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Although the importance of adipose tissue (AT) glucose transport in regulating whole-body insulin sensitivity
is becoming increasingly evident and insulin resistance (IR) has been widely recognized, the underlying
mechanisms of IR are still not well understood. The purpose of the present study was to determine the early
pathological changes in glucose transport by characterizing the alterations in glucose transporters (GLUT)
in multiple visceral and subcutaneous adipose depots in a large animal model of naturally occurring
compensated IR. AT biopsies were collected from horses, which were classified as insulin-sensitive (IS) or
compensated IR based on the results of an insulin-modified frequently sampled intravenous glucose tolerance
test. Protein expression of GLUT4 (major isoform) and GLUT12 (one of themost recently discovered isoforms)
were measured by Western blotting in multiple AT depots, as well as AS160 (a potential key player in GLUT
trafficking pathway). Using a biotinylated bis-mannose photolabeled technique, active cell surface GLUT
content was quantified. Omental AT had the highest total GLUT content compared to other sites during the IS
state. IR was associated with a significantly reduced total GLUT4 content in omental AT, without a change in
content in other visceral or subcutaneous adipose sites. In addition, active cell surface GLUT-4, but not -12,
was significantly lower in AT of IR compared to IS horses, without change in AS160 phosphorylation between
groups. Our data suggest that GLUT4, but not GLUT12, is a pathogenic factor in AT during naturally occurring
compensated IR, despite normal AS160 activation.
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1. Introduction

Type II diabetes mellitus, an epidemic health problem affecting
over 200 million people worldwide, is characterized by insulin
resistance (IR, i.e., an impaired ability of insulin to stimulate glucose
disposal into muscle and adipose tissue) combined with an inade-
quate compensatory pancreatic secretory response; this condition is
usually associated with obesity. In addition, over 300 million people
suffer from the preclinical stages of diabetes (i.e., “prediabetes”),
characterized by increased fasting glucose concentration (with value
above normal range but below the cutoff for the diagnosis of
diabetes), impaired glucose tolerance, or both [1]. Despite intensive
research for over 50 years (primarily in rodents), the mechanisms of
altered glucose transport and pathogenic factors observed during IR
and diabetes remain elusive. One of the challenges is the lack of
appropriate animal models that reproduce the preclinical stages of
type II diabetes to study the naturally occurring pathological changes
that occur in the tissues of interest as the animal proceeds from
normal to impaired glucose tolerance [2]. For example, themajority of
both rodent [3] and large animal models [4] display marked
hyperglycemia, which does not reflect the prediabetic stage [1].
Thus, there is a need for a well-characterized large animal model of IR
that could provide important translational information on the
pathophysiology of the preclinical stages of diabetes. Recently there
has been increased clinical awareness and recognition of obesity and
IRwithout hyperglycemia in horses from awide range of breeds, types
and performance levels [5]. However, the regulation of glucose
transport has not been investigated in adipose tissue (AT) in this
novel equine phenotype of naturally occurring IR.

The central role of AT glucose transport in regulating whole-body
insulin sensitivity is becoming increasingly evident, as is the pathogenic
function of visceral AT depots compared to subcutaneous sites during IR
andprediabetes [6,7]. Glucose uptake into cells is the rate-limiting step in
whole-body glucose utilization and is tightly regulated by a family of
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membraneproteins called glucose transporters (GLUTs), ofwhichGLUT4
is the predominant isoform in insulin-sensitive tissues. Although
impairments in the AT glucose transport pathway have been demon-
strated during IR and prediabetes [8–11], the initial pathogenic cause of
the decreased AT glucose transport during IR is not well elucidated. In
addition, althoughGLUT4 is the predominant isoform in insulin-sensitive
tissues, there is new evidence that GLUT12, one of the most recently
identified GLUT isoforms, translocates to the cell surface after insulin
stimulation and thereforemay play a significant role in glucose uptake of
insulin-sensitive tissues [12,13]. However, the role of GLUT12during IR is
not well characterized, and other than its original discovery demonstrat-
ing its presence in multiple mammalian tissues [12], there have been no
studies of GLUT12 in AT under pathophysiologic conditions. In addition,
although the downstream insulin signaling pathways regulating glucose
transport are not well defined, the Akt substrate protein of 160 kDa
(AS160) has recently emerged as a potential key player in GLUT4
translocation in adipose and skeletal muscle [14]. Thus, AS160 could be a
potential mechanism for reduced insulin signaling pathways, however,
there are no studies investigating AS160 in AT during IR.

