 5C;

29.2%; 95% confidence interval [CI], 26.9%–31.6%).

To further confirm the function of Vangl2, we determined the

level of cell-surface N-cadherin biochemically (Figures 5D and

5E). The plasma membrane proteins were covalently labeled

with biotin and enriched by precipitation using streptavidin

beads (Suzuki et al., 2010). The precipitates were analyzed using

WB analysis with a-N-cadherin or a-transferrin receptor (TfR)

Abs as probes to quantify their cell-surface expression levels.
a-FLAG IPs. (F) A pull-down assay to determine direct binding between N-cadhe

purified MBP, MBP-Vangl2CT, or MBP-Vangl2CTDPkBD. WB analysis: eluates w

for each pull-down as input.

(G) The effects of Wnt/PCP pathway or canonical Wnt signaling-related molecu

(Fzd-1), Dishevelled-1 (HA-Dv1), Casein Kinase 1ε (HA-CK1ε), GSK3b, constitutiv

the specific inhibition by the Prickle2 constructs.

(H and I) Inhibition of Pk2 expression impaired formation of the dendritic spines. Ac

are shown in (H), and the quantification of spine density is presented in the bar

ferences (p < 0.05) versus control group calculated using Student’s t test are ma
Although the level of N-cadherin in the cell lysate was unaffected,

the level of biotinylated N-cadherin was reduced by cotransfec-

tion of Vangl2 (Figures 5D and 5E; 28.6% ± 3.0%), demon-

strating that expression of N-cadherin at the cell surface was

negatively regulated by Vangl2. Further, the level of biotinylated

TfR was unchanged in the Vangl2 transfectant (Figure 5D;

103% ± 11%), indicating specific regulation of N-cadherin by

Vangl2.

The results suggest that Vangl2 is involved in cell-surface

expression of N-cadherin. However, it is unknown whether

Vangl2 enhances its endocytosis or inhibits exocytosis. To

obtain insights into the molecular mechanism, we tested a panel

of Abs raised against the constituents or regulators of intracel-

lular vesicles to determine whether they are associated with

the N-cadherin-Vangl2 complex. Rab5, a small GTPase that reg-

ulates early endosome formation and docking (Bucci et al.,

1992), colocalized with the complex (Figure 5A, blue), whereas

the other molecules (Figure S4F), except for Adaptin-b

(Figure S4E), did not. In most of cotransfectants harboring vesic-

ular N-cadherin-Vangl2 colocalization, we observed associated

clustering of Rab5. In these cells, 71% of the N-cadherin-

Vangl2-positive vesicles associated with Rab5 (n = 106 puncta).

To determine the significance of the colocalization, we cotrans-

fected these cells with a dominant-negative form of Rab5 (RFP-

dnRab5) (Bohdanowicz et al., 2012) (Figures 5F and 5G). The

cell-surface expression of N-cadherin was restored (Vangl2 +

dnRab5: 132% ± 16%; Vangl2: 31.4% ± 17.3%), suggesting

that Vangl2 affects N-cadherin transport at least in part by

enhancing the Rab5-dependent endocytosis.

Cells treated with EGTA immediately endocytose E-cadherin

(Le et al., 1999), which disrupts cadherin-dependent cell-cell

adhesion. Here, EGTA treatment reduced the cell-surface

expression of N-cadherin (Figures 5C–5E, S4A, and S4B). In

this experimental condition, the N-cadherin-Vangl2 interaction

transiently increased 30 min after treatment (146% ± 16%) (Fig-

ures 4I–4K). In contrast, the N-cadherin-b-catenin interaction

was consistently reduced, starting immediately after addition

of EGTA (5 min: 48.4% ± 12.5%). These results further indicate

that molecular interaction between N-cadherin and Vangl2 is

related to endocytosis of N-cadherin. Because b-catenin pre-

vents the N-cadherin-Vangl2 interaction (Figures 4C and 4D),

dissociation of b-catenin from N-cadherin may provide a binding

site for Vangl2.

