doi:10.1006/jmaa.2000.7104, available online at http://www.idealibrary.com on IDE

An Asymptotic Property of Schachermayer's Space under Renorming

Denka Kutzarova¹

Institute of Mathematics, Bulgarian Academy of Sciences, Sofia, Bulgaria E-mail: denka@math.sc.edu

and

Denny H. Leung

Department of Mathematics, National University of Singapore, Singapore 117543 E-mail: matlhh@nus.edu.sg

Submitted by Jean Mawhin

Received February 28, 2000

Let *X* be a Banach space with closed unit ball *B*. Given $k \in \mathbb{N}$, *X* is said to be k- β , respectively, (k + 1)-nearly uniformly convex ((k + 1)-NUC), if for every $\varepsilon > 0$ there exists δ , $0 < \delta < 1$, so that for every $x \in B$ and every ε -separated sequence $(x_n) \subseteq B$ there are indices $(n_i)_{i=1}^{k}$, respectively, $(n_i)_{i=1}^{k+1}$, such that $(1/(k + 1)) ||x + \sum_{i=1}^{k} x_{n_i}|| \le 1 - \delta$, respectively, $(1/(k + 1)) ||\sum_{i=1}^{k+1} x_{n_i}|| \le 1 - \delta$. It is shown that a Banach space constructed by Schachermayer is 2- β , but is not isomorphic to any 2-NUC Banach space which cannot be equivalently renormed to be 1- β . © 2000 Academic Press

Key Words: nearly uniform convexity; renorming; Schachermayer's space.

1. INTRODUCTION

In [4], Huff introduced the notion of nearly uniform convexity (NUC). A Banach space X with closed unit ball B is said to be NUC if for any $\varepsilon > 0$ there exists $\delta < 1$ such that for every ε -separated sequence in B, $\operatorname{co}((x_n)) \cap \delta B \neq \emptyset$. Here $\operatorname{co}(A)$ denotes the convex hull of a set A; a sequence (x_n)

¹Current address: Department of Mathematics, University of South Carolina, SC 29208.

is ε -separated if $\inf\{\|x_n - x_m\| : m \neq n\} \ge \varepsilon$. Huff showed that a Banach space is NUC if and only if it is reflexive and has the uniform Kadec-Klee property (UKK). Recall that a Banach space X with closed unit ball B is said to be UKK if for any $\varepsilon > 0$ there exists $\delta < 1$ such that for every ε -separated sequence (x_n) in B which converges weakly to some $x \in X$ we have $\|x\| \le \delta$. A recent result of Knaust *et al.* [5] gives an isomorphic characterization of spaces having NUC. They showed that a separable reflexive Banach space X is isomorphic to a UKK space if and only if X has a finite Szlenk index. More recent results concerning Szlenk indices and renormings are to be found in [2, 3].

Another property related to NUC is the property (β) introduced by Rolewicz [11]. In [6], building on the work of Prus [9, 10], the first author showed that a separable Banach space X is isomorphic to a space with (β) if and only if both X and X^{*} are isomorphic to NUC spaces. In [7], a sequence of properties lying in between (β) and NUC is defined. Let X be a Banach space with closed unit ball B. Given $k \in \mathbb{N}$, X is said to be k- β , respectively, (k + 1)-nearly uniformly convex ((k + 1)-NUC), if for every $\varepsilon > 0$ there exists δ , $0 < \delta < 1$, so that for every $x \in B$ and every ε -separated sequence (x_n) $\subseteq B$ there are indices (n_i)^k_{i=1}, respectively (n_i)^{k+1}_{i=1}, such that

$$\frac{1}{k+1}\left\|x+\sum_{i=1}^{k}x_{n_i}\right\|\leq 1-\delta,$$

respectively

$$\frac{1}{k+1}\left\|\sum_{i=1}^{k+1}x_{n_i}\right\| \le 1-\delta.$$

It follows readily from the definitions that every k- β space is (k + 1)-NUC, every (k + 1)-NUC space is (k + 1)- β , and that every k- β space (or (k + 1)-NUC space) is NUC. It is proved in [7] that property 1- β is equivalent to the property (β) of Rolewicz. It is worth noting that the "non-uniform" version of property k-NUC has been well-studied. For $k \ge 2$, a Banach space X is said to have property (kR) if every sequence (x_n) in X which satisfies $\lim_{n_1} \cdots \lim_{n_k} ||x_{n_1} + \cdots + x_{n_k}|| = k \lim_n ||x_n||$ is convergent [1]. It is clear that the property (kR) implies property ((k + 1)R). It follows from James' characterization of reflexivity that every (kR) space is reflexive. A recent result of Odell and Schlumprecht [8] shows that a separable Banach space is reflexive if and only if it can be equivalently renormed to have property (2R). Thus, all the properties (kR) are isomorphically equivalent. Similarly, "non-asymptotic" properties are also isomorphically equivalent to each other as they are all equivalent to superreflexivity. In this paper, we find that the situation is different for the properites k-NUC and $k-\beta$. To be precise, we use the space constructed by Schachermayer in [12] and a variant to distinguish the properties 1- β , 2-NUC, and 2- β isomorphically.

