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LetX be a Banach space with closed unit ball B. Given k ∈ �,X is said to be k-β,
respectively, �k+ 1�-nearly uniformly convex (�k+ 1�-NUC), if for every ε > 0 there
exists δ, 0 < δ < 1, so that for every x ∈ B and every ε-separated sequence �xn� ⊆ B
there are indices �ni�ki=1, respectively, �ni�k+1

i=1 , such that �1/�k+ 1���x+∑k
i=1 xni� ≤

1 − δ, respectively, �1/�k+ 1���∑k+1
i=1 xni� ≤ 1 − δ. It is shown that a Banach space

constructed by Schachermayer is 2-β, but is not isomorphic to any 2-NUC Banach
space. Modifying this example, we also show that there is a 2-NUC Banach space
which cannot be equivalently renormed to be 1-β. © 2000 Academic Press

Key Words: nearly uniform convexity; renorming; Schachermayer’s space.

1. INTRODUCTION

In [4], Huff introduced the notion of nearly uniform convexity (NUC). A
Banach space X with closed unit ball B is said to be NUC if for any ε > 0
there exists δ < 1 such that for every ε-separated sequence in B, co��xn�� ∩
δB �= �. Here co�A� denotes the convex hull of a set A; a sequence �xn�
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is ε-separated if inf
�xn − xm� � m �= n� ≥ ε. Huff showed that a Banach
space is NUC if and only if it is reflexive and has the uniform Kadec–Klee
property (UKK). Recall that a Banach space X with closed unit ball B is
said to be UKK if for any ε > 0 there exists δ < 1 such that for every
ε-separated sequence �xn� in B which converges weakly to some x ∈ X we
have �x� ≤ δ. A recent result of Knaust et al. [5] gives an isomorphic char-
acterization of spaces having NUC. They showed that a separable reflexive
Banach space X is isomorphic to a UKK space if and only if X has a finite
Szlenk index. More recent results concerning Szlenk indices and renorm-
ings are to be found in [2, 3].

Another property related to NUC is the property (β) introduced by
Rolewicz [11]. In [6], building on the work of Prus [9, 10], the first author
showed that a separable Banach space X is isomorphic to a space with
(β) if and only if both X and X∗ are isomorphic to NUC spaces. In [7],
a sequence of properties lying in between (β) and NUC is defined. Let
X be a Banach space with closed unit ball B. Given k ∈ �, X is said
to be k-β, respectively, �k+ 1�-nearly uniformly convex (�k+ 1�-NUC), if
for every ε > 0 there exists δ, 0 < δ < 1, so that for every x ∈ B and
every ε-separated sequence �xn� ⊆ B there are indices �ni�ki=1, respectively
�ni�k+1

i=1 , such that

1
k+ 1

∥∥∥∥x+
k∑
i=1

xni

∥∥∥∥ ≤ 1 − δ�

respectively

1
k+ 1

∥∥∥∥
k+1∑
i=1

xni

∥∥∥∥ ≤ 1 − δ�

It follows readily from the definitions that every k-β space is �k+ 1�-NUC,
every �k+ 1�-NUC space is �k+ 1�-β, and that every k-β space (or �k+ 1�-
NUC space) is NUC. It is proved in [7] that property 1-β is equivalent to
the property (β) of Rolewicz. It is worth noting that the “non-uniform” ver-
sion of property k-NUC has been well-studied. For k ≥ 2, a Banach space
X is said to have property (kR) if every sequence �xn� in X which satisfies
limn1

· · · limnk
�xn1

+ · · · + xnk� = k limn �xn� is convergent [1]. It is clear
that the property (kR) implies property (�k+ 1�R). It follows from James’
characterization of reflexivity that every (kR) space is reflexive. A recent
result of Odell and Schlumprecht [8] shows that a separable Banach space
is reflexive if and only if it can be equivalently renormed to have property
(2R). Thus, all the properites (kR) are isomorphically equivalent. Similarly,
“non-asymptotic” properties known as k-uniform rotundity have been stud-
ied [13]. These properites are also isomorphically equivalent to each other
as they are all equivalent to superreflexivity. In this paper, we find that
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the situation is different for the properites k-NUC and k-β. To be precise,
we use the space constructed by Schachermayer in [12] and a variant to
distinguish the properties 1-β, 2-NUC, and 2-β isomorphically.