Thus, the purpose of the present study was to determine the early
pathological changes in key regulatory aspects of AT glucose transport
during naturally occurring IR by determining total and active cell
surface GLUT-4 and -12 protein content in multiple different visceral
and subcutaneous AT depots in a novel large animal model. We
hypothesized that active cell surface GLUT-4 and -12 proteins will be
altered in AT, independent of its total content, through an AS160
dependent pathway, during naturally occurring compensated IR.
2. Materials and methods

2.1. Experimental protocol

Ten adult light-breed mares (n=5 per group, breed-matched,
mean age 14.4±1.9 years) chosen from the Ohio State University
research herd were fed forage ad libitum and determined to be free of
diseases, based on a clinical examination. This research herd, which
received standardized and uniform feeding and management prac-
tices, has previously been estimated to contain a significant number of
naturally occurring IR horses [15]. All procedures were approved by
The Ohio State University Institutional Animal Care and Use
Committee. The animals were classified as either insulin-resistant
(IR) or insulin-sensitive (IS) based on results of an insulin-modified
frequently sampled intravenous glucose tolerance test (FSIGTT) per-
formed as previously described [16,17]. Briefly, on the morning
of the FSIGTT, a baseline blood sample was taken and a dose of
50% dextrose (300 mg kg−1, 50% dextrose, Vedco Inc., St Joseph, MO)
was administered intravenously. At 20 min post-dextrose, insulin
(20 mIU kg−1, Humulin R, Lilly, Lake Forest, IL) was administered IV
and blood sampling continued at 2–30 min intervals until 240 min
post-dextrose infusion. All animals were kept in their normal
environment during the FSIGTT, and all the needed precautions
were taken to ensure the FSIGTT was performed in a quiet environ-
ment with no stressful event preceding or occurring during the test
[17]. Insulin sensitivity index (SI), acute insulin response to glucose
(AIRg, within 20 min after glucose administration), glucose effective-
ness (Sg) and disposition index (DI) were determined by the mini-
mal model of glucose and insulin dynamics using specialized software
(MinMod Millenium 5.10 [18]). Several weeks following the FSIGTT,
the animals were anesthetized for collection of AT samples, as follows:
omental, retroperitoneal and mesenteric (visceral) AT was collected
via laparotomy, and nuchal ligament and tailhead (subcutaneous) AT
was collected (4–5 g per site) via incisional biopsy. All samples were
flash frozen in liquid nitrogen and stored at −80 °C for subsequent
biochemical analyses, with the exception of the photolabeled samples
which were processed as described below.
2.2. Tissue analysis

Total crude extracts of AT for GLUT-4 and -12 analysis were obtained
by homogenizing samples in buffer (50 mM Tris–HCl, 50 mM sodium
pyrophosphate, 5 mM sodium orthovanadate, 50 mM sodium fluoride,
5 mM EDTA, 1% Triton X-100) containing protease and phosphatase
inhibitor cocktail (Sigma, St. Louis, MO), centrifuging at 1000×g for
25 min, extracting the supernatant and centrifuging at 100,000×g for
60 min, after which the pellet was resuspended in buffer and used for
analysis. Omental adipose total tissue lysates for analysis of cell surface
GLUTs and (total and phospho-) AS160 were obtained by homogenizing
samples in buffer, centrifuging at 10,000×g for 20 min, and extracting the
supernatant.