Let $T = \bigcup_{n=0}^{\infty} \{0, 1\}^n$ be the dyadic tree. If $\varphi = (\varepsilon_i)_{i=1}^m$ and $\psi = (\delta_i)_{i=1}^n$ are nodes in *T*, we say that $\varphi \leq \psi$ if $m \leq n$ and $\varepsilon_i = \delta_i$ for $1 \leq i \leq m$. Also, $\emptyset \leq \varphi$ for all $\varphi \in T$. Two nodes φ and ψ are said to be comparable if either $\varphi \leq \psi$ or $\psi \leq \varphi$; they are incomparable otherwise. Let $\varphi \in T$, denote by T_{φ} or $T(\varphi)$ the subtree rooted at φ , i.e., the subtree consisting of all nodes ψ such that $\varphi \leq \psi$. A node $\varphi \in T$ has length *n* if $\varphi \in \{0, 1\}^n$. The length of φ is denoted by $|\varphi|$. Given $\varphi = (\varepsilon_i)_{i=1}^n \in T$, let S_{φ} be the set consisting of all nodes $\psi = (\delta_i)_{i=1}^m$ such that $m \geq n$, $\delta_i = \varepsilon_i$ if $1 \leq i \leq n$, and $\delta_i = 0$ otherwise. Say that a subset *A* of *T* is admissible, respectively, acceptable, if there exists $n \in \mathbb{N} \cup \{0\}$ such that (a) $A \subseteq \bigcup_{|\varphi|=n} T_{\varphi}$ and (b) $|A \cap T_{\varphi}| \leq 1$ for all φ with $|\varphi| = n$. For subsets *A* and *B* of *T*, say that $A \ll B$ if $\max\{|\varphi| : \varphi \in A\} < \min\{|\varphi| : \varphi \in B\}$. Let $c_{00}(T)$ be the space of all finitely supported real-valued functions defined on *T*. For $x \in c_{00}(T)$, let

$$\|x\|_{X} = \sup\left(\sum_{i=1}^{k} \left(\sum_{\varphi \in A_{i}} |x(\varphi)|\right)^{2}\right)^{1/2}$$

where the sup is taken over all $k \in \mathbb{N}$ and all sequences of admissible subsets $A_1 \ll A_2 \ll \cdots \ll A_k$ of T. The norm $\|\cdot\|_Y$ is defined similarly except that the sup is taken over all sequences of acceptable subsets $A_1 \ll$ $A_2 \ll \cdots \ll A_k$ of T. Schachermayer's space X is the completion of $c_{00}(T)$ with respect to the norm $\|\cdot\|_X$. The completion of $c_{00}(T)$ with respect to $\|\cdot\|_Y$ is denoted by Y.

Remark. The space X defined here differs from Schachermayer's original definition and is only isomorphic to the space defined in [12].

In [7], it was shown that X (with the norm given in [12]) is 8-NUC but is not isomorphic to any 1- β space. We first show that $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ are 2- β and 2-NUC respectively. We begin with a trivial lemma concerning the ℓ^2 -norm $\|\cdot\|_2$.

LEMMA 1. If α , β , and γ are vectors in the unit ball of ℓ^2 , and $\|\alpha + \beta + \gamma\|_2/3 \ge 1 - \delta$, then $\max\{\|\alpha - \beta\|_2, \|\alpha - \gamma\|_2, \|\beta - \gamma\|_2\} \le \sqrt{18\delta}$.

PROPOSITION 2. $(X, \|\cdot\|_X)$ is 2- β .

Proof. Let x and $x_n, n \ge 1$, be elements in the unit ball of X such that (x_n) is ε -separated. Choose $\delta > 0$ such that

$$(1-3\delta)^{2} + \left[\left(1 - 24\delta \right)^{1/2} - \left(1 - \varepsilon^{2}/9 \right)^{1/2} \right]^{2} > 1.$$
 (1)

Without loss of generality, we may assume that (x_n) converges pointwise (as a sequence of functions on *T*) to some $y_0: T \to \mathbb{R}$. It is clear that if $y, z \in X$ and supp $y \ll \text{supp } z$, then $||y + z||_X^2 \ge ||y||_X^2 + ||z||_X^2$. It follows easily that $y_0 \in X$. Let $y_n = x_n - y_0$. It may be assumed that $(||y_n||_X)$ converges. As (x_n) is ε -separated, so is (y_n) . We may thus further assume that $||y_n||_X > \varepsilon/3$ for all $n \in \mathbb{N}$. By going to a subsequence and perturbing the vectors x, y_0 , and $y_n, n \ge 1$, by as little as we please, it may be further assumed that (a) they all belong to $c_{00}(T)$, (b) supp $x \cup \text{supp } y_0 \ll \text{supp } y_1 \ll \text{supp } y_2$, and (c) $||y_1\chi_{T\varphi}||_{\infty} = ||y_2\chi_{T\varphi}||_{\infty}$ for all φ such that $|\varphi| \le M$, where $||\cdot||_{\infty}$ is the sup norm and $M = \max\{|\psi|: \psi \in \text{supp } x \cup \text{supp } y_0\}$.

