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A b s t r a c t - - U s i n g  the technique of fixed-point theorem of Darbo type associated with measures of 
noncompactness, we obtain an existence result for some functional-integral equation. Moreover, the 
choice of suitable measure of noncompactness allows us to characterize solutions of the considered 
equation in terms of asymptotic stability. The method applied here also creates a generalization of 
the classical Banach fixed- point principle. ~) 2002 Elsevier Science Ltd. All rights reserved. 
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1. I N T R O D U C T I O N  

Fixed-poin t  theorems used in nonlinear functional analysis allow us, in general,  to ob ta in  existence 

theorems concerning invest igated funct ional-operator  equations.  I t  is ra ther  difficult to ob ta in  

charac ter iza t ions  of solutions of considered equations with help of those theorems.  In this  paper ,  
we are going to show how the technique associated with certain measure  of noncompactness  can 

be used in order  to  obta in  bo th  existence results concerning some funct ional- integral  equat ions 
and s imul taneously  to characterize asymptot ic  s tabi l i ty  of solutions of those equations.  

In  this  paper ,  we will use axiomat ical ly  defined measures of noncompactness  as presented 

in the  book [1]. The  basic tool  used in our considerations is a f ixed-point  theorem of Darbo  

type  (cf. [1,2]). Axiomat ica l ly  defined measures of noncompactness  were used in a lot of papers  
(cf. [1,3,4] and references therein).  Nevertheless, the  appl icat ion of measures of noncompactness  

in the  s tudy  of asympto t ic  s tabi l i ty  of solutions of functional-integral  equat ion,  which will be 
presented in this  paper ,  seems to be new and original. 

Let  us also ment ion tha t  the  method  used in the  paper  creates some general izat ion of the  
classical Banach fixed-point  principle. 
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2.  M E A S U R E S  O F  N O N C O M P A C T N E S S  

A N D  A F I X E D - P O I N T  T H E O R E M  

In this section, we collect all auxiliary facts which will be used in the sequel. Assume tha t  
(E, ]].11) is an infinite-dimensional Banach space with the zero element 0. By the symbol B(x, r), 
we denote the closed ball centered at x and with radius r. If  X is a subset of E,  then J(, Conv X 
stand for the closure and convex closure of X,  respectively. The family of all nonempty and 
bounded subsets of E will be denoted by ME while NE denotes its subfamily consisting of all 
relatively compact  sets. 

DEFINITION. (See [1].) A mapping # : ME --~ R+ = [0, oo) will be called a measure of  noncom- 
pactness in the space E provided it satisfies the following conditions: 

10 the family ker#  = {X E ME : # (X)  = 0} is nonempty and ker#  C NE; 
2 o X c Y ~ # ( X ) < _ # ( Y ) ;  
3 0 #()()  = #(X); 

4 ° # ( C o n v X )  = #(X); 
5 o #(AX + (1 - A)Y) _< A#(X) + (1 - A)#(Y) for A E [0, 1]; 
6 o if (Xn) is a sequence of sets from ME such that Xn+l C Xn, f(n = Xn (n = 1, 2 , . . .  ) and 

iflimn-~oo #(Xn) = O, then the intersection Xoo = Nn°°__l Xn is nonempty and Xoo E ker/z. 

The family ker # described in Axiom 10 is called the kernel of the measure Of noncompactness #. 
A measure # is said to be sublinear if it satisfies the following two conditions: 

7 0 #(AX) = IAt#(X) for A E R; 
8 ° # ( X  + Y )  _< # (X)  + # ( Y ) .  

For further facts concerning measures of noncompactness and its properties we refer to [1]. We 
will only need the following fixed-point theorem of Darbo [2]. Let us mention that  a generalization 
of this theorem was given by Sadovskii [5]. 

THEOREM 1. Let Q be a nonempty bounded closed convex subset of the space E and let F : 
Q --* Q be a continuous operator such that # (FX)  <_ k#(X)  for all nonempty subsets X of Q, 
where k E [0, 1) is a constant. Then F has a fixed point in the set Q. 