2.3. Active cell surface GLUT-4 and -12

Visceral (omental and mesenteric) and subcutaneous (tailhead)
AT were photolabeled as previously described [17,19]. Briefly,
samples were incubated in Krebs–Henseleit bicarbonate buffer
containing the biotinylated bis-mannose photolabeling reagent:
N-[2-[2-[2-[(N-Biotinyl-caproylamino)-ethoxy)ethoxyl]-4-[2-(tri-
fluorommethyl)-3H-diazirin-3-yl]benzoyl]-1,3-bis(mannopyranosyl-
4-yloxy)-2-propylamine (Toronto Research Chemical, Toronto, ON).
The hexose group interacts specifically with the extracellular binding
site of GLUT, and upon UV irradiation, the diazrine group loses
nitrogen and generates a short-lived carbene, which interacts with
the glucose transporter protein by establishing a covalent bond [20].
Adipose sampleswere then irradiated for 3×3 min in a Rayonet RPR-100
photoreactor with 300 nm lamps, flash frozen in liquid nitrogen and
stored at −80 °C until analysis.

For analysis of active cell surface GLUT-4 and -12 content, extracts
of the photolabeled AT samples were obtained by homogenizing as
described above and saved as the “total lysate” fraction. To isolate
photolabeled GLUTs from the total lysate, samples were incubated
with streptavidin agarose beads overnight and the supernatant of the
beads isolation, which contained non-photolabeled GLUTs was saved
as the “unlabeled” fraction. The ‘labeled’ fraction of GLUT transporters
were dissociated from the beads by heating at 95 °C, and the labeled,
unlabeled and total lysate fractions were then subjected to SDS-PAGE
and immunoblotting, as previously described (17).

2.4. Western immunoblotting

GLUT4 antibody was purchased from AbD Serotec (Raleigh, NC) and
has been validated for use in the horse [21]. GLUT12 (against rat), and
total andphospho (serine/threonine)-AS160 (against human) antibodies
were purchased from Abcam (Cambridge, MA) and Cell Signaling
(Beverly, MA), respectively, and were chosen because of their homology
(100%) with equine GLUT12 and AS160 [22]; they were also validated
against a positive control. AT photolabeled fractions, crude plasma
membrane extracts and total tissue lysates were analyzed for protein
content by use of electrophoresis and subsequent Western blotting as
described previously [17,21]. In brief, equal amounts of proteins from
samples were resolved on a 7% (AS160) or 12% (GLUTs) SDS-PAGE gel.
After electrophoretic transfer, PVDF membranes were incubated with
primary polyclonal antibodies overnight (total and phospho-AS160;
1:1000, GLUT12; 1:500, GLUT4; 1:7500) and subsequently with an anti-
rabbit horseradish peroxidase-linked antibody. Equal protein loading
was confirmed by measuring calsequestrin protein expression (Abcam,
Cambridge, MA) or MemCode reversible protein staining (Thermo
Scientific, Ashville, NC) for GLUTs and AS160, respectively.

2.5. Statistics

Data are presented as mean±SE. Differences between means were
assessed by Student's t-test, and one-way or two-way ANOVA, as
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appropriate (Sigmastat, Jandel Scientific). When a significant difference
was identified by ANOVA (with group and site as the main effects), post
hoc tests were performed using the Student–Newman–Keuls test.
Statistical significance was defined as Pb0.05.
Fig. 1. Insulin-sensitive (A) and insulin-resistant (B) states induce differential protein
expression of total GLUT-4 (white bars) and -12 (black bars) across various visceral and
subcutaneous adipose tissues. Top panel: Representative Western blot of GLUT from a
plasma membrane-enriched preparation of adipose tissue. Calsequestrin (CASQ)
protein content was used as a loading control. Bottom panel: Mean±SE total content
of GLUT protein in omental (OM), retroperitoneal (RP), and mesenteric (MES)
(visceral) sites, and nuchal ligament (NL) and tailhead (TH) (subcutaneous) AT depots
(n=5/group). Relative units were expressed in relation to the skeletal muscle of
insulin-sensitive (IS) and insulin-resistant (IR) subjects, respectively. †: Significantly
greater than all subcutaneous sites within the same group, Pb0.05. Please note that
there is a tendency for GLUT12 content to be higher in omental site compared to other
sites during IS state (Pb0.1).
3. Results