Claim. Let A be an admissible set such that $\min\{|\varphi| : \varphi \in A\} \le M$. If $\sum_{\varphi \in A} |y_1(\varphi)| = c$, and $\sum_{\varphi \in A} |y_2(\varphi)| = d$, then there exists an admissble set B such that

$$egin{aligned} \min\{|arphi|:arphi\in A\}&\leq\min\{|arphi|:arphi\in B\}\ &\leq\max\{|arphi|:arphi\in B\}\leq\max\{|arphi|:arphi\in A\}, \end{aligned}$$

 $A \cap \text{supp } y_0 \subseteq B$, and $\sum_{\varphi \in B} |y_1(\varphi)| \ge c + d$.

To prove the claim, let N be such that $A \subseteq \bigcup_{|\varphi|=N} T_{\varphi}$ and let $|A \cap T_{\varphi}| \leq 1$ for all φ with $|\varphi| = N$. Then $N \leq M$. Now, for each $\psi \in A \cap \text{supp } y_2$, $\psi \in T_{\varphi}$ for some φ with $|\varphi| = N \leq M$. It follows that

$$\left\|y_1\chi_{T_{\varphi}}\right\|_{\infty} = \left\|y_2\chi_{T_{\varphi}}\right\|_{\infty} \ge |y_2(\psi)|.$$

Hence, there exists a $\psi' \in T_{\varphi}$ such that $|y_1(\psi')| \ge |y_2(\psi)|$. Now let

 $B = (A \cap (\text{supp } y_0 \cup \text{supp } y_1)) \cup \{\psi' : \psi \in A \cap \text{supp } y_2\}.$

It is easy to see that the set B satisfies the claim.

Suppose that $||x + x_1 + x_2||_X/3 \ge 1 - \delta$. Let $x + x_1 + x_2 = x + 2y_0 + y_1 + y_2$ be normed by a sequence of admissible sets $A_1 \ll A_2 \ll \cdots \ll A_k$. Denote by $\alpha = (a_i)_{i=1}^k$, $\beta = (b_i)_{i=1}^k$, $\gamma = (c_i)_{i=1}^k$, and $\eta = (d_i)_{i=1}^k$ respectively the sequences $(\sum_{\varphi \in A_i} |x(\varphi)|)_{i=1}^k$, $(\sum_{\varphi \in A_i} |y_0(\varphi)|)_{i=1}^k$, $(\sum_{\varphi \in A_i} |y_1(\varphi)|)_{i=1}^k$, and $(\sum_{\varphi \in A_i} |y_2(\varphi)|)_{i=1}^k$. Now

$$\|\alpha + (\beta + \gamma) + (\beta + \eta)\|_2/3 \ge \|x + x_1 + x_2\|_X/3 \ge 1 - \delta.$$

But $\|\alpha\|_2 \leq \|x\|_X \leq 1$. Similarly, $\|\beta + \gamma\|_2$, $\|\beta + \eta\|_2 \leq 1$. By Lemma 1, we obtain that $\|\alpha - \beta - \gamma\|_2$, $\|\alpha - \beta - \eta\|_2$, and $\|\gamma - \eta\|_2$ are all $\leq \sqrt{18\delta}$. Let *j* be the largest integer such that $a_j \neq 0$. Note that this implies supp $x \cap A_j \neq \emptyset$; hence (supp $y_1 \cup$ supp $y_2) \cap A_i = \emptyset$ for all i < j. Thus, $c_i = d_i = 0$ for all i < j. Now

$$\|(b_{j+1}+d_{j+1},\ldots,b_k+d_k)\|_2 \le \|\alpha-\beta-\eta\|_2 \le \sqrt{18\delta}.$$
 (2)

Moreover,

$$1 \ge \|x_2\|_X^2 = \|y_0 + y_2\|_X^2 \ge \|y_0\|_X^2 + \|y_2\|_X^2 \ge \|\beta\|_2^2 + \|y_2\|_X^2$$

$$\implies \qquad \|\beta\|_2^2 \le 1 - \varepsilon^2/9.$$
(3)

Hence

$$3(1-\delta) \leq \|\alpha\|_{2} + \|\beta + \gamma\|_{2} + \|\beta + \eta\|_{2} \leq 2 + \|\beta + \eta\|_{2}$$

$$\implies (1-3\delta)^{2} \leq \|\beta + \eta\|_{2}^{2}$$

$$= \|(b_{1}, \dots, b_{j-1}, b_{j} + d_{j})\|_{2}^{2}$$

$$+ \|(b_{j+1} + d_{j+1}, \dots, b_{k} + d_{k})\|_{2}^{2}$$

$$\leq (\|(b_{1}, \dots, b_{j-1}, b_{j})\|_{2} + d_{j})^{2} + 18\delta \qquad \text{by (2)}$$

$$\leq (\|\beta\|_{2} + d_{j})^{2} + 18\delta$$

$$\leq ((1 - \varepsilon^{2}/9)^{1/2} + d_{j})^{2} + 18\delta. \qquad \text{by (3)}$$

Therefore,

$$d_j \ge (1 - 24\delta)^{1/2} - (1 - \varepsilon^2/9)^{1/2}.$$
 (4)

