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ABSTRACT

Elementary proofs of the van der Waerden conjecture are given for the cases n = 3
and n = 4. Some partial results are found for the case n = 5, and the conjecture is
shown true for a special class of matrices.

1. INTRODUCTION

Let A = (a;;) be an n X n matrix. The permanent of A is defined by:

n
per A= Z ]_—I Qis(s) >
0€S,, i=1
where S, is the symmetric group of order ». Van der Waerden conjectured
[1] that if A is doubly stochastic then per A > n!/n®, with equality
holding if and only if A = (1/n)J, where J is the matrix having all entries
equal to one. If n = 2 it is trivial to prove the conjecture true; it is known
to hold for n = 3 [2]. If A satisfies certain additional hypotheses, positive
semidefinite symmetric for example, the conjecture holds. For a survey
of the present state of the conjecture and related problems see [3].
In this paper we present elementary proofs for n = 3 and n = 4 and
some partial results, especially for n = 5. In our proofs we make extensive
use of the following theorem due to Julian Keilson [4]:

THEOREM 1. Let ¢(x1, X3 ,..., X,,) be a real symmetric function in the
variables x; , Xy ,..., X,, , defined on the set

C=l0nma)0< <], i=12.,n 3 x= ag
i=1

* The research of the second author was supported in part by National Science
Foundation Grant GP 5801.
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and linear in each variable taken separately. Then the maximum and
minimum of ¢ over C are assumed either at the symmetric point or among
the symmetric points of the boundary, i.e., points of the type

X —r o—r o —Fr

(1,1,...,1, S e

,0,0,..., 0)

having r ones, r <, o, k terms (o« — r)fk, and (n — r — k) zeros,
O<a~k<r<agkt+r<n

The relevance of Keilson’s theorem to the permanent function is based
on the following expansion due to Ryser [3]. Let a', a%, ---, a® denote the
columns of A and e.(x) = e/(x;, X, ,..., X,) denote the r-th elementary
function of (x , X5 ,..., x,) ¥ = 1, 2,..., n; let T,(A) denote the set of all
() sums of the columns of A taken r at a time; i.e., let

T(A) = {x = a"* +a® + -+ a" | (G, by .., i)
is a r-subset of (1, 2,..., n)}
Then
prA= Y e~ 3 e® -+ (=) Y . (L)

T, (4) T,_4(A) T,(A)

When A is doubly stochastic we have

Y efx) =1

T,(A)

In Section 2 we present two different proofs of the conjecture when
n = 3. One of these is a direct proof based on the above expansion (1.1),
the other is a simple application of Theorem 1. In Section 3 we prove
identities connecting

z ex(x)

T,(A)
with
Z es(x)z k = 27 39

Ty (A)
which are needed in the application of Keilson’s theorem to the cases

n = 4, 5 of the conjecture. In Section 4, the van der Waerden conjecture
is proved for » = 4. In Section 5 we state some partial results for the case
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n = 5. In the last section we show that the van der Waerden bound holds
when m columns of the n X n doubly stochastic matrix A are equal and
so are the remaining (# — m) columns.

2. THE CASE n = 3.

In this section we present two elementary proofs of the conjecture for
n == 3. (An earlier proof occurs in [2).) The first argument iilustrates a
characteristic aspect of the behavior of the permanent of a doubly
stochastic matrix, namely, it is the sum of two, or more, vector functions,
some of which take on a maximum and some of which assume a minimum
at the point of symmetry; the second proof is an exampie of the application
of Theorem 1.

THEOREM 2. If A = (ay;) is a 3 X 3 doubly stochastic matrix then
per A = 31/3% = 2/9 with equality if and only if A = LJ.

Proor: From (1.1), for n = 3 we have

perA =1 — Z ey(x) + Z e(x) =1+ Z (—e, + 2e3)(x),

Ty(A) T,(A), T,(A)
that is,

3
perA =1+ Z (—ey + 2ey)(a%), .1

where the stochastic vector a‘ is the j-th column of A. The theorem follows
directly from the following:

LEMMA. Ifx = (x;, X3, X3) is a stochastic vector (0 << x; < 1,X x; = 1)
then f(X) = ex)(X) — 2e4(X) == x1X; + X1%3 -+ XaX3 — 2X,X,X5 assumes its

maximum at (%, %, 3).

ProoF 1. f(x) is a continuous symmetric function, and assumes its
global maximum on the closed compact set

3x10<xi<1,2xi: lgat,say,az(al,az,a?,).

If a£ (4,5, 1) then at least one of the a; << L. Suppose g3 < 5. Then

j(al,azaaa)_f(al_;az > al;—az ’as):(al“az)z[%(—%+aa)] <0,
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with equality if and only if ¢y = @, and @3 = 1 — 2qa, , since a; < 3 < 4.
Also for § < a; < &,

fay, ay,1 — 2ay) = 4a® — Sa + 2a, , f = 2(3a; — 1)(2a, — 1),
and f” = 24a, — 10. Hence
flay, a0, 1 — 2ay) << &% for 1 >a >3,

which proves the lemma.