Let T = ∪∞
n=0
0� 1�n be the dyadic tree. If ϕ = �εi�mi=1 and ψ = �δi�ni=1

are nodes in T , we say that ϕ ≤ ψ if m ≤ n and εi = δi for 1 ≤ i ≤ m.
Also, � ≤ ϕ for all ϕ ∈ T . Two nodes ϕ and ψ are said to be comparable
if either ϕ ≤ ψ or ψ ≤ ϕ; they are incomparable otherwise. Let ϕ ∈ T ,
denote by Tϕ or T �ϕ� the subtree rooted at ϕ, i.e., the subtree consisting
of all nodes ψ such that ϕ ≤ ψ. A node ϕ ∈ T has length n if ϕ ∈ 
0� 1�n.
The length of ϕ is denoted by �ϕ�. Given ϕ = �εi�ni=1 ∈ T , let Sϕ be the set
consisting of all nodes ψ = �δi�mi=1 such that m ≥ n, δi = εi if 1 ≤ i ≤ n,
and δi = 0 otherwise. Say that a subset A of T is admissible, respectively,
acceptable, if there exists n ∈ � ∪ 
0� such that (a) A ⊆ ∪�ϕ�=nTϕ and (b)
�A ∩ Tϕ� ≤ 1 for all ϕ with �ϕ� = n, respectively, (a′) A ⊆ ∪�ϕ�=nSϕ, and
(b′) �A ∩ Sϕ� ≤ 1 for all ϕ with �ϕ� = n. For subsets A and B of T , say that
A� B if max
�ϕ� � ϕ ∈ A� < min
�ϕ� � ϕ ∈ B�. Let c00�T � be the space of
all finitely supported real-valued functions defined on T . For x ∈ c00�T �, let

�x�X = sup

(
k∑
i=1

( ∑
ϕ∈Ai

�x�ϕ��
)2)1/2

�

where the sup is taken over all k ∈ � and all sequences of admissible
subsets A1 � A2 � · · · � Ak of T . The norm �·�Y is defined similarly
except that the sup is taken over all sequences of acceptable subsets A1 �
A2 � · · · � Ak of T . Schachermayer’s space X is the completion of c00�T �
with respect to the norm �·�X . The completion of c00�T � with respect to
�·�Y is denoted by Y .

Remark. The space X defined here differs from Schachermayer’s origi-
nal definition and is only isomorphic to the space defined in [12].

In [7], it was shown that X (with the norm given in [12]) is 8-NUC but is
not isomorphic to any 1-β space. We first show that �X� �·�X� and �Y� �·�Y �
are 2-β and 2-NUC respectively. We begin with a trivial lemma concerning
the �2-norm �·�2.

Lemma 1. If α, β, and γ are vectors in the unit ball of �2, and �α+ β+
γ�2/3 ≥ 1 − δ, then max
�α− β�2� �α− γ�2� �β− γ�2� ≤ √

18δ.

Proposition 2. �X� �·�X� is 2-β.

Proof. Let x and xn� n ≥ 1, be elements in the unit ball of X such that
�xn� is ε-separated. Choose δ > 0 such that

�1 − 3δ�2 +
[(

1 − 24δ�1/2 − �1 − ε2/9
)1/2]2

> 1� (1)
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Without loss of generality, we may assume that �xn� converges pointwise (as
a sequence of functions on T ) to some y0 � T → �. It is clear that if y� z ∈ X
and supp y � supp z, then �y + z�2

X ≥ �y�2
X + �z�2

X . It follows easily that
y0 ∈ X. Let yn = xn − y0. It may be assumed that ��yn�X� converges. As
�xn� is ε-separated, so is �yn�. We may thus further assume that �yn�X >
ε/3 for all n ∈ �. By going to a subsequence and perturbing the vectors x,
y0, and yn� n ≥ 1, by as little as we please, it may be further assumed that
(a) they all belong to c00�T �, (b) supp x ∪ supp y0 � supp y1 � supp y2,
and (c) �y1χTϕ�∞ = �y2χTϕ�∞ for all ϕ such that �ϕ� ≤ M , where �·�∞ is
the sup norm and M = max
�ψ� � ψ ∈ supp x∪ supp y0�.