Note that by the first part of the argument above we also obtain that

$$\|\beta + \gamma\|_2 \ge 1 - 3\delta. \tag{5}$$

Since $A_j \cap \text{supp } x \neq \emptyset$, we may apply the claim to obtain an admissible set *B*. Using the sequence of admissible sets $A_1 \ll \cdots \ll A_{j-1} \ll B \ll A_{j+1} \ll \cdots \ll A_k$ to norm $x_1 = y_0 + y_1$ yields

$$1 \ge \|y_0 + y_1\|_X^2 \ge \|(b_1, \dots, b_{j-1}, b_j + c_j + d_j, b_{j+1} + c_{j+1}, \dots, b_k + c_k)\|_2^2$$

$$\ge \|(b_1, \dots, b_{j-1}, b_j + c_j, b_{j+1} + c_{j+1}, \dots, b_k + c_k)\|_2^2 + d_j^2$$

$$= \|\beta + \gamma\|_2^2 + d_j^2$$

$$\ge (1 - 3\delta)^2 + \left[(1 - 24\delta)^{1/2} - (1 - \varepsilon^2/9)^{1/2}\right]^2$$

by (5) and (4). As the last expression is >1 by (1), we have reached a contradiction. \blacksquare

Remark. The same method can be used to show that X is $2-\beta$ with the norm given in [12].

PROPOSITION 3. $(Y, \|\cdot\|_Y)$ is 2-NUC.

Proof. Let (x_n) be an ε -separated sequence in the unit ball of Y. Choose $\delta > 0$ so that

$$\delta' = 12\delta + 2\sqrt{8\delta} \le \varepsilon^2 / 18 \tag{6}$$

and

$$1 - 2\delta - (2 + \sqrt{8})\sqrt{\delta} > \sqrt{1 - (\varepsilon/3)^2}.$$
(7)

As in the proof of the previous proposition, it may be assumed that there exists a sequence $(y_n)_{n=0}^{\infty}$ in Y such that $x_n = y_0 + y_n$, supp $y_{n-1} \ll \text{supp } y_n$ for all $n \in \mathbb{N}$, and $\|y_j \chi_{S_{\varphi}}\|_{\infty} = \|y_k \chi_{S_{\varphi}}\|_{\infty}$ whenever $|\varphi| \le M_i$ and j, k > i, where $M_i = \max\{|\psi| : \psi \in \text{supp } y_i\}$. We may also assume that $(\|y_n\|_Y)$ converges. Since $(y_n)_{n=1}^{\infty}$ is ε -separated, $\eta = \lim \|y_n\|_Y \ge \varepsilon/2$. The choice of δ' in (6) guarantees that $4(\eta^2 - \delta')^{1/2} > 7\eta/2 \ge 3\eta + \sqrt{\delta'}$. Hence there exist $\eta_+ > \eta > \eta_- > \varepsilon/3$ such that

$$4\theta \ge 3\eta_{+} + \sqrt{(\eta_{+})^{2} - (\eta_{-})^{2} + \delta'}, \tag{8}$$

where $\theta = \sqrt{(\eta_-)^2 - \delta'}$. We may now further assume that $\eta_+ \ge \|y_n\|_Y \ge \eta_-$ for all $n \in \mathbb{N}$. Now suppose that $\|x_m + x_n\|_Y/2 > 1 - \delta$ for all $m, n \in \mathbb{N}$.

Claim. For all m < n in \mathbb{N} , there exists an acceptable set A such that $\sum_{\varphi \in A} |y_i(\varphi)| > \theta$ for i = m, n.

First observe that there are acceptable sets $A_1 \ll A_2 \ll \cdots \ll A_k$ such that $\sum_{i=1}^k (\sum_{\varphi \in A_i} |(2y_0 + y_m + y_n)(\varphi)|)^2 > 4(1 - \delta)^2$. Let $\alpha = (a_i)_{i=1}^k$, $\beta = (b_i)_{i=1}^k$, and $\gamma = (c_i)_{i=1}^k$ be the sequences $(\sum_{\varphi \in A_i} |y_j(\varphi)|)_{i=1}^k$ for j = 0, m, n, respectively. Then $||2\alpha + \beta + \gamma||_2 > 2(1 - \delta)$ and $||\alpha + \beta||_2 \le ||y_0 + y_m||_Y = ||x_m||_Y \le 1$. Similarly, $||\alpha + \gamma||_2 \le 1$. It follows from the parallelogram law that $||\beta - \gamma||_2 < 4 - 4(1 - \delta)^2 \le 8\delta$. Note also that $||\alpha + \beta||_2 \ge ||2\alpha + \beta + \gamma||_2 - ||\alpha + \gamma||_2 > 1 - 2\delta$. Similarly, $||\alpha + \gamma||_2 > 1 - 2\delta$. Let j_1 , respectively j_2 , be the largest j such that $a_j \ne 0$, respectively $b_j \ne 0$. Since supp $y_0 \cap A_{j_1} \ne \emptyset$, $b_1 = \cdots = b_{j_1-1} = 0$. Similarly, $c_1 = \cdots = c_{j_2-1} = 0$. Moreover, $j_1 \le j_2$. Let us show that $j_1 < j_2$. For otherwise, $j_1 = j_2 = j$. Then

$$|b_j - c_j| \le \|\beta - \gamma\|_2 < \sqrt{8\delta}.$$
(9)