It  can be shown that  in the situation described in the above theorem the set fix F of all fixed 
points of F belonging to Q is a member of ker #. This fact permits us to characterize solutions 
of investigated operator equation. 

In what  follows, we will work in the Banach space BC(R+) contained of all real functions 
defined, bounded and continuous on R+. The norm in BC(R+) is defined as the s tandard 
supreme norm, i.e., 

Hxll = sup{Ix(t)[ : t > 0}. 

We will use a measure of noncompactness in the space BC(R+) which was constructed in the 
paper [6]. In order to define this measure let us fix a nonempty bounded subset X of B C ( R + )  
and a positive number T > 0. For x E X and ¢ > 0 denote by wT(x, ¢), the modulus of continuity 
of x on the interval [0, T], i.e., 

wT(x,C) = suP[IX(t)--X(S)I:  t ,s  E [0, T], I t -  sl < El. 

Moreover, let us put 

= s u p  : • e x ] ,  

WTo (X) = lim wT(x,  e), 
~---~0 

wo(X) = lim woT(x). 
T--~(x) 



Asymptotic Stability 3 

If t is a fixed number from R+, let us denote 

x ( t )  = {~ ( t )  : x e x }  

and 
diamX(t) = sup{Ix(t) - y(t)l : x , y  E X } .  

Finally, consider the function # defined on Msc(x+) by the formula 

I t (X) = wo(X) + lim sup diam X( t ) .  
t---~OO 

It can be shown [6] that the function It(X) defines sublinear measure of noncompactness in 
the space BC(R+)  which majored the ball measure of noncompactness in the sense of the above 
accepted definition. The kernel ker It of this measure contains nonempty and bounded sets X 
such that functions belonging to X are locally equicontinuous on R+ and "the thickness of the 
bundle" formed by functions from X tends to zero at infinity. 

3. M A I N  R E S U L T  A N D  R E M A R K S  

We start with a general case. Let F be an operator transforming the space B C(R+)  into itself 
and such that 

I(Fx)(t)  - (Fy)(t)] <_ k ix(t) - y(t) I + a(t) (1) 

for all functions x, y E BC(IR+) and for any t E R+, where k is a constant from the interval [0, 1) 
and a : R+ --~ R+ is a continuous function such that l i m t - ~  a(t) = 0. Further, assume that 
x = x(t)  (x E BC(R+) )  is a solution of the operator equation 

x = Fx.  (2) 

Then we have the following simple result. 

THEOREM 2. Under the above assumptions, the function x is asymptotically stable solution of  
equation (2) that means that for any e > 0 there exists T > 0 such that for every t >_ T and for 
every other solution y of equation (2) the following inequality holds to be true: 

Ix(t) - y(t) l  _< ~. 

PROOF. Suppose contrary. This implies that there exists a number co > 0 such that for any 
T > 0 there are t _> T and a solution y of equation (2) with the property 

Ix(t) - y(t) l  >_ ~o. 

Hence, without loss of generality choose a nondecreasing sequence (t,~) such that tn --* c<) and a 
sequence (yn) of solutions of equation (2) such t h a t  

I~(tn) - y~( t~) l  _> ~o. (3) 

On the other hand, keeping in mind (1), we obtain 

Ix(t~) - Yn(tn)l <- k [x(t~) - yn(t~)a + a(tn). (4) 

Now, linking (3) and (4), we arrive at the following estimate: 

(1 - k)~o <_ (1 - k)Ix( t~)  - y~( t~) l  _< a(t~).  

Thus, we obtain a contradiction with the fact that a(t~) --* 0 when n --* ¢x). This completes the 
proof. 