Claim. Let A be an admissible set such that min
�ϕ� � ϕ ∈ A� ≤ M . If∑
ϕ∈A �y1�ϕ�� = c, and

∑
ϕ∈A �y2�ϕ�� = d, then there exists an admissble set

B such that

min
�ϕ� � ϕ ∈ A� ≤ min
�ϕ� � ϕ ∈ B�
≤ max
�ϕ� � ϕ ∈ B� ≤ max
�ϕ� � ϕ ∈ A��

A ∩ supp y0 ⊆ B, and
∑
ϕ∈B �y1�ϕ�� ≥ c + d.

To prove the claim, let N be such that A ⊆ ∪�ϕ�=NTϕ and let �A∩ Tϕ� ≤ 1
for all ϕ with �ϕ� = N . Then N ≤ M . Now, for each ψ ∈ A ∩ supp y2,
ψ ∈ Tϕ for some ϕ with �ϕ� = N ≤M . It follows that∥∥y1χTϕ

∥∥
∞ = ∥∥y2χTϕ

∥∥
∞ ≥ �y2�ψ���

Hence, there exists a ψ′ ∈ Tϕ such that �y1�ψ′�� ≥ �y2�ψ��. Now let

B = �A ∩ �supp y0 ∪ supp y1�� ∪ 
ψ′ � ψ ∈ A ∩ supp y2��
It is easy to see that the set B satisfies the claim.

Suppose that �x + x1 + x2�X/3 ≥ 1 − δ. Let x + x1 + x2 = x + 2y0 +
y1 + y2 be normed by a sequence of admissible sets A1 � A2 � · · · � Ak.
Denote by α = �ai�ki=1, β = �bi�ki=1, γ = �ci�ki=1, and η = �di�ki=1 respectively
the sequences �∑ϕ∈Ai �x�ϕ���ki=1, �∑ϕ∈Ai �y0�ϕ���ki=1, �∑ϕ∈Ai �y1�ϕ���ki=1, and
�∑ϕ∈Ai �y2�ϕ���ki=1. Now

�α+ �β+ γ� + �β+ η��2/3 ≥ �x+ x1 + x2�X/3 ≥ 1 − δ�
But �α�2 ≤ �x�X ≤ 1. Similarly, �β + γ�2, �β + η�2 ≤ 1. By Lemma 1,
we obtain that �α− β− γ�2, �α− β− η�2, and �γ − η�2 are all ≤ √

18δ.
Let j be the largest integer such that aj �= 0. Note that this implies supp
x ∩ Aj �= �; hence (supp y1 ∪ supp y2) ∩Ai = � for all i < j. Thus,
ci = di = 0 for all i < j. Now∥∥�bj+1 + dj+1� � � � � bk + dk�

∥∥
2 ≤ ∥∥α− β− η∥∥2 ≤

√
18δ� (2)
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Moreover,

1 ≥ ∥∥x2

∥∥2
X
= ∥∥y0 + y2

∥∥2
X
≥ ∥∥y0

∥∥2
X
+ ∥∥y2

∥∥2
X
≥ ∥∥β∥∥2

2 +
∥∥y2

∥∥2
X

�⇒ ∥∥β∥∥2
2 ≤ 1 − ε2/9� (3)

Hence

3�1 − δ� ≤ �α�2 + �β+ γ�2 + �β+ η�2 ≤ 2 + �β+ η�2

�⇒ �1 − 3δ�2 ≤ �β+ η�2
2

= ∥∥(b1� � � � � bj−1� bj + dj
)∥∥2

2

+ ∥∥(bj+1 + dj+1� � � � � bk + dk
)∥∥2

2

≤ (∥∥(b1� � � � � bj−1� bj
)∥∥

2 + dj
)2 + 18δ by (2)