ProoF 2: f{x) satisfies the conditions of Theorem 1, and therefore
attains its extrema on {x|0 <X x; << 1,3 x; = 1} among the points
(1,0,0), (3,40, (445 %. Now f(1,0,0)=0, f(}1,0) =4 and
fG, 5 5 = 7/27. So f(x) assumes its maximum uniquely at (3, 4, 3).

3. Two IDENTITIES

For n > 3 the expansion for per A does not reduce to a single sum over
T1(A). For example, for n = 4 we have

perA =14 Y (—e;+ e —2e)(x) + Y efx),

T,(A) T,(A)
where the 3’7 (4, assumes a minimum and the 31 ,, assumes a maximum
at (} --- 3). Our method of proof consists in expressing per A as a sum of
sums over T,(A) of symmetric vector functions such that each one of
these assumes its minimum at the symmetric point. To find suitable
functions we require identities relating 3’7 (4 ex(x) to sums of e(x) over
Ty(A), s << k. We prove such identities for £k = 2 and 3. For k > 3 we
were unable to find appropriate relationships; the reason for this, as one
may see from the proof below, is that for k& > 3 the Newton identities
are non-linear. For our purposes we need only the case r = 2, but we
include the proof for general r.

THEOREM 3. If A = (a;) is an n X n doubly stochastic matrix then

2 ex(x) = (Z : ?) Z ex(x) + (’:)(;), 3.1

T,(A) Ty(A)
and
5 e =[G 2o T e

T,(A)

fe-TY) s e+ () 6o

T,(A)
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Proor: For a vector x = (x;, X3 ,..., X, let

ST(X) — z xilr.
i=1

For x € T(A) we have by Newton’s identities
S(x) = ex) =1,
Sp(x) = r* — 2ey(x), (3.3)
S3(x) = ¥ — 3rey(x) + 3ey(x).

Any x € T,(A) has coordinates Qij, + @i, + -+ a1 = 1, 2,...,n,and

BY S,(x)= ), i (@, + =+ ay,)?

T,a) T,@) i=1
= ) i [i ag, + ). aijkaiil]
TA) i=1 “k=1 Py
“CTIZEAT ()L pm -
[ g sl

Substituting for Sy(x) given in (3.3) and simplifying we find

3 0720 = ("% & (=20 - ]
and
Zew=(T]) L e () e

Next to prove (3.2) we proceed similarly:

n

S S0= 3 ¥+ )

T,.(A) T,(A) i=1
n

r
=2 X [Z @+ 3 Y aas+ ) az':',,aﬁﬂﬁm]-
k#1

T,(A) i=l k=1 kA LEm



SOME REMARKS ON THE VAN DER WAERDEN CONJECTURE 391

Y so=("") S a3 7Y

n
T(A) i=1 j=1 i=1

n
Z a?j(l — a;)
j=1

e RS

B LT R T G| T
#3(( 2 -C 23] E sw e 23)

Substituting for Sy(x) and S,(x) and simplifying we obtain (3.2).
In this paper we use only the particular case r = 2:

Y oe®=0—2 T a®+(y), (3.4)
To(A) T,(A)
Leam=@—9 3 a@+@-2 T a®. 69
T,A T,(A) Ty(A)

4, THE CASE n = 4

If A = (a;) is a 4 X 4 doubly stochastic matrix, (1.1) becomes

perA =1-— Z es(x) + z ey(x) — Z ,(x)

Ty(A) Ty(A) T,(A)
=1+ Z (—ey + &3 — 2e)(x)
Ty(A)

+5 T (he—en+ 20000 — 5 6.

2 i)
Using (3.4) and (3.5) for n = 4, we write
perA =c Z f(X)+ Z g(x),

T,(A) T,(A)

where ¢ = —3 + 3« and
) =[-(1—~xe,+ (1 — B)e; — 2e)(x) = —g(x).

We seek values of («, B) for which f(x) assumes its global minimum over
Xio<x, <1,Xx, =1} at 311} and g(x) assumes its minimum
over {x]0<x; <1,¥Yx; =2} at 3%%1%). Theorem 1 requires that
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(o, B) satisfy a number of inequalities. If the set of («, ) satisfying these
inequalities is non-empty, which it is, then the proof of the conjecture
for n = 4 is complete. One particular decomposition with the desired
properties is:

per A = — 1 + L Y (—4e, + 9e; — 18e4)(x)
3°9 I
1
—§ Zli (de, ~— ey - 18e,)(x).

Now, we have the following values for the summands:

X (—4de, + 9e; — 18ey)(x) X (dey, — 9e; + 18e,)(x)
Ghbi —129/128 &Hed 2%
©, 5 %% —1 O 2 ) 2%
©,0,%,%) —1 ©.%3% 2%
0,0,0,1) 0 ©,0,1, 1) 4
(1,0,3, 3 2,

which, in light of Theorem 1, establish:

THEOREM 4. If A = (a;;) is a 4 X 4 doubly stochastic matrix then
per A > 41/4* = 3/32, with equality if and only if A = }J.