Because b-catenin prevents physical interaction between

N-cadherin and Vangl2, we determined whether b-catenin

affects the Vangl2-enhanced internalization of N-cadherin (Fig-

ures 5H and 5I). By overexpressing b-catenin, the cell-surface

expression of N-cadherin reduced by Vangl2 was restored,
rin and Vangl2. Full-length N-cadherin was incubated with beads coated with

ere probed with a-N-cadherin or a-MBP Abs with 0.5% of the N-cadherin used

les on the N-cadherin-Vangl2 interaction. Prickle2 (Pk2, GFP-Pk2), Frizzled-1

ely active form of GSK3b (HA-GSK3b [S9A]), and Celsr2 were examined. Note

tin-GFP was cotransfected with the shRNA constructs. Representative images

graphs (I). Scale bar, 5 mm. Data are presented as mean ± SD. Significant dif-

rked with an asterisk.
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Figure 4. Interactions of Vangl2 and b-Catenin with N-Cadherin Are Mutually Exclusive

(A and B) Interaction between N-cadherin mutants and wild-type Vangl2. (A) Schematic representation of the mutant constructs. Binding was detected usingWB

analysis with the a-N-cadherin Abs to probe the a-FLAG IPs (B). The epitope of the a-N-cadherin Abs does not overlap with these mutated regions.

(C–F) Negative regulation of the N-cadherin-Vangl2 interaction by b-catenin. The indicated expression constructs were used to cotransfect HEK293T cells, and

the immune complexes formed with FLAG-Vangl2 were subjected toWB analysis (C and E). The relative levels of IPed N-cadherin were quantified as described in

the Experimental Procedures (D and F).

(G and H) Role of Vangl2 in the regulation of the N-cadherin-b-catenin interaction at the synapse. PSD fractions isolated from wild-type and Lpt/+mouse brains

were solubilized and IPed with the a-N-cadherin Ab. The IPs were subjected to WB analysis (G). The protein interaction was quantified as described in the

Experimental Procedures (H). Note the increased level of b-catenin in the IPs from Lpt/+ fractions.

(I–K) EGTA dynamically changes the amounts of Vangl2 and b-catenin associated with N-cadherin. Extracts of cells treated as indicated were IPed using either

a-Vangl2 (I) or a-N-cadherin (J) Abs and subjected to WB analysis. (K) Quantification of the data shown in Figure 4J. Sequential changes in the amounts of

N-cadherin-bound Vangl2 (open squares) and b-catenin (filled circles) are shown in the plots. The y axis indicates the ratio of the amount of N-cadherin-bound

Vangl2/b-catenin to that of the total, and the x axis indicates the time course. Note the transient increase of N-cadherin-Vangl2 interaction.

Data are presented as mean ± SD. Significant differences (p < 0.05) versus control groups calculated using Student’s t test are marked with an asterisk.
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demonstrating that the exclusive protein interaction is reflected

on their functions regarding the N-cadherin transport. In this

experiment, b-catenin even increased the cell-surface expres-

sion of N-cadherin, suggesting the significant basal level of

N-cadherin turnover in HEK293T cells, which is sensitive to

b-catenin-mediated sequestration at the cell surface. Similarly,

Pk2, which perturbed the N-cadherin-Vangl2 interaction (Fig-

ure 3G), suppressed Vangl2-enhanced N-cadherin internaliza-

tion (Figures 5J and 5K; Vangl2: 37.1% ± 5.5%; Vangl2 + Pk2:

79.9% ± 21.3%; Vangl2 + GFP-Pk2: 70.4% ± 11.2%), further

suggesting that the physical interaction between N-cadherin

and Vangl2 is essential for the Vangl2 function.

Vangl2 Regulates Cell-Surface Expression of
N-Cadherin at the Synapse
To assess the significance of these results in neurons, the

cell-surface expression of N-cadherin was analyzed using an

N-cadherin construct with an HA tag within the ECD (Tan et al.,

2010) and a GFP tag at the end of ICD (Nechiporuk et al.,

2007) (HA-N-cad-GFP; Figure S5A). The cell-surface expression

of this fusion protein was confirmed to be regulated similar to the

wild-type N-cadherin in HEK293T cells (Figures S5B–S5D). Hip-

pocampal neurons were cotransfected with HA-N-cad-GFP and

various Vangl2 constructs and analyzed using a-HA and a-GFP

Abs as described in Experimental Procedures. The cell-surface

expression of N-cadherin was determined according to the ratio

of fluorescence signal strengths of the a-HA and a-GFP Abs

bound to each randomly selected dendritic field (>10 mm2).