No significant difference in baseline blood glucose or plasma
insulin concentrations was found between groups (Table 1), nor in
body weight, body condition score, neck circumference, girth, or
ultrasonographic retroperitoneal fat thickness. Insulin sensitivity
was significantly lower in IR vs. IS group (P=0.014, Table 1). The
peripheral insulin resistance was compensated by a tendency for
insulin response (AIRg) to be higher (P=0.063), such that neither
glucose effectiveness (Sg) nor secretory function (DI) were signifi-
cantly lowered in IR compared to IS horses (Table 1).

Total GLUT-4 and -12 protein content was measured in plasma
membrane enriched fractions across various AT depots of the IS
(Fig. 1A) and IR (Fig. 1B) groups, and a significant regional effect
(Pb0.05) was observed. Total GLUT4 content was significantly greater
in visceral (i.e., mesenteric and omental) compared to subcutaneous
AT during the IS state. Similarly, total GLUT12 protein content was
greater in visceral adipose sites (i.e., mesenteric with a tendency for
omental) compared to other sites in the IS group (Pb0.05, Fig. 1A). In
the IR group, a significantly greater total GLUT-4 and -12 protein
content was found in visceral compared to subcutaneous adipose
sites. In addition, total GLUT4 content from a membrane-enriched
fraction was 44% lower in omental AT of the IR group compared to
the IS control group (P=0.027, Fig. 2A). In contrast, there were no
significant differences in total GLUT4 protein content between IR
and IS groups for all other AT sites sampled. Similarly, no differences
were observed in total GLUT-12 content (Fig. 2B) for any of the AT
sites sampled between groups.

Since alterations in either total GLUT protein or GLUT transloca-
tion content could contribute to the pathogenesis of IR, active cell
surface GLUT content was measured in photolabeled subcutaneous
and visceral AT. An overall group effect was found with signifi-
cantly lower (P=0.033) active cell surface GLUT4 content in AT of
IR compared to IS group (by 63% and 70% in visceral and subcuta-
neous sites, respectively, Fig. 3), suggesting that IR decreased GLUT4
translocation to the cell surface in AT. In contrast, there was no
difference in cell surface GLUT12 content between groups for either
subcutaneous or visceral sites (P=0.454, Fig. 4). In order to charac-
terize potential molecular mechanisms underlying the alterations
in GLUT4 trafficking, AS160 was quantified in subcutaneous and
visceral AT, and no differences in total AS160 (Fig. 5A, P=0.799)
or phospo-AS160 (Fig. 5B, P=0.896) were found between groups
for each site.
Table 1
Baseline parameters in insulin-sensitive and insulin-resistant groups.

Insulin-sensitive Insulin-resistant

Body weight (kg) 534.4±28.8 510.2±11.5
Body condition score 6.5±0.7 7.0±0.2
Basal [insulin] (mIU L−1) 16.4±5.8 18.7±4.4
Basal [glucose] (mg dL−1) 100.2±4.75 101.3±3.76
SIa (L min−1 mU−1) 2.53±0.60 0.62±0.11⁎

AIRgb (mU L−1 min−1) 405.6±80.0 983.6±256.2
DIc 874.0±221.6 593.4±83.9
Sgd (min−1) 1.67±0.12 1.93±0.28

Data are mean±SE.
a Insulin sensitivity.
b Acute insulin response to glucose.
c Disposition index [=SI×AIRg].
d Glucose effectiveness.
⁎ Denotes significant difference between groups (Pb0.05). n=5/group.
4. Discussion

The present study investigated the metabolic defects associated
with AT glucose transport in a novel large animal model of naturally
occurring compensated IR. We reported that omental GLUT4 content
in plasma membrane enriched fractions was lower in IR compared to
IS group, while no changes in GLUT4 content were present in other
visceral or subcutaneous adipose sites between groups. In addition,
using an innovative biotinylated bis-mannose photolabeled technique,
we demonstrated that active cell surface GLUT4, but not GLUT12, was
lower in AT of horses with compensated IR compared to IS controls.
These alterations in GLUT4 trafficking occurred despite normal
activation of AS160.