≤ (∥∥β∥∥2 + dj
)2 + 18δ

≤ ((
1 − ε2/9

)1/2 + dj)2 + 18δ� by (3)

Therefore,

dj ≥ �1 − 24δ�1/2 − (
1 − ε2/9

)1/2
� (4)

Note that by the first part of the argument above we also obtain that

�β+ γ�2 ≥ 1 − 3δ� (5)

Since Aj ∩ supp x �= �, we may apply the claim to obtain an admissible
set B. Using the sequence of admissible sets A1 � · · · � Aj−1 � B �
Aj+1 � · · · � Ak to norm x1 = y0 + y1 yields

1 ≥ ∥∥y0 + y1

∥∥2
X
≥ ∥∥(b1� � � � � bj−1� bj + cj + dj� bj+1 + cj+1� � � � � bk + ck

)∥∥2
2

≥ ∥∥(b1� � � � � bj−1� bj + cj� bj+1 + cj+1� � � � � bk + ck
)∥∥2

2 + d2
j

= �β+ γ�2
2 + d2

j

≥ �1 − 3δ�2 +
[(

1 − 24δ
)1/2−(1 − ε2/9

)1/2]2

by (5) and (4). As the last expression is >1 by (1), we have reached a
contradiction.

Remark. The same method can be used to show that X is 2-β with the
norm given in [12].

Proposition 3. �Y� �·�Y � is 2-NUC.
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Proof. Let �xn� be an ε-separated sequence in the unit ball of Y . Choose
δ > 0 so that

δ′ = 12δ+ 2
√

8δ ≤ ε2/18 (6)

and

1 − 2δ− �2 +
√

8�
√
δ >

√
1 − �ε/3�2� (7)

As in the proof of the previous proposition, it may be assumed that there
exists a sequence �yn�∞n=0 in Y such that xn = y0 + yn, supp yn−1 � supp yn
for all n ∈ �, and �yjχSϕ�∞ = �ykχSϕ�∞ whenever �ϕ� ≤ Mi and j� k > i,
where Mi = max
�ψ� � ψ ∈ supp yi� . We may also assume that ��yn�Y �
converges. Since �yn�∞n=1 is ε-separated, η = lim �yn�Y ≥ ε/2. The choice
of δ′ in (6) guarantees that 4�η2 − δ′�1/2 > 7η/2 ≥ 3η+√

δ′. Hence there
exist η+ > η > η− > ε/3 such that

4θ ≥ 3η+ +
√
�η+�2 − �η−�2 + δ′� (8)

where θ =
√
�η−�2 − δ′. We may now further assume that η+ ≥ �yn�Y ≥

η− for all n ∈ �. Now suppose that �xm + xn�Y /2 > 1 − δ for all m�n ∈ �.

Claim. For all m < n in �, there exists an acceptable set A such that∑
ϕ∈A �yi�ϕ�� > θ for i = m�n.

First observe that there are acceptable sets A1 � A2 � · · · � Ak such
that

∑k
i=1�

∑
ϕ∈Ai ��2y0 + ym + yn��ϕ���2 > 4�1 − δ�2. Let α = �ai�ki=1, β =

�bi�ki=1, and γ = �ci�ki=1 be the sequences �∑ϕ∈Ai �yj�ϕ���ki=1 for j = 0�m� n,
respectively. Then �2α+β+ γ�2 > 2�1 − δ� and �α+β�2 ≤ �y0 + ym�Y =
�xm�Y ≤ 1. Similarly, �α+ γ�2 ≤ 1. It follows from the parallelogram law
that �β− γ�2 < 4 − 4�1 − δ�2 ≤ 8δ. Note also that �α+ β�2 ≥ �2α+ β+
γ�2 − �α+ γ�2 > 1 − 2δ. Similarly, �α+ γ�2 > 1 − 2δ. Let j1, respectively
j2, be the largest j such that aj �= 0, respectively bj �= 0. Since supp y0 ∩
Aj1 �= �, b1 = · · · = bj1−1 = 0. Similarly, c1 = · · · = cj2−1 = 0. Moreover,
j1 ≤ j2. Let us show that j1 < j2. For otherwise, j1 = j2 = j. Then