• In the following, we study the functional-integral 

x(t)  = f ( t ,  x( t))  + foot 

where t >_ 0. Assume that the functions involved in 

| 

equation of the form 

u(t ,  s, x ( s ) )  & ,  (5) 

equation (5) satisfy the following conditions: 
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(i) f : R+ x R -~ R is continuous and the function t --* f ( t ,  0) is a member of the space 
BC(R+);  

(ii) there exists a constant k E [0, 1) such that  

t / ( t , z )  - / ( t ,  y)l < k Ix - yl, 

for any t _> 0 and for all x, y E R; 

(iii) u : R+ x R+ x R -* R is a continuous function and there exist continuous functions 
a, b : ]~+ --* R+ such that  

and 

fo 
t 

lim a(t)  b(s) ds = O, 
t --* O0 

lu(t, s, x)l <_ a(t)b(s)  

for all t, s e R+ (s < t) and for any x e R. 

Now we may formulate our main result. 

THEOREM 3. Under As sump t ions  (i)-(iii), equation (5) has at least one solution x = x ( t )  be- 
longing to the space B C ( R +  ) and being asymptot ica l ly  stable on the interval R+. 

PROOF. First, let us define the function v = v(t)  by putt ing 

v(t)  = a(t)  b(s) ds. 

In view of our assumptions, we have that  v -- v(t)  is continuous on R+ and v(t)  --+ 0 as t ~ oo. 
Next, let us fix a function x E B C ( R + )  and put  

( F x ) ( t )  = f ( t , x ( t ) )  + u ( t , s , x ( s ) ) d s .  

Then, in view of the assumptions, we infer tha t  F x  is continuous on IR+. On the other hand, we 
get 

I(Fx)(t)l _< I I ( t , z ( t ) )  - f ( t ,  0)[ + [f(t, 0)l + [u( t , s , x ( s ) [  ds 

(6) 
< k Ix(t)[ + [.f(t, 0)1 + a(t)  b(s) ds = k Iz(t)l + If(t,  0)l + v(t) .  

Hence, we deduce that  F z  is bounded on N+. This allows us to infer that  F x  E B C ( N + )  which 
means tha t  the operator F transforms the space BC(R+)  into itself. 

Now, let us observe that  from estimate (6), we obtain 

IlFx[I _< k Ilxll + Q, 

where 

Q = sup {If(t ,  0)[ + v ( t ) :  t _> 0} < ec. 

This yields tha t  the operator F transforms the ball Br = B(0, r) into itself, where r = Q / ( 1  - k).  
In what  follows, we show that  the operator F is continuous on the ball Br.  To do this, let us 

fix arbitrarily a number e > 0 and take two functions x, y E B~ such that  [Ix - YI[ <- e. Then, 
keeping in mind our assumptions, we get 

[ (Fx) ( t )  - (Fy) ( t ) l  < ke + [ u ( t , s , z ( s ) )  - u ( t , s , y ( s ) ) [  ds 
(z) 

<_ ke + 2a(t) b(s) ds = ke + 2v(t). 
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Now, denote by T a real positive number  such tha t  

/o ' 2a(t) b(s) ds < e 

for t_> T. 
Consider two cases. 

1 ° t>__T. 

Then,  from est imate (7), we obtain 

I(Fx)(t)  - (Fy)(t) l  < ke + e = (k + 1)e. 

2 0 t < T .  

Then,  let co = co(e) be the function defined by the formula 

co(e) = sup flu(t ,  s, x) - u(t,  s, Y) I: t, s e [0, T], x, y e [ - r ,  r], Ix - Yl -- e} .  

Taking into account tha t  the function u -- u(t,  s, x) is uniformly cont inuous on the set [0, T] x 
[0, T] x [ - r ,  r], we obtain tha t  w(e) -~ 0 as e -* 0. Then, in virtue of (7), we have 

~o t I(Fx)(t)  - (Fy)(t) l  <_ ke + w(e) ds <_ ke + Tw(e).  