The averaged ratio was significantly reduced by overexpression

of wild-type Vangl2 (58.7%, 95% CI: 53.6%–64.3%; n = 20)

but not by Vangl2DCT (103%, 95% CI: 96.2%–110%; p =

0.782; n = 20) (Figures 6A and 6B). Similarly, shRNA-mediated

inhibition of Vangl2 increased the cell-surface expression of

N-cadherin on the dendrites (sh1: 152%, 95% CI: 141%–

164%; sh2: 135%, 95% CI: 123%–147%; n = 20 for each)

(Figures 6C and 6D). When a-HA Abs were applied after perme-

abilization, the signal ratios were not considerably different be-

tween Vangl2-shRNA-transfected neurons and controls (Figures

S5E and S5F), indicating that the a-HA Ab bound the cell-surface

population of N-cadherin if applied before membrane permeabi-

lization. Taken together, these results support the conclusion

that Vangl2 at least in part regulates N-cadherin internalization

at the synapse.

Because Rab5, which is associated with the N-cadherin-

Vangl2 complex in HEK293T cells (Figure 5A), plays a critical

role for Vangl2-enhanced internalization of N-cadherin (Figures

5F and 5G), we determined whether the association of

N-cadherin with Rab5 is regulated by Vangl2 and b-catenin in

the dendrites. The Vangl2- or b-catenin-shRNA-transfected neu-

rons were immunostained with a-N-cadherin and -Rab5 Abs

(Figure 6E), and their colocalization was analyzed using JACoP

(Figure 6F) (Bolte and Cordelières, 2006). Pearson’s coefficient,

which indicates the correlation between the two immunosignals,

is reduced in the Vangl2-shRNA- and conversely increased in

the b-catenin-shRNA-transfected neurons (ctrl1: 0.62, 95% CI:

0.56-0.67; sh1: 0.51, 95% CI: 0.46-0.57; sh2: 0.50, 95% CI:

0.45-0.55; b-catenin-sh: 0.69, 95% CI: 0.66-0.72; n = 20 den-

dritic fields). These results suggest that Vangl2 and b-catenin
oppositely regulate the association of N-cadherin with Rab5

and thereby determine the cell-surface expression levels of

N-cadherin.

DISCUSSION

Regulation of Classic Cadherins by Vangl2
The noncanonical Wnt ligand Wnt11 regulates E-cadherin

endocytosis in a Rab5c-dependent manner during zebrafish

gastrulation (Ulrich et al., 2005). Further, PCP pathway-mediated

cell rearrangement during epithelial tissue development in

Drosophila requires junctional trafficking of E-cadherin (Warring-

ton et al., 2013). In addition, zebrafish N-cadherin mutant ex-

hibits abnormal tail development, which is genetically enhanced

by a Vangl2 mutation (Harrington et al., 2007). Here, we demon-

strate that Vangl2 is a binding partner of N-cadherin and is

involved in its internalization from the cell surface dependently

on the Rab5 function. These results may explain at least one of

the underlying mechanisms that link between the Wnt/PCP

pathway and classic cadherin endocytosis. We further demon-

strated that the N-cadherin-Vangl2 interaction is inhibited by

their respective binding partners b-catenin and Pk2, suggesting

that crosstalk between the cadherin-b-catenin cell adhesion

system and the Strabismus/Van Gogh-Prickle PCP complex

controls the transport of classic cadherins to induce precise for-

mation and maturation of asymmetric adherens junctions such

as synapse.

Vangl2 at the Synapse
Although precise control of N-cadherin trafficking at synaptic

junctions plays pivotal roles in the development, functions,

and plasticity of neural circuits, the regulatory mechanism

remains obscure. At the postsynapse, N-cadherin is endocy-

tosed at a high rate. However, the molecular nature of the

driving force for this internalization is unknown. b-catenin

inhibits this endocytosis by binding and sequestrating N-

cadherin at the cell surface (Tai et al., 2007); conversely, Vangl2

is a postsynaptic factor that directly binds N-cadherin and pro-

motes its internalization. The function of Vangl2 is competitively

regulated by b-catenin; conversely, Vangl2 restricts the phys-

ical interaction between N-cadherin and b-catenin at the PSD

where Vangl2 is highly concentrated. As expected, the cell-

surface expression level of N-cadherin on the dendrites was

affected, and the postsynaptic differentiation was impaired in

neurons that expressed reduced levels of Vangl2. These results

suggest that Vangl2 is one of the components that drive

N-cadherin endocytosis at the postsynapses. Another postsyn-

aptic factor known as A-kinase-anchoring protein 79/150

(AKAP 79/150), which also associates with the b-catenin bind-

ing site of N-cadherin (Gorski et al., 2005), plays a critical role

in the endocytosis of AMPA receptors (Bhattacharyya et al.,

2009). AKAP 79/150 might functionally interact with Vangl2

and b-catenin. In addition, Vangl2, which harbors a PDZ-

binding motif, coprecipitates with PSD-95, a scaffold protein

for the AMPA receptors. Further studies on the complex inter-

actions between these molecules may reveal the mechanism of

postsynaptic endocytosis, which controls synapse develop-

ment and function in the CNS.
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Figure 5. Vangl2 Enhances the Internalization of N-Cadherin

(A) The vesicular N-cadherin-Vangl2 complexes exhibited colocalization with Rab5 (blue) in HEK293T cells.

