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ABSTRACT 

Elementary  proofs  o f  the van  der W a e r d e n  conjecture are  given for the  cases n = 3 
and  n = 4. Some  part ial  results are  f ound  for the  case n = 5, and  the  conjecture is 
shown true for a special class o f  matr ices.  

1. INTRODUCTION 

Let A = (a~) be an n • n matrix. The permanent of  A is defined by: 

p e r A :  ~ h a i ~ ( i ) ,  
oeS n i=1 

where S~ is the symmetric group of  order n. Van der Waerden conjectured 
[1] that if A is doubly stochastic then per A >~ n!/n% with equality 
holding if and only if A = (1/n)J, where J is the matrix having all entries 
equal to one. I f  n = 2 it is trivial to prove the conjecture true; it is known 
to hold for n = 3 [2]. I f  A satisfies certain additional hypotheses, positive 
semidefinite symmetric for example, the conjecture holds. For a survey 
of the present state of the conjecture and related problems see [3]. 

In this paper we present elementary proofs for n ---- 3 and n = 4 and 
some partial results, especially for n = 5. In our proofs we make extensive 
use of the following theorem due to Julian Keilson [4]: 

THEOREM 1. Let  6 ( x l ,  x2 ..... xn) be a real symmetr ic  function in the 
variables x l  , x~ ..... x~,, defined on the set 

C =  t(x 1 .... ,xn) 1 0 ~ < x , ~ < l ,  i =  1,2 ..... n, ~ x , = c t  I 
i=1 

* The  research o f  the  second au t ho r  was suppor ted  in par t  by Nat iona l  Science 
F o u n d a t i o n  Gran t  G P  5801. 
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and linear in each variable taken separately. Then the maximum and 
minimum o f  q~ over C are assumed either at the symmetric point or among 
the symmetric points o f  the boundary, i.e., points o f  the type 

(1, 1,..., 1, c~ --  r a - - r  ~ - - r  ) 
k ' k " ' "  k , 0 , 0 , . . . , 0  

having r ones, r ~ ~, k terms (~ --  r)/k, and (n - -  r --  k) zeros, 

0 ~  k ~ r ~ k + r ~ n .  

The relevance of  Keilson's theorem to the permanent  funct ion is based 
on the following expansion due to Ryser [3]. Let  a 1, a 2, ..., a m denote the 
columns of  A and e~(x) ~ e~(xl,  x2 .... , x,,) denote the r-th elementary 
function of  (x l ,  xe .... , x,) r = 1, 2,..., n; let T~(A) denote the set o f  all 
(~) sums of  the columns of  A taken r at a time; i.e., let 

Then 

T~(A) ~- {x = a ~1 + a ~ -q- "'" q- a~'l (/1,/2 ..... i~) 

is a r-subset of  (1, 2 ..... n)}, 

per A = ~ en(x)--  Z %(x)-}- ... -t- (--1) "-1 Z e.(x). (1.1) 
Tn(A) Tn_I(A) TI(A) 

When A is doubly  stochastic we have 

Y', en(x) = 1. 
Tn(A) 

In  Section 2 we present two different proofs  o f  the conjecture when 
n -~ 3. One o f  these is a direct p roo f  based on the above expansion (1.1), 
the other is a simple application o f  Theorem 1. In  Section 3 we prove 
identities connecting 

E e (x) 
T,(A) 

with 

es(X), k : 2, 3, 
T~(A) 

which are needed in the application o f  Keilson's theorem to the cases 
n ---- 4, 5 of  the conjecture. In  Section 4, the van der Waerden conjecture 
is proved for  n = 4. In Section 5 we state some partial results for the case 

58z/5/4-6 
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n = 5. In the last section we show that the van der Waerden bound holds 
when m columns of  the n • n doubly  stochastic matrix A are equal and 
so are the remaining (n --  m) columns. 

2. THE CASE n = 3. 

in  this section we present two elementary proofs  o f  the conjecture for 
n = 3. (An earlier p roo f  occurs in [2].) The first argument  illustrates a 
characteristic aspect of  the behavior  o f  the permanent  of  a doubly  
stochastic matrix, namely, it is the sum of  two, or  more,  vector functions, 
some of  which take on a maximum and some of  which assume a min imum 
at the point  o f  symmetry;  the second p roo f  is an example o f  the application 
of  Theorem 1. 

per A = 1 - -  

that  is, 

THEOREM 2. 
per A ~> 3!/3 3 = 2/9 with equality i f  and only i r a  = ~J. 