Consider the set A_j . Choose $p \in \mathbb{N} \cup \{0\}$ such that $A_j \subseteq \bigcup_{|\varphi|=p} S_{\varphi}$ and $|A_j \cap S_{\varphi}| \leq 1$ for all φ with $|\varphi| = p$. Note that $p \leq M_0$. Let $G = \{\varphi : |\varphi| = p, A_j \cap S_{\varphi} \cap \text{supp } y_m \neq \emptyset\}$. If $\varphi \in G$, $||y_n \chi_{S_{\varphi}}||_{\infty} = ||y_m \chi_{S_{\varphi}}||_{\infty}$. Hence there exists $\psi_{\varphi} \in S_{\varphi} \cap \text{supp } y_n$ such that $|y_n(\psi_{\varphi})| = ||y_m \chi_{S_{\varphi}}||_{\infty}$. It is easy to see that the set $B = \{\psi_{\varphi} : \varphi \in G\} \cup (A_j \cap \text{supp } y_0) \cup (A_j \cap \text{supp } y_n)$

is acceptable and that $\min\{|\varphi| : \varphi \in A_j\} \le \min\{|\varphi| : \varphi \in B\}$. Hence $A_1 \ll \cdots \ll A_{j-1} \ll B$. Thus

~

$$\begin{split} 1 &\geq \left\| x_n \right\|_Y^2 = \left\| y_0 + y_n \right\|_Y^2 \geq \sum_{i=1}^{j-1} |a_i|^2 + \left(\sum_{\varphi \in B} |(y_0 + y_n)(\varphi)| \right)^2 \\ &\geq \sum_{i=1}^{j-1} |a_i|^2 + \left(\sum_{\varphi \in A_j} |y_0(\varphi)| + \sum_{\varphi \in A_j} |y_n(\varphi)| + \sum_{\varphi \in G} |y_n(\psi_\varphi)| \right)^2 \\ &\geq \sum_{i=1}^{j-1} |a_i|^2 + \left(|a_j| + |c_j| + \sum_{\varphi \in G} \|y_m \chi_{S_\varphi}\|_{\infty} \right)^2 \\ &\geq \sum_{i=1}^{j-1} |a_i|^2 + \left(|a_j| + |c_j| + \sum_{\varphi \in A_j} |y_m(\varphi)| \right)^2 \\ &\geq \left\| (a_1, \dots, a_{j-1}, a_j + b_j + c_j) \right\|_2^2 \\ &\geq \left\| (a_1, \dots, a_{j-1}, a_j + b_j) \right\|_2^2 + |c_j|^2 \\ &\geq \|\alpha + \beta\|_2^2 + (|b_j| - \sqrt{8\delta})^2 \end{split}$$

by (9),

$$> (1-2\delta)^2 + \left(\|\boldsymbol{\beta}\|_2 - \sqrt{8\delta}\right)^2.$$

Therefore, $\|\beta\|_2 < (2 + \sqrt{8})\sqrt{\delta}$. It follows that

$$\|\alpha\|_{2} \ge \|\alpha + \beta\|_{2} - \|\beta\|_{2} > 1 - 2\delta - (2 + \sqrt{8})\sqrt{\delta}.$$
 (10)

However,

$$\|\alpha\|_{2}^{2} \leq \|y_{0}\|_{Y}^{2} \leq \|x_{m}\|_{Y}^{2} - \|y_{m}\|_{Y}^{2} \leq 1 - (\eta_{-})^{2} < 1 - (\varepsilon/3)^{2}.$$
(11)

Combining (10) and (11) with the choice of δ in (7) yield a contradiction. This shows that $j_1 < j_2$. Applying the facts that $\|\alpha + \beta\|_2 > 1 - 2\delta$ and $\|(b_{j_1}, \ldots, b_{j_2-1})\|_2 \le \|\beta - \gamma\|_2 < \sqrt{8\delta}$, we obtain that

$$\begin{split} \left|b_{j_2}\right|^2 &> (1-2\delta)^2 - \left(\|\alpha\|_2 + \sqrt{8\delta}\right)^2 \\ &\geq (1-2\delta)^2 - \left(\sqrt{1-(\eta_-)^2} + \sqrt{8\delta}\right)^2 \geq \theta^2. \end{split}$$

Similarly,

$$(1-2\delta)^{2} < \|\alpha + \gamma\|_{2}^{2} = \|\alpha\|_{2}^{2} + |c_{j_{2}}|^{2} + \left\|(c_{j_{2}+1}, \dots, c_{k})\right\|_{2}^{2}$$

$$\leq \|\alpha\|_{2}^{2} + |c_{j_{2}}|^{2} + \|\beta - \gamma\|_{2}^{2}$$

$$\leq 1 - (\eta_{-})^{2} + |c_{j_{2}}|^{2} + 8\delta.$$

Hence $|c_{j_2}| > \theta$. Thus the set $A = A_{j_2}$ satisfies the requirements of the claim.