5. THE CASE n == 5§

For this case we have not been able to obtain a suitable decomposition
of per A as the sum of two functions, each of which assumes its minimum
at the symmetric point, as for the case n = 4, and have no proof of the
conjecture for » = 5. However, partial results, for example those in the
following two Theorems, may be obtained by use of the same techniques.

THEOREM 5. Let A = (a;;) be a 5 X 5 doubly stochastic matrix such
that any one of the following conditions hold

() max,;a; < §;

(ii) some row (or column) = (£ £§%);
(iii) the elements of the sum of any two columns (or rows) are < };
(iv) any row (or column) = (3 $000).
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Then

St 24
per A >§g— &5 -

THEOREM 6. If A = (a;;) is a 5 X 5 doubly stochastic matrix then

22.4609375
625 ’

per A >

{Note the van der Waerden bound is 24/625.)
We prove case (i) of Theorem S for illustration, and omit the remaining
proofs because they are tedious and introduce no new technique.

PROOF OF 5(i): We may write

perA =1+ Y (—e,+ 3 — e, + 2¢)(x)

T,(A)

+ Z (€2 — €3 -+ ey — 2e;)(xX) —

Ty(A)

Then, using (3.1) and (3.2) for n = 5, we have

perA = —84+ Y f(x)+ ) g(x),

Ty(A) Ty(A)
where
f(x) = (—.184e, + .456¢, — e, -+ 2e;5)(X),
g(x) = (.184e, — .456e; + e, — 2e;)(x).

By Theorem 1, g(x) assumes its minimum on {0 < x; < 1,¥ x;, = 2}
uniquely at x = (&, £,...; ). Now consider f{x), where

xel0 < 3 S X = 1%
or, equivalently, consider

fx) = ( 134 2+ 456 gl 243)(x) over{0 <x, <1,Y x, =3

Again by Theorem 1, f(x) assumes its minimum for-xe{0 < x; < 1,
> x; = 3} at the symmetry point. Hence when (i) holds the theorem
follows.
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6. A SPECIAL CASE

A special class of doubly stochastic matrices defined in Theorem 7 is
easily handled by our technique.

THEOREM 7. Let A = (a;;) be an n X n doubly stochastic matrix
having m < n identical columns, = ajm, and the remaining n — m columns
identical, = bfn — m. Then

per A = nl/n®, with equality if and only if A = %J.
PrROOF: We have

A = (a/m, ajm,..., a/m, b/n — m,b/n — m,..., bjn — m)

where
Ya=mand Y by=n—m, a+b=1  i=12.,n
i=1 =1
It may be verified that (1.1) reduces to
_ (r—m! m! Y\ m -+ 2
per & = (n — my»=" mm [(e”‘ ( m ) €m+1 T ( m )em+2 T
n—-m n
+ (=D (1) ea) @], ©1)

We denote the function in the bracket by ¢(a). By Theorem 1, ¢(a)
assumes its minimum among the points

m—r m—r

x(r,k) =(1,1,..,1, TR

,0,0,..., 0)

where there are r ones, k of the (m — r)/k components, and (n — k — r)
zeros. We have 0 <m — k <<r < m < k + r < n. From (6.1) we see

k+r

xr, ) = 3 (D (P) ey, ©62)

p=m

We wish to evaluate ¢ at the critical points x(r, k). If r = m, or if
m — r = k then all components are one, and e,, = 1 is the only non-
vanishing e, for m < p << k + r. In this case ¢ = 1. We assume that
r<mand m—k<r,and 0O<m—k<r<m<k+r<m To
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compute the e, (x), we may choose o of the "ones and p — o of the
components (m — r)/k for o = 0, 1,..., r. Hence

r

k o\ m—r
e (x(r, k)) = ago (r)(p = U)( m T ! > , m<p<<k+r 63

Note that p — o = m — r = 0 but that (,*,) will vanish for o < p — k.
Substituting (6.3) into (6.2) we obtain

sx k) = 3 o ()5 () F )

p=m o=0

We change the summation index to 7 = p — o, and

k) = T 3 (—tymine (o kymor

o=0 7=m—7r

We note that the extra terms introduced for 7 < m, and omitted for
T > k, are all zero. But

307N = e, )

o=0

and

b= 3 iy Ny

il m — r/\r k

= X (—l)“m+r+r( k )(k‘—m—i-l‘)(m;r)f

— m-—r\tr —m-+r

= (S )T 2

T=m—7

N

R T

and finally

. k! (k —m + r)k—m-H' (m _ r)m—r
PR = G T =T
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Recall we have k > m — r > 0. For a fixed r, this function is decreasing
for increasing k. Hence

gb(X(l', k)) 2 ¢(X(‘r9 n— 7'))

But we also have ¢(x(r, n — r)) = $(x(0, n)) and Theorem 7 follows.
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