�bj − cj� ≤ �β− γ�2 <
√

8δ� (9)

Consider the set Aj . Choose p ∈ � ∪ 
0� such that Aj ⊆ ∪�ϕ�=pSϕ and
�Aj ∩ Sϕ� ≤ 1 for all ϕ with �ϕ� = p. Note that p ≤ M0. Let G = 
ϕ �
�ϕ� = p�Aj ∩ Sϕ ∩ supp ym �= ��. If ϕ ∈ G, �ynχSϕ�∞ = �ymχSϕ�∞. Hence
there exists ψϕ ∈ Sϕ ∩ supp yn such that �yn�ψϕ�� = �ymχSϕ�∞. It is easy
to see that the set B = 
ψϕ � ϕ ∈ G� ∪ �Aj ∩ supp y0� ∪ �Aj ∩ supp yn�
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is acceptable and that min
�ϕ� � ϕ ∈ Aj� ≤ min
�ϕ� � ϕ ∈ B�. Hence
A1 � · · · � Aj−1 � B. Thus

1 ≥ ∥∥xn∥∥2
Y
= ∥∥y0 + yn

∥∥2
Y
≥
j−1∑
i=1

�ai�2 +
(∑
ϕ∈B

��y0 + yn��ϕ��
)2

≥
j−1∑
i=1

∣∣ai∣∣2 +
( ∑
ϕ∈Aj

�y0�ϕ�� +
∑
ϕ∈Aj

�yn�ϕ�� +
∑
ϕ∈G

�yn�ψϕ��
)2

≥
j−1∑
i=1

∣∣ai∣∣2 +
(
�aj� + �cj� +

∑
ϕ∈G

�ymχSϕ�∞
)2

≥
j−1∑
i=1

∣∣ai∣∣2 +
(
�aj� + �cj� +

∑
ϕ∈Aj

�ym�ϕ��
)2

≥
∥∥∥(a1� � � � � aj−1� aj + bj + cj

)∥∥∥2

2

≥
∥∥∥(a1� � � � � aj−1� aj + bj

)∥∥∥2

2
+ ∣∣cj∣∣2

≥ �α+ β�2
2 +

(�bj� − √
8δ
)2

by (9),

> �1 − 2δ�2 +
(
�β�2 −

√
8δ
)2
�

Therefore, �β�2 < �2 +√
8�√δ. It follows that

�α�2 ≥ �α+ β�2 − �β�2 > 1 − 2δ−
(

2 +
√

8
)√
δ� (10)

However,

�α�2
2 ≤ �y0�2

Y ≤ �xm�2
Y − �ym�2

Y ≤ 1 − �η−�2 < 1 − �ε/3�2� (11)

Combining (10) and (11) with the choice of δ in (7) yield a contradiction.
This shows that j1 < j2. Applying the facts that �α + β�2 > 1 − 2δ and
��bj1� � � � � bj2−1��2 ≤ �β− γ�2 <

√
8δ, we obtain that

∣∣bj2 ∣∣2 > �1 − 2δ�2 −
(
�α�2 +

√
8δ
)2

≥ �1 − 2δ�2 −
(√

1 − �η−�2 +
√

8δ
)2

≥ θ2�
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Similarly,

�1 − 2δ�2 < �α+ γ�2
2 = �α�2

2 +
∣∣cj2 ∣∣2 +

∥∥∥(cj2+1� � � � � ck
)∥∥∥2

2

≤ �α�2
2 +

∣∣cj2 ∣∣2 + �β− γ�2
2

≤ 1 − (
η−
)2 + ∣∣cj2 ∣∣2 + 8δ�

Hence
∣∣cj2 ∣∣ > θ. Thus the set A = Aj2 satisfies the requirements of the

claim.
Taking m = 1, n = 2, and m = 2, n = 3, respectively, we obtain accept-

able sets A and A′ from the claim. Since A ∩ supp y1 �= �, if ϕ ∈ A ∩
supp y2, ϕ ∈ Sϕ′ for some ϕ′ such that �ϕ′� ≤ M1. This implies that there
exists ψϕ ∈ Sϕ′ such that �y3�ψϕ�� =