Differential GLUT protein expression across various visceral and
subcutaneous AT depots was found in healthy IS subjects in the
present study, with greater total GLUT-4 and -12 content in visceral
(e.g., omental and mesenteric) adipose tissue. It therefore likely that
visceral GLUT-4 and -12 play a substantial role in the regulation of
glucose transport, and similar differences in the regulation of glucose



Fig. 2. Compensated IR induces decreases in omental total GLUT4 protein content. Top
panel: Representative Western blot of GLUT from a plasma membrane-enriched
preparation of subcutaneous and visceral adipose tissues. Calsequestrin (CASQ) protein
content was used as a loading control. Bottom panel: Mean±SE of total GLUT-4 (A) and
-12 (B) protein content in various visceral and subcutaneous AT depots during insulin-
sensitive and insulin-resistant states (n=5 per group). Relative units were expressed
in relation to IS horses for each specific depot; ‡: Pb0.05 vs. IS group. Please refer to
Fig. 1 for legends.

Fig. 3. Insulin resistance decreases active cell surface GLUT4 in photolabeled adipose
tissue. (A): Representative Western blot of cell surface GLUT4 during insulin-sensitive
(IS) and insulin-resistant (IR) states; after cell-surface biotinylation of adipose tissue,
streptavidin-isolated photolabeled GLUT4 was detected by immunoblotting. L: labeled
fraction; UL: unlabeled fraction; TL: total lysate. (B) Mean±SE of labeled cell-surface
content of active GLUT4 in subcutaneous (Sc; tailhead) and visceral (Vis; omental and
mesenteric) adipose sites during insulin-sensitive (IS) and insulin-resistant (IR) states
(n=2–4/group). Relative units were expressed in relation to an internal positive
control; *: Pb0.05 vs. IS group.

Fig. 4. Insulin resistance does not alter active cell surface GLUT12 in photolabeled
adipose tissue. Top panel: Representative Western blot of cell surface GLUT12 in
insulin-sensitive (IS) and insulin-resistant (IR) states; after cell-surface biotinylation of
adipose tissue, streptavidin-isolated photolabeled GLUT12 was detected by immuno-
blotting. Bottom panel: Mean±SE of labeled cell-surface content of active GLUT12 in
subcutaneous and visceral adipose sites (n=2–4/group). Relative units were expressed
in relation to an internal positive control. Please refer to Fig. 3 for legends.