Now, linking Cases 10 and 2 °, we can deduce tha t  F is continuous on Br.  
In the sequel, let us t a k e a s e t  X C Br,  X # 0. Further,  fix n u m b e r s T  > 0, e > 0 a n d a  

function x E X.  Then,  choosing t, s 6 [0, T] such tha t  It - s I <_ e and taking into account our 
assumptions,  we get 

foo t fo s dr  I (Fx)( t )  - (Fx)(s) l  < I f ( t , x ( t ) )  - I ( s , x ( s ) ) [  + u ( t , r , x ( r ) )d -c  - u ( s , r , x ( r ) )  

fot fo~ X(T) )dr  <_ lY( t ,x( t ) )  - y ( t , x ( s ) ) l  + I f ( t , x ( s ) )  - f ( s , x ( s ) )  I + u ( t , r , X ( r ) ) d T  -- U(S,r, 

< k Ix(t) - x(s)l + If(t ,  x(s))  - f ( s ,  x(s))l + [.t u(t,  r, x (r ) )  dr 

+ .~s [u(t, T, X(r)) -- U(S, T, X(7"))] dr 

< kwT(x , e )  + w T ( I , e )  + e  sup[a(t)b('c): 0 < t < T, 0 < T < T] + T ~ T ( u , e ) ,  

where 

w T ( f , e )  = suP{I f ( t ,X)  -- f(S,X)I : t , s  e [O,T], It - sl <_ e, Ixl _ r } ,  

wT(u ,e )  = s u P { l u ( t , r , x ) -  u ( s , r , x ) l :  t , s  e [O,Z], I t -  sl <_ e, r ~ [O,T], Izl < r}. 

Applying the accepted assumptions,  we infer easily tha t  the function f = f ( t ,  x) is uniformly 
continuous on the set [0, T] x [ - r ,  r], while the function u -  u(t, T, x) is uniformly continuous on 
the set [0, T] × [O,T] × [-r,r]. Hence, we deduce tha t  w T ( f , s )  --* 0 and ~T(u , e )  --, 0 as e --* 0. 

Now, from the above-obtained estimate,  we get 

wT (Fx,  ¢) <_ kwT(x,  e) + wT ( f  , S) + Tff)T (u, e) + e sup {a(t)b(v) : t, T e [0, T]}.  
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This yields 
wTo (FX)  < kwTo (X), 

and consequently, 
wo(FX) <_ kwo(X). (8) 

Further, for an arbitrary fixed t E R+ and for x, y E X we derive the following estimate: 

/o /o I (Fx ) ( t ) -  (Fy)(t)l < I f ( t , x ( t ) ) - f ( t , y ( t ) ) l  + lu(t,s,x(s))l ds+ lu(t,s,y(s))l ds 

" jfo t < k Iz(t) - y(t)l + 2 a(t)b(s) ds (9) 

= k Ix(t) - y(t)l + 2v(t). 

Hence, we obtain 
diam(FZ)(t) <_ k diam Z(t)  + 2v(t). 

This yields 
limsup diam(FX)(t) < k limsup diamX(t).  

t ---~OO t---~OO 

Now, linking (8) and (10), we arrive at the following inequality: 

(~o) 

#(FX)  < k#(X). 

The above inequality in conjunction with Theorem 1 allows us to deduce that there exists a 
solution x = x(t) of equation (5) in the space BC(R+). Moreover, in view of (9) and Theorem 2, 
we infer that x(t) is asymptotically stable on the interval R+. This completes the proof. | 

R E M A R K S .  

(1) Observe that the information about the asymptotic stability of the solution x = x(t) of 
equation (5) can be also deduced from the fact that the set of all solutions of equation (5) 
belongs to ker/z (cf. Theorem 1). Keeping in mind the description of the kernel of the 
measure of noncompactness ~ (cf. Section 2), we obtain that every solution x = x(t) of 
equation (5) is asymptotically stable. 

(2) Following are examples of functional-integral equations satisfying the assumptions of The- 
orem 3 

x(t) = x(t) + e - t  ds, 
i + [x(s)l 

~o t s 2 arctgx(s) x(t) = In(1 + t) sinx(t) + ds. 
l + t  l + t  4 
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