∥∥y3χSϕ′
∥∥
∞ = �y2χSϕ′ �∞ ≥ �y2�ϕ��. Let

q = min
�ϕ� � ϕ ∈ supp y3� and ) = 
σ ∈ T � �σ � = q�. For σ ∈ ), define
s�σ� = �y3�ψϕ�� if there exists ϕ ∈ A ∩ supp y2 such that ψϕ ∈ Sσ ; other-
wise, let s�σ� = 0. Also, let t�σ� = �y3�ϕ�� if there exists ϕ ∈ A′ ∩ supp
y3 ∩ Sσ ; otherwise, let t�σ� = 0. Finally, let r�σ� = ∥∥y3χSσ

∥∥
∞ for all σ ∈

). Then r�σ� ≥ s�σ� ≥ 0 for all σ ∈ ),
∑
σ r�σ� ≤ �y3�Y < η+, and∑

σ s�σ� > θ. Hence
∑
σ�r�σ� − s�σ�� < η+ − θ. Similarly,

∑
σ�r�σ� −

t�σ�� < η+ − θ. Therefore,
∑
σ �t�σ� − s�σ�� < 2�η+ − θ�. Let B be the

set of all nodes in A ∩ supp y2 that are comparable with some node in
A′ ∩ supp y3. Then

∑
ϕ∈A\B

�y2�ϕ�� ≤
∑

ϕ∈A\B

∣∣y3�ψϕ�
∣∣ ≤∑

σ

�t�σ� − s�σ�� < 2�η+ − θ��

Hence
∑
ϕ∈B �y2�ϕ�� > θ − 2�η+ − θ� = 3θ − 2η+. Now let l = min
�ϕ� �

ϕ ∈ A′ ∩ supp y2�. Divide B into B1 = 
ϕ ∈ B � �ϕ� < l� and B2 = 
ϕ ∈
B � �ϕ� ≥ l�. Since B1 and A′ ∩ supp y2 are acceptable sets such that B1 �
A′ ∩ supp y2,

(
η+
)2
>
∥∥y2

∥∥2
Y
≥
( ∑
ϕ∈B1

∣∣y2�ϕ�
∣∣)2

+
( ∑
ϕ∈A′

∣∣y2�ϕ�
∣∣)2

>

( ∑
ϕ∈B1

∣∣y2�ϕ�
∣∣)2

+ θ2�

Thus

∑
ϕ∈B2

∣∣y2�ϕ�
∣∣ > 3θ− 2η+ −

√
�η+�2 − θ2�
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Finally, since B2 ∪ �A′ ∩ supp y2� is acceptable,

η+ >
∥∥y2

∥∥
Y
≥ ∑
ϕ∈B2

∣∣y2�ϕ�
∣∣+ ∑

ϕ∈A′∩ supp y2

∣∣y2�ϕ�
∣∣

> 3θ− 2η+ −
√
�η+�2 − θ2 + θ�

This contradicts inequality (8).

Before proceeding further, let us introduce some more notation. A
branch in T is a maximal subset of T with respect to the partial order ≤.
If γ is a branch in T and n ∈ � ∪ 
0�, let ϕγn be the node of length n
in γ. A collection of pairwise distinct branches is said to have separated
at level L if for any pair of distinct branches γ and γ′ in the collection
the nodes of length L belonging to γ and γ′ respectively are distinct.
Finally, if �γ1� � � � � γk� is a sequence of pairwise distinct branches which
have separated at a certain level L, we say that a sequence of nodes
�ϕ1� � � � � ϕk� ∈ S�γ1� � � � � γk�L� if ϕi ∈ T �ϕγiL �, 1 ≤ i ≤ k. Let us note that
in this situation

∥∥χ
ϕi�1≤i≤k�
∥∥
X
= k.