1101A.P. Waller et al. / Biochimica et Biophysica Acta 1812 (2011) 1098–1103
transport between several AT have been demonstrated in healthy
humans. For example, human omental adipocytes have higher GLUT4
expression and basal- and insulin-stimulated glucose uptake com-
pared with subcutaneous adipocytes [23,24]. In addition, in healthy
non-obese subjects, the total protein levels of multiple insulin
signaling intermediates, including the insulin receptor, IRS1/2, p85,
GSK3, MEK and ERK1/2, were also found to be higher in omental vs.
subcutaneous adipose. In addition, when activation of the insulin
signaling cascadewas studied following administration of IV insulin in
vivo, greater and earlier activation levels of the insulin receptor, Akt,
GSK3, and ERK1/2 were found in omental than in subcutaneous
adipose tissue [24]. Thus, the central role of visceral GLUT in whole-
body glucose metabolism provides an important rationale for utilizing
this novel large animal model to study the naturally occurring
changes in multiple different AT during the initial phase of com-
pensated IR. Although a wide variety of animal models have been
used to study Type II diabetes, few of these models mirror the early
pathological events that naturally occur in the preclinical stages
of non insulin-dependent diabetes [2]. In addition, since rodents rely
more on brown AT metabolism compared to the reliance on white AT
observed in larger species including horses and humans [25], results
from studies of rodent white AT may not translate well to findings
in human patients. Finally, this equine model has other advantages
over commonly used rodent models, including the ability to obtain
repeated measurements of tissue biopsies or samples from an animal
over time, the ease of catheterization of horses in protocols requiring
it, and the ability to obtain relatively large amounts of tissue for
assays. Recently, the horse has been used to establish a large animal
model of IR [16,17], and, similar to other species, obesity, high soluble
carbohydrate diets and age have all been associated with equine IR
[18,26]. As for humans, it appears that careful dietary management
and increasing physical activity promote insulin sensitivity in this
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Fig. 5. The decrease in active GLUT4 content in omental tissue occurs despite normal
activation of AS160 during insulin-resistant state. Total protein content of (A) AS160
and (B) phosphorylated AS160 in adipose tissue during insulin-sensitive (IS) and
insulin-resistant (IR) states (n=5 per group). Top panel: Representative Western blot
of AS160 in adipose total tissue. Bottom panel: Mean±SE of protein expression of total
AS160 (A) and phosphorylated AS160 (B) in subcutaneous (Sc; tailhead) and visceral
(Vis; omental and mesenteric) adipose sites.
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model [27]. In addition, the ability to study naturally occurring IR
eliminates problems associated with experimentally induced IR, such
as potential detrimental health consequences associated with feeding
a high soluble carbohydrate diet [5]. In the present study, the FSIGTT
data indicate an early state of compensatory IR, as there was no
significant difference in the disposition index (a measure of the ability
of the hyperbolic relationship between insulin sensitivity and insulin
secretion to maintain glucose homeostasis) between groups [28]. To
our knowledge, this is the first large animal model of naturally
occurring compensated IR, typical of early prediabetes in humans.

The importance of AT in maintaining peripheral insulin sensitivity
has been demonstrated previously, as AT-selective reduction of
GLUT4 in mice results in impaired glucose tolerance and peripheral
IR [29]. This GLUT4 reduction in AT is characterized by a 50% reduction
in whole-body glucose uptake followed by decreased glucose uptake
into skeletal muscle (despite preserved total GLUT4 content) [29]. In
addition, impairments in the AT glucose transport pathway have been
demonstrated during IR and prediabetes [8,9,11]. However, previous
studies on GLUT4 regulation in subcutaneous and visceral AT have
been equivocal, either demonstrating decreased [30], increased [8] or
unchanged gene expression [9]. To our knowledge, this is the first
study in which total and cell surface GLUT4 content has been
simultaneously quantified in subcutaneous and visceral adipose
depots during early stage of IR. Similar to findings in Type II diabetic
patients [31,32], total GLUT4 content from a membrane enriched
fraction was significantly lower in omental AT but preserved in other
visceral and subcutaneous AT sites of IR compared to IS group. In
contrast, protein expression of GLUT12 was not impaired in any AT
of IR subjects and thus may not be a pathogenic factor during
compensated IR. Overall, our data suggest a central role for omental
GLUT4 in the pathogenesis of IR and ultimately diabetes, such that a
reduction of insulin-stimulated glucose transport in omental adipocytes
could secondarily induce IR in other insulin target tissues.