Taking m = 1, n = 2, and m = 2, n = 3, respectively, we obtain acceptable sets A and A' from the claim. Since $A \cap \text{supp } y_1 \neq \emptyset$, if $\varphi \in A \cap \text{supp } y_2$, $\varphi \in S_{\varphi'}$ for some φ' such that $|\varphi'| \leq M_1$. This implies that there exists $\psi_{\varphi} \in S_{\varphi'}$ such that $|y_3(\psi_{\varphi})| = ||y_3\chi_{S_{\varphi'}}||_{\infty} = ||y_2\chi_{S_{\varphi'}}||_{\infty} \geq |y_2(\varphi)|$. Let $q = \min\{|\varphi| : \varphi \in \text{supp } y_3\}$ and $\Phi = \{\sigma \in T : |\sigma| = q\}$. For $\sigma \in \Phi$, define $s(\sigma) = |y_3(\psi_{\varphi})|$ if there exists $\varphi \in A \cap \text{supp } y_2$ such that $\psi_{\varphi} \in S_{\sigma}$; otherwise, let $s(\sigma) = 0$. Also, let $t(\sigma) = |y_3(\varphi)|$ if there exists $\varphi \in A' \cap \text{supp } y_3 \cap S_{\sigma}$; otherwise, let $t(\sigma) = 0$. Finally, let $r(\sigma) = ||y_3\chi_{S_{\sigma}}||_{\infty}$ for all $\sigma \in \Phi$. Then $r(\sigma) \geq s(\sigma) \geq 0$ for all $\sigma \in \Phi$, $\sum_{\sigma} r(\sigma) \leq ||y_3||_Y < \eta_+$, and $\sum_{\sigma} s(\sigma) > \theta$. Hence $\sum_{\sigma} (r(\sigma) - s(\sigma)) < \eta_+ - \theta$. Similarly, $\sum_{\sigma} (r(\sigma) - t(\sigma)) < \eta_+ - \theta$. Therefore, $\sum_{\sigma} |t(\sigma) - s(\sigma)| < 2(\eta_+ - \theta)$. Let B be the set of all nodes in $A \cap \text{supp } y_2$ that are comparable with some node in $A' \cap \text{supp } y_3$. Then

$$\sum_{\varphi \in A \setminus B} |y_2(\varphi)| \leq \sum_{\varphi \in A \setminus B} |y_3(\psi_{\varphi})| \leq \sum_{\sigma} |t(\sigma) - s(\sigma)| < 2(\eta_+ - \theta).$$

Hence $\sum_{\varphi \in B} |y_2(\varphi)| > \theta - 2(\eta_+ - \theta) = 3\theta - 2\eta_+$. Now let $l = \min\{|\varphi| : \varphi \in A' \cap \text{supp } y_2\}$. Divide B into $B_1 = \{\varphi \in B : |\varphi| < l\}$ and $B_2 = \{\varphi \in B : |\varphi| \ge l\}$. Since B_1 and $A' \cap \text{supp } y_2$ are acceptable sets such that $B_1 \ll A' \cap \text{supp } y_2$,

$$(\eta_{+})^{2} > \left\| y_{2} \right\|_{Y}^{2} \ge \left(\sum_{\varphi \in B_{1}} \left| y_{2}(\varphi) \right| \right)^{2} + \left(\sum_{\varphi \in A'} \left| y_{2}(\varphi) \right| \right)^{2}$$
$$> \left(\sum_{\varphi \in B_{1}} \left| y_{2}(\varphi) \right| \right)^{2} + \theta^{2}.$$

Thus

$$\sum_{arphi \in B_2} \left| y_2(arphi)
ight| > 3 heta - 2\eta_+ - \sqrt{(\eta_+)^2 - heta^2}.$$

Finally, since $B_2 \cup (A' \cap \text{supp } y_2)$ is acceptable,

$$egin{aligned} &\eta_+ > \left\|y_2
ight\|_Y &\geq \sum_{arphi \in B_2} \left|y_2(arphi)
ight| + \sum_{arphi \in A' \cap ext{ supp } y_2} \left|y_2(arphi)
ight| \ &> 3 heta - 2\eta_+ - \sqrt{(\eta_+)^2 - heta^2} + heta. \end{aligned}$$

This contradicts inequality (8).

Before proceeding further, let us introduce some more notation. A branch in *T* is a maximal subset of *T* with respect to the partial order \leq . If γ is a branch in *T* and $n \in \mathbb{N} \cup \{0\}$, let φ_n^{γ} be the node of length *n* in γ . A collection of pairwise distinct branches is said to have separated at level *L* if for any pair of distinct branches γ and γ' in the collection the nodes of length *L* belonging to γ and γ' respectively are distinct. Finally, if $(\gamma_1, \ldots, \gamma_k)$ is a sequence of pairwise distinct branches which have separated at a certain level *L*, we say that a sequence of nodes $(\varphi_1, \ldots, \varphi_k) \in S(\gamma_1, \ldots, \gamma_k; L)$ if $\varphi_i \in T(\varphi_L^{\gamma_i}), 1 \leq i \leq k$. Let us note that in this situation $\|\chi_{\{\varphi_i: 1 \leq i \leq k\}}\|_{\chi} = k$.

Suppose $||| \cdot |||$ is an equivalent norm on X which is 2-NUC. It may be assumed that there exists $\varepsilon > 0$ so that $\varepsilon ||x||_X \le |||x||| \le ||x||_X$ for all $x \in X$. Let $\delta = \delta(2\varepsilon) > 0$ be the number obtained from the definition of 2-NUC for the norm $||| \cdot |||$.

PROPOSITION 4. Let $n \in \mathbb{N} \cup \{0\}$. Then there are pairwise incomparable nodes $\varphi_1, \ldots, \varphi_{2^n}$ such that whenever γ_i, γ'_i are distinct branches passing through $\varphi_i, 1 \leq i \leq 2^n$, and $\{\gamma_i, \gamma'_i : 1 \leq i \leq 2^n\}$ have separated at level L, there is a sequence of nodes $(\psi_1, \ldots, \psi_{2^{n+1}}) \in S(\gamma_1, \gamma'_1, \ldots, \gamma_{2^n}, \gamma'_{2^n}; L)$ satisfying $|||\chi_{\{\psi_i:1 \leq i \leq 2^{n+1}\}}||| \leq (2(1-\delta))^{n+1}$.