Suppose ��� · ��� is an equivalent norm on X which is 2-NUC. It may be
assumed that there exists ε > 0 so that ε�x�X ≤ ���x��� ≤ �x�X for all
x ∈ X. Let δ = δ�2ε� > 0 be the number obtained from the definition of
2-NUC for the norm ��� · ���.
Proposition 4. Let n ∈ � ∪ 
0�. Then there are pairwise incompara-

ble nodes ϕ1� � � � � ϕ2n such that whenever γi� γ
′
i are distinct branches passing

through ϕi, 1 ≤ i ≤ 2n, and 
γi� γ′i � 1 ≤ i ≤ 2n� have separated at level
L, there is a sequence of nodes �ψ1� � � � � ψ2n+1� ∈ S(γ1� γ

′
1� � � � � γ2n � γ

′
2n �L

)
satisfying

∣∣∣∣∣∣χ
ψi�1≤i≤2n+1�
∣∣∣∣∣∣ ≤ �2�1 − δ��n+1.

Proof. Assume that n is the first non-negative integer where the
proposition fails. Let ϕ1� � � � � ϕ2n−1 be the nodes obtained by apply-
ing the proposition for the case n − 1. (If n = 0, begin the argument
with any node ϕ1.) For each i, 1 ≤ i ≤ 2n−1, let ψ2i−1� 1 and ψ2i� 1 be
a pair of incomparable nodes in Tϕi . (If n = 0, let ψ1� 1 be any node
in Tϕ1

.) Since the proposition fails for the nodes ψ1� 1� � � � � ψ2n� 1, there
are distinct branches γi� 1, γ′i� 1 passing through ψi� 1, 1 ≤ i ≤ 2n, and
a number L1 so that 
γi� 1� γ′i� 1 � 1 ≤ i ≤ 2n� have separated at level
L1, but

∣∣∣∣∣∣χ
ξi�1≤i≤2n+1�
∣∣∣∣∣∣ > �2�1 − δ��n+1 for any sequence of nodes

�ξ1� � � � � ξ2n+1� ∈ S�γ1� 1� γ
′
1� 1� � � � � γ2n� 1� γ

′
2n� 1�L1�. However, since the

proposition holds for the nodes ϕ1� � � � � ϕ2n−1 , we obtain a sequence of
nodes �ξ1� 1� � � � � ξ2n� 1� ∈ S�γ′1� 1� � � � � γ′2n� 1�L1� such that∣∣∣∣∣∣χ
ξi�1�1≤i≤2n�

∣∣∣∣∣∣ ≤ �2�1 − δ��n�
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(Note that the preceding statement holds trivially if n = 0.) For each i,
choose a node ψi� 2 in γi� 1 such that �ψi� 2� > L1. Then ψ2i−1� 2 and ψ2i� 2 are
a pair of incomparable nodes in Tϕi , and the argument may be repeated.
(If n = 0, repeat the argument using the node ψ1� 2.) Inductively, we thus
obtain sequences of branches �γ1� r� γ

′
1� r � � � � � γ2n� r� γ

′
2n� r�∞r=1, a sequence

of numbers L1 < L2 < · · ·, and sequences of nodes �ξ1� r� � � � � ξ2n� r�∞r=1
such that

1. the branches 
γi� r� γ′i� r � 1 ≤ i ≤ 2n� have separated at level
Lr , r ≥ 1,

2.
∣∣∣∣∣∣χ
ξi�1≤i≤2n+1�

∣∣∣∣∣∣ > �2�1 − δ��n+1 for any sequence of nodes

�ξ1� � � � � ξ2n+1� ∈ S(γ1� r� γ
′
1� r � � � � � γ2n� r� γ

′
2n� r �Lr

)
�

3. �ξ1� r� � � � � ξ2n� r� ∈ S
(
γ′1� r � � � � � γ

′
2n� r �Lr

)
, and∣∣∣∣∣∣χ
ξi� r �1≤i≤2n�

∣∣∣∣∣∣ ≤ �2�1 − δ��n� r ≥ 1�

4. ξi� r ∈ T
(
ϕ
λi� s
Ls

)
whenever r > s, and 1 ≤ i ≤ 2n.