The initial mechanism causing the alteration in omental GLUT4
during IR is unclear, although the development of obesity-induced
IR may be due to visceral fat being more sensitive to increases in
adipocyte cell size during expansion of adiposity [33], thus resulting
in a relative decrease in cellular GLUT4 content as cell size increases.
Therefore, in order to determine if alterations in GLUT activity
underlie compensated IR, active cell surface GLUT-4 and -12 were
quantified in photolabeled AT using a bis-mannose photolabeled
compound, which is specific to GLUT transporters and only labels
those that are accessible (active) at the cell surface. To our knowledge,
we are the first to successfully apply this technique on AT in any
species, and we reported that active cell surface GLUT4 was lower in
all AT sites (by 63% and 70% in visceral and subcutaneous sites,
respectively, Pb0.05) in IR compared to IS group. Thus, compensated
IR is characterized by altered GLUT4 trafficking, although there were
no differences in cell surface content of GLUT12 at any sampling site
compared to the IS group. Interestingly, these findings demonstrate
impairments in both visceral and subcutaneous AT glucose transport
pathway, despite no change in total content of subcutaneous GLUT4;
findings which are in agreement with previous studies demonstrating
alterations in gene expression of key insulin signaling intermediates
[8] and IRS-1 protein expression [11] in subcutaneous AT during
prediabetes. In addition, previous studies using membrane fraction-
ation to quantify glucose transporters at the plasma membrane
have reported lower GLUT4 protein expression in subcutaneous AT
[34,35] during diabetes, as well as in visceral AT [32]. For example, in
subcutaneous adipocytes of Type II diabetics, basal GLUT4 in a plasma
membrane fraction was 43–80% of IS subjects [34,35], and gestational
diabetes is characterized by the lack of increase in GLUT4 transloca-
tion in omental adipocytes [32]. However, it should be noted that, in
contrast to the photolabeled technique employed in the present
study, the conventional subfractionation techniques used in previous
studies cannot differentiate between active GLUTs that have docked
and fused with the plasma membrane and inactive GLUTs (i.e., before
fusion), as well as GLUT in intracellular membranes [17,19]. In the
present study, the lower basal activity of cell-surface GLUT4 in
both subcutaneous and visceral adipose sites of IR compared to IS
groups, independent of its total GLUT4 content, suggests an alteration
in AT GLUT trafficking, which may constitute an early pathogenic
factor in the development of IR.

Although the downstream insulin signaling pathways regulating
glucose transport are not well defined, the Akt substrate protein of
160 kDa (AS160) has recently emerged as a potential key player
regulating GLUT trafficking [14]. AS160 is mainly unphosphorylated in
the basal state and retains GLUT4 vesicles intracellularly, while AS160
phosphorylation by insulin stimulation results in GLUT4 exocytosis
[14]. In the present study, the lower active cell surface GLUT4 content
in AT of IR compared to IS group was not associated with changes
in AS160 phosphorylation, suggesting that AS160 regulation is not a
central event in the initial pathogenesis of compensated IR. These
findings are supported by previous studies in skeletal muscle of type 2
diabetic subjects, in which neither total nor phospho-AS160 was
altered compared to IS subjects [36,37], although GLUT4 translocation
was not reported. In addition, total AS160 was significantly (~15%)
higher in the quadriceps muscle of IR rats despite a significantly
lower total GLUT4 protein content (~20%) compared to IS controls
[38]. Collectively, these results suggest that AS160 regulation is not a
central event in the pathogenesis of IR and other downstream targets
such as TBC1D1 [39] or other unspecified targets [14] may play a role
in the decreased GLUT4 translocation. In addition, GLUT4 transloca-
tion is a complex process involving vesicle trafficking and sorting
machinery and there are many potential steps that may be impaired,
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including regulation by motifs intrinsic to the GLUT4 molecule
together with a host of proteins directing vesicle traffic [40]. Of
importance, AS160 does not appear to regulate several major steps
required for complete GLUT4 translocation, including the recruitment,
tethering, and fusion of GLUT4 vesicles with surface membranes and
possibly GLUT4 activation [41,42]. Certainly further research is
required to characterize the impairments of the downstream
signaling pathways responsible for the alteration in GLUT4 translo-
cation observed during the earliest stages of IR and prediabetes.

5. Conclusions

In summary, naturally occurring compensated IR in this large
animal model is characterized by selective impairment of the glucose
transport pathways, such that active cell-surface GLUT4 content was
lower in AT (visceral and subcutaneous depots) of IR compared to IS
group, while total GLUT4 content was only reduced in omental tissue.
In addition, GLUT12, one of the most recently discovered GLUT
isoforms, does not appear to be a pathogenic factor in our model of
early stage of IR, since neither its total nor its active content was
affected in any adipose depot in the IR state. It is concluded that AT
GLUT-4, but not -12, particularly in the omental site, contributes to the
pathogenesis of naturally occurring compensated IR.
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