Proof. Assume that *n* is the first non-negative integer where the proposition fails. Let $\varphi_1, \ldots, \varphi_{2^{n-1}}$ be the nodes obtained by applying the proposition for the case n-1. (If n = 0, begin the argument with any node φ_1 .) For each $i, 1 \leq i \leq 2^{n-1}$, let $\psi_{2i-1,1}$ and $\psi_{2i,1}$ be a pair of incomparable nodes in T_{φ_i} . (If n = 0, let $\psi_{1,1}$ be any node in T_{φ_1} .) Since the proposition fails for the nodes $\psi_{1,1}, \ldots, \psi_{2^n,1}$, there are distinct branches $\gamma_{i,1}, \gamma'_{i,1}$ passing through $\psi_{i,1}, 1 \leq i \leq 2^n$, and a number L_1 so that $\{\gamma_{i,1}, \gamma'_{i,1} : 1 \leq i \leq 2^n\}$ have separated at level L_1 , but $|||\chi_{\{\xi_i:1\leq i\leq 2^{n+1}\}}||| > (2(1-\delta))^{n+1}$ for any sequence of nodes $(\xi_1, \ldots, \xi_{2^{n+1}}) \in S(\gamma_{1,1}, \gamma'_{1,1}, \ldots, \gamma_{2^n,1}, \chi'_{2^n,1}; L_1)$. However, since the proposition holds for the nodes $\varphi_1, \ldots, \varphi_{2^{n-1}}$, we obtain a sequence of nodes $(\xi_{1,1}, \ldots, \xi_{2^n,1}) \in S(\gamma'_{1,1}, \ldots, \gamma'_{2^n,1}; L_1)$ such that

$$|||\chi_{\{\xi_{i,1}:1\leq i\leq 2^n\}}||| \leq (2(1-\delta))^n.$$

(Note that the preceding statement holds trivially if n = 0.) For each *i*, choose a node $\psi_{i,2}$ in $\gamma_{i,1}$ such that $|\psi_{i,2}| > L_1$. Then $\psi_{2i-1,2}$ and $\psi_{2i,2}$ are a pair of incomparable nodes in T_{φ_i} , and the argument may be repeated. (If n = 0, repeat the argument using the node $\psi_{1,2}$.) Inductively, we thus obtain sequences of branches $(\gamma_{1,r}, \gamma'_{1,r}, \dots, \gamma_{2^n,r}, \gamma'_{2^n,r})_{r=1}^{\infty}$, a sequence of numbers $L_1 < L_2 < \cdots$, and sequences of nodes $(\xi_{1,r}, \dots, \xi_{2^n,r})_{r=1}^{\infty}$ such that

the branches {γ_{i,r}, γ'_{i,r} : 1 ≤ i ≤ 2ⁿ} have separated at level L_r, r ≥ 1,
 |||χ_{ξi:1≤i≤2ⁿ⁺¹}||| > (2(1 − δ))ⁿ⁺¹ for any sequence of nodes (ξ₁,..., ξ_{2ⁿ⁺¹}) ∈ S(γ_{1,r}, γ'_{1,r},..., γ_{2ⁿ,r}, γ'_{2ⁿ,r}; L_r),
 (ξ_{1,r},..., ξ_{2ⁿ,r}) ∈ S(γ'_{1,r},..., γ'_{2ⁿ,r}; L_r), and |||χ_{{ξi,r}:1≤i≤2ⁿ</sub>||| ≤ (2(1 − δ))ⁿ, r ≥ 1;

4. $\xi_{i,r} \in T(\varphi_{L_s}^{\lambda_{i,s}})$ whenever r > s, and $1 \le i \le 2^n$.

It follows that if r > s, then

$$(\xi_{1,r},\xi_{1,s},\ldots,\xi_{2^{n},r},\xi_{2^{n},s}) \in S(\gamma_{1,s},\gamma'_{1,s},\ldots,\gamma_{2^{n},s},\gamma'_{2^{n},s};L_{s}).$$
(12)

Let $x_r = (2(1 - \delta))^{-n} \chi_{\{\xi_{i,r}: 1 \le i \le 2^n\}}$, $r \ge 1$. By Item 3, $|||x_r||| \le 1$. Moreover, because of (12), if r > s, then

$$|||x_r-x_s||| \ge \varepsilon ||x_r-x_s||_X = 2^{n+1} \varepsilon/(2(1-\delta))^n \ge 2\varepsilon.$$

Thus (x_r) is 2ε -separated in the norm $||| \cdot |||$. By the choice of δ , there are r > s such that $|||x_r + x_s|||/2 \le 1 - \delta$. Therefore, $|||\chi_{\{\xi_{1,r},\xi_{1,s},\dots,\xi_{2^n,r},\xi_{2^n,s}\}}||| \le (2(1-\delta))^{n+1}$. But this contradicts Item 2 and the condition (12).

THEOREM 5. There is no equivalent 2-NUC norm on X.