It follows that if r > s, then

�ξ1� r� ξ1� s� � � � � ξ2n� r� ξ2n� s� ∈ S
(
γ1� s� γ

′
1� s� � � � � γ2n� s� γ

′
2n� s�Ls

)
� (12)

Let xr = �2�1 − δ��−nχ
ξi� r �1≤i≤2n�, r ≥ 1. By Item 3, ���xr ��� ≤ 1. Moreover,
because of (12), if r > s, then

���xr − xs��� ≥ ε�xr − xs�X = 2n+1ε/�2�1 − δ��n ≥ 2ε�

Thus �xr� is 2ε-separated in the norm ��� · ���. By the choice of δ, there are
r > s such that ���xr + xs���/2 ≤ 1 − δ. Therefore, ���χ
ξ1� r �ξ1� s�����ξ2n� r �ξ2n� s���� ≤
�2�1 − δ��n+1. But this contradicts Item 2 and the condition (12).

Theorem 5. There is no equivalent 2-NUC norm on X.

Proof. In the notation of the statement of Proposition 4, we obtain,
for each n, nodes ψ1� � � � � ψ2n+1 such that ���χ
ψi�1≤i≤2n+1���� ≤ �2�1 − δ��n+1

and �χ
ψi�1≤i≤2n+1��X = 2n+1. Hence ��� · ��� cannot be an equivalent norm
on X.

The proof that the space Y has no equivalent 1-β norm follows along
similar lines. Suppose that ��� · ��� is an equivalent 1-β norm on Y . We
may assume that ε�·�Y ≤ ��� · ��� ≤ �·�Y for some ε > 0. Let δ = δ�ε� be
the constant obtained from the definition of 1-β for the norm ��� · ���. Let
n ∈ � ∪ 
0� and denote the set 
ϕ ∈ T � �ϕ� = n� by ).

Proposition 6. For any m, 0 ≤ m ≤ n, any subset )′ of ) with �)′� =
2m, and any p ∈ �, there exists an acceptable set A ⊆ ∪ϕ∈)′Sϕ such that
�A� = 2m, min
�ϕ� � ϕ ∈ A� ≥ p, and ���χA��� ≤ 2m�1 − δ�m.
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Proof. The case m = 0 is trivial. Suppose the proposition holds for
some m, 0 ≤ m < n. Let )′ ⊆ ), �)′� = 2m+1, and let p ∈ �. Divide
)′ into disjoint subsets )1 and )2 such that �)1� = �)2� = 2m. By the
inductive hypothesis, there exist acceptable sets B and Cj , j ∈ �, such that
B ⊆ ∪ϕ∈)1

Sϕ, �B� = 2m, min
�ϕ� � ϕ ∈ B� ≥ p, and ���χB��� ≤ 2m�1 − δ�m;
and also Cj ⊆ ∪ϕ∈)2

Sϕ, �Cj� = 2m, min
�ϕ� � ϕ ∈ C1� ≥ p, Cj � Cj+1, and
���χCj ��� ≤ 2m�1 − δ�m for all j ∈ �. It is easily verified that the sequence(
2−m�1 − δ�−mχCj

)
is ε-separated and has norm bounded by 1 with respect

to ��� · ���. It follows that there exists j0 such that 2−m�1 − δ�−m∣∣∣∣∣∣χB +
χCj0

∣∣∣∣∣∣ ≤ 2�1− δ�. The induction is completed by taking A to be B ∪Cj0 .
Using the same argument as in Theorem 5, we obtain

Theorem 7. There is no equivalent 1-β norm on Y .

We close with the obvious problem.

Problem. For k ≥ 3, can every k-NUC Banach space, respectively, k-β
Banach space, be equivalently renormed to be �k − 1�-β, respectively,
k-NUC?
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