(B) Observation of increased N-cadherin-containing vesicles by Vangl2. MDCK cells were retransfected with Vangl2 24 hr after transfection with N-cadherin and

immunostained the next day. In neighboring cells transfected with N-cadherin (a) or with both N-cadherin and Vangl2 (b), vesicular localization of N-cadherin was

observed on the latter side of the border with Vangl2 colocalization. Dotted lines indicate the borders between cells.

(C) Immunofluorescence (IF) analysis of N-cadherin exposed on the cell surface. The cell-surface populationwas labeled with a-N-cadherin ECDAbs and the total

with a-ICD Abs. The ratios of the signal intensities were indexed. Note the significant decrease of the cell-surface expression by EGTA treatment (45.3%, 95%

CI: 42.5%–48.3%) or Vangl2.

(D and E) Analysis of the cell-surface expression of N-cadherin using a biotin-labeling method. Cell-surface proteins were biotinylated, bound to streptavidin

beads, and quantified usingWB analysis with a-N-cadherin or a-TfR Abs (D). (E) Expression level of N-cadherin on the cell surface was quantified according to the

ratio of the precipitated level of N-cadherin to that of the total. Note the significant decrease of the cell-surface expression by EGTA treatment for 30 or 60 min

(15.0% ± 13.9% and 22.2% ± 5.6%, respectively) or Vangl2.

(legend continued on next page)
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Figure 6. Abnormal Cell-Surface Expres-

sion of N-Cadherin in Neurons that Express

Increased or Decreased Levels of Vangl2

(A and B) The effects of overexpression of Vangl2

or Vangl2DCT. The cotransfected HA-N-cad-GFP

was labeled with a-HA Abs (red: middle) in the

fixed neurons. After permeabilization, proteins

were labeled with a-GFP Abs (green: left) (A). In

this experiment, HA-N-cad-GFP did not emit

significant green fluorescence without immuno-

staining these cultures. The cell-surface expres-

sion was quantified as described in Experimental

Procedures (B). Note the reduced cell-surface

expression in neurons that overexpressed wild-

type Vangl2 but not Vangl2DCT.

(C and D) The effects of Vangl2-shRNAs on

cultured neurons. Cells cotransfected with HA-

N-cad-GFP were immunostained (C), and the

cell-surface expression was quantified (D), as

described in Figures 6A and 6B. Note the

increased cell-surface expression in neurons

transfected with Vangl2-shRNA.

(E and F) Association of N-cadherin with Rab5

is regulated by Vangl2 and b-catenin. Colocaliza-

tion between N-cadherin and Rab5 in the den-

drites of the shRNA-transfected neurons was

quantified (F: y axis). Note the decreased or

increased colocalization in Vangl2- or b-catenin-

shRNA-transfected neurons, respectively.

Data are presented as geometric mean ± 95% CI.

Significant differences (p < 0.05) versus control

groups calculated using Mann-Whitney’s U test

are marked with *. a.u., arbitrary unit. Scale

bars, 5 mm.
The Wnt/PCP Pathway Regulators at the Synapse
Our present results, together with those published previously

(Ahmad-Annuar et al., 2006; Hida et al., 2011; Varela-Nallar

et al., 2009; Yoshioka et al., 2013), lead us to hypothesize that

presynaptic Fz1 and Dvl1 proteins confront postsynaptic

Vangl2 and Pk2. This asymmetric pattern of protein localization

across the synaptic cleft is homologous to that of Wnt/PCP-

related factors at cell-cell junctions between planar polarized
(F and G) Rab5 is required for the Vangl2-enhanced internalization of N-cadherin. The effect of dnRab5 was a

are presented.

(H and I) b-catenin prevents N-cadherin internalization enhanced by Vangl2. WB analysis (H) and the quanti

(J and K) Pk2 prevents N-cadherin internalization enhanced by Vangl2. Overexpression of Pk2 restored the ce

and the quantification (K) are presented.