Proof. In the notation of the statement of Proposition 4, we obtain, for each *n*, nodes $\psi_1, \ldots, \psi_{2^{n+1}}$ such that $|||\chi_{\{\psi_i:1 \le i \le 2^{n+1}\}}||| \le (2(1-\delta))^{n+1}$ and $\|\chi_{\{\psi_i:1 \le i \le 2^{n+1}\}}\|_X = 2^{n+1}$. Hence $||| \cdot |||$ cannot be an equivalent norm on *X*.

The proof that the space Y has no equivalent 1- β norm follows along similar lines. Suppose that $||| \cdot |||$ is an equivalent 1- β norm on Y. We may assume that $\varepsilon || \cdot ||_Y \le ||| \cdot ||| \le || \cdot ||_Y$ for some $\varepsilon > 0$. Let $\delta = \delta(\varepsilon)$ be the constant obtained from the definition of 1- β for the norm $||| \cdot |||$. Let $n \in \mathbb{N} \cup \{0\}$ and denote the set $\{\varphi \in T : |\varphi| = n\}$ by Φ .

PROPOSITION 6. For any $m, 0 \le m \le n$, any subset Φ' of Φ with $|\Phi'| = 2^m$, and any $p \in \mathbb{N}$, there exists an acceptable set $A \subseteq \bigcup_{\varphi \in \Phi'} S_{\varphi}$ such that $|A| = 2^m$, $\min\{|\varphi| : \varphi \in A\} \ge p$, and $|||\chi_A||| \le 2^m(1-\delta)^m$.

Proof. The case m = 0 is trivial. Suppose the proposition holds for some $m, 0 \le m < n$. Let $\Phi' \subseteq \Phi, |\Phi'| = 2^{m+1}$, and let $p \in \mathbb{N}$. Divide Φ' into disjoint subsets Φ_1 and Φ_2 such that $|\Phi_1| = |\Phi_2| = 2^m$. By the inductive hypothesis, there exist acceptable sets B and $C_j, j \in \mathbb{N}$, such that $B \subseteq \bigcup_{\varphi \in \Phi_1} S_{\varphi}, |B| = 2^m, \min\{|\varphi| : \varphi \in B\} \ge p$, and $|||\chi_B||| \le 2^m(1 - \delta)^m$; and also $C_j \subseteq \bigcup_{\varphi \in \Phi_2} S_{\varphi}, |C_j| = 2^m, \min\{|\varphi| : \varphi \in C_1\} \ge p, C_j \ll C_{j+1}$, and $|||\chi_{C_j}||| \le 2^m(1 - \delta)^m$ for all $j \in \mathbb{N}$. It is easily verified that the sequence $(2^{-m}(1 - \delta)^{-m}\chi_{C_j})$ is ε -separated and has norm bounded by 1 with respect to $||| \cdot |||$. It follows that there exists j_0 such that $2^{-m}(1 - \delta)^{-m}|||\chi_B + \chi_{C_{i_0}}||| \le 2(1 - \delta)$. The induction is completed by taking A to be $B \cup C_{j_0}$.

Using the same argument as in Theorem 5, we obtain

THEOREM 7. There is no equivalent $1-\beta$ norm on Y.

We close with the obvious problem.

Problem. For $k \ge 3$, can every k-NUC Banach space, respectively, $k-\beta$ Banach space, be equivalently renormed to be $(k - 1)-\beta$, respectively, k-NUC?

REFERENCES

- K. Fan and I. Glicksberg, Fully convex normed linear spaces, *Proc. Nat. Acad. Sci. USA* 41(1955), 947–953.
- G. Godefroy, N. J. Kalton, and G. Lancien, Subspaces of c₀ and Lipschitz isomorphisms, preprint.
- G. Godefroy, N. J. Kalton, and G. Lancien, Szlenk indices and uniform homeomorphisms, preprint.
- R. Huff, Banach spaces which are nearly uniformly convex, *Rocky Mountain J. Math.* 10(1980), 743–749.
- H. Knaust, E. Odell, and Th. Schlumprecht, On asymptotic structure, the Szlenk index and UKK properties in Banach spaces, *Positivity* 3(1999), 173–199.
- 6. D. Kutzarova, An isomorphic characterization of property (β) of Rolewicz, *Note Mat.* **10**(1990), 347–354.
- D. Kutzarova, k-β and k-nearly uniformly convex Banach spaces, J. Math. Anal. Appl. 162(1991), 322–338.
- E. Odell and Th. Schlumprecht, Asymptotic properties of Banach spaces under renorming, J. Amer. Math. Soc. 11(1998), 175–188.
- S. Prus, Finite dimensional decomposition s of Banach spaces with (p, q)-estimates, Dissertationes Math. 263(1987), 1–44.
- 10. S. Prus, Nearly uniformly smooth Banach spaces, Boll. Un. Mat. Ital. B (3) 7(1989), 502–521.
- 11. S. Rolewicz, On Δ uniform convexity and drop property, Studia Math. 87(1987), 181–191.
- W. Schachermayer, The class of Banach spaces which do not have c₀ as a spreading model is not L²-hereditary, Ann. Inst. H. Poincaré 19(1983), 1–8.
- F. Sullivan, A generalization of uniformly rotund Banach spaces, Can. J. Math. 31(1979), 628–636.