Data are presented as mean ± SD (E, G, I, and K) or geometric mean ± 95% CI (C). Significant differences

Student’s t test or Mann-Whitney’s U test are marked with * or #, respectively. a.u., arbitrary unit. Scale bar

and 5 mm (B).

Cell Reports 6, 916–92
epithelial cells (Wallingford and Habas,

2005). In this regard, the organization of

mammalian neural circuit is similar to

that of the Drosophila wing. Fz1 and

Dvl1, which function in a cell-autono-

mous manner as components of the

canonical Wnt pathway during presyn-

aptic differentiation (Ahmad-Annuar
et al., 2006; Varela-Nallar et al., 2009), may influence signaling

through the noncanonical Wnt/PCP pathway. A nonautono-

mous branch of the PCP pathway, which is transmitted across

the cell-cell junction through direct interaction between Frizzled

ectodomain ligand and Strabismus/Van Gogh transmembrane

receptor, is present in Drosophila (Wu and Mlodzik, 2008).

Future genetic studies of multiple mutant mouse strains

will reveal whether postsynaptic Vangl2 and Pk2 function in
nalyzed. WB analysis (F) and the quantification (G)

fication (I) are presented.

ll-surface expression of N-cadherin.WB analysis (J)

(p < 0.05) versus control groups calculated using

s, 20 mm (A, upper panels), 5 mm (A, lower panels),
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concert with or independently of Fz1 and Dvl1 during synapse

formation.
EXPERIMENTAL PROCEDURES

Animals

Loop-tail mutants of the LPT/Le stock (Wilson and Center, 1977) were

obtained from the Jackson Laboratory (#000220) and backcrossed to

C57BL/6J mice for at least six generations. Only male mice were analyzed.

The Animal Use andCare Committee of Niigata University authorized all animal

experiments (permit number 111), which were performed in accordance with

the National Institutes of Health Guidelines for Care and Use of Laboratory

Animals.

Plasmids and Antibodies

The supplemental files contain detailed information on the plasmid constructs

(Table S1) and Abs used in this study. The plasmid constructs were sequenced

to confirm the absence of sequence errors by PCR.

Histology and Image Analysis

Immunohistochemistry, image acquisition, and quantitative analyses of signal

strength were performed using the Methamorph Imaging Systems and

ImageJ. Golgi staining was performed using the FD Rapid GolgiStain Kit (FD

NeuroTechnologies). The cell-surface expression was quantified according

to the ratio of the signal strength of the IF on the cell surface to that of the total

IF. The Supplemental Information contains detailed information on the proce-

dures of the image analysis and the Golgi staining.

Tissue Culture

HEK293T, COS7, and MDCK cells (ATCC) were maintained in standard condi-

tions using Dulbecco’s modified Eagle’s medium containing GlutaMAX (Life

Technologies) supplemented with 10% fetal bovine serum (BioWest) at 37�C
in the presence of 5% CO2 in a water-jacketed incubator (Napco). Rat hippo-

campal neurons were cultured in Neurobasal media supplemented with B27

(Brewer et al., 2008; Kaech and Banker, 2006). Transfections of the plasmid

DNA were performed using Lipofectamine 2000 (Life Technologies) or Nucle-

ofector (Lonza). The Supplemental Information contains detailed information

on the procedures of culturing hippocampal neurons.

Biochemical Analysis

WB analysis and IP were conducted using standard methods. Cell fraction-

ation of the brain homogenates was performed according to Cohen’s method

(Cohen et al., 1977). Protein-protein interactions determined using coIP or pull-

down techniques, and the cell-surface expression of biotinylated proteins was

quantified according to the ratio of the amount of precipitated protein (IP or

streptavidin-pull down) to that of the total (input). The ratio of one of the control

samples was set as one arbitrary unit to represent the relative amounts on the

bar graphs. The Supplemental Information contains detailed information on

the procedures of the biochemical analysis.

Quantification and Statistical Analysis

All counts and measurements were conducted blind. Each experiment was

repeated at least twice and produced consistent results. The measured values

from two independent experiments were used for each statistical analysis

unless otherwise stated. The average ratio of one of the control samples

(EV: empty vector, or ctrl1: control vector #1) was set as one arbitrary unit or

100% to represent the relative amounts and used as the standard for the sta-

tistical analysis.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

five figures, and one table and can be found with this article online at http://

dx.doi.org/10.1016/j.celrep.2014.01.044.
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