PROOF: F r o m  (1.1), for n = 3 we have 

e3(x) %- ~ ea(x) = 1 + ~ (--e2 %- 2e3)(x), 
T2(A) TI A) TI(A) 

I f  A = (ai~) is a 3 • 3 doubly stochastic matrix then 

3 
p e r A  = 1%- ~ (--e2 + 2e3)(a/), (2.1) 

i=1 

where the stochastic vector a / is the i-th column of  A. The theorem follows 
directly f rom the following: 

LEMMA. Ifx = (Xl ,  X2, X3) is a stochastic vector (0 ~ xi ~ 1, 5Z x~- = 1) 
then f ( x )  = e2(x) . 2e3(x) = XlX2 %- XlX3 + x2x3 --  2XlX~X3 assumes its 
maximum at (�89 �89 -~). 

PROOF 1. f(X) is a cont inuous symmetric function, and assumes its 
global maximum on the closed compact  set 

I x ] 0  ~ x i  ~ 1 , ~ x i =  l l a t ,  say, a = ( a l , a 2 , a ~ ) .  

If  a ~v~ (�89 ~-, �89 then at least one o f  the ai < �89 Suppose as < �89 Then 

aa) _ f [ . a l  + a1%- a2 1 , , 4  = 4 ]  o, J (al  , a2 
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with equality if  and only if al = a2 and a3 = 1 - -  2 a l ,  since a 3 < 1 < �89 
Also for  �89 < al <~ �89 

f ( a l ,  a l ,  1 - -  2al) = 4al 3 - -  5al 2 + 2a1 , f '  = 2(3al - -  1)(2al - -  1), 

and f "  = 24al - -  10. Hence 

f ( a l ,  al  1 2a0  < ~z~ for  �89 >~ al  > ' , - -  IS, 

which proves the lemma.  

PROOF 2: f (x )  satisfies the condit ions of  T h e o r e m  1, and therefore 
attains its ex t rema on { x ] 0  ~ x~ ~< 1, Z x ~  = 1} among  the points 
(1 ,0 ,0 ) ,  (�89 ( �89 N o w  f ( 1 , 0 , 0 )  = 0 ,  f ( �89189 = ~, and 

f(�89 �89 �89 = 7/27. So f (x )  assumes its m a x i m u m  uniquely at (~-, ~ Is, -~). 

3. T w o  IDENTITIES 

For  n > 3 the expansion for per  A does not  reduce to a single sum over  
Tx(A). Fo r  example,  for  n = 4 we have 

p e r A =  1 q- ~ (--e2q-e3--2e4)(x)q- ~ e4(x), 
T I ( A )  T2(A)  

where the ~2TI(A ) assumes a m i n i m u m  and the ~T,(A) assumes a m a x i m u m  
at ( l  ... l) .  Our  me thod  of  p r o o f  consists in expressing per  A as a sum of  
sums over  T,r(A) of  symmetr ic  vector  functions such that  each one o f  
these assumes its m in imum at the symmetr ic  point .  To  find suitable 
functions we require identities relat ing 32r, lA) ek(x) to sums of  e~(x) over  
TI(A), s ~ k. We prove  such identities for k = 2 and 3. For  k > 3 we 
were unable to find appropr ia te  relationships; the reason for  this, as one 
may  see f rom the p r o o f  below, is that  for  k > 3 the Newton  identities 
are non-linear.  Fo r  our  purposes  we need only the case r = 2, but  we 
include the p r o o f  for  general r. 

THEOREM 3. 

and 

I f  A - -  (aij) is an n X n doubly stochastic ma t r i x  then 

ez(x ) = ( n -  ~) ~ e2(x ) + ( ; 1 ( ; ) ,  (3.1) 
Tr(A) Tx(A) 

[(n - -  2r)  - -  ~ e3(x ) ea(x) = t~---- ~) (n ~)l TI,-, 
T~(A) 

+ (r 1)( n - -  21) ~] e 2 ( x ) - t - ( ; ) ( ; 1 .  
TI(A) 

(3.2) 
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PROOF: For a vector x = (xl ,  x2 ,..., x~) let 

St(x) : ~ x:. 
i=1 

For x e Tr(A) we have by Newton's identities 

SI(x) : el(x) : r, 

S2(x) : r 2 -- 2e~(x), (3.3) 

S3(x) : r z - -  3re~(x) + 3ez(x). 

Any x ~ T~(A) has coordinates a% + a,~ + ... + a~:, , i : 1, 2 ..... n, and 

b x S2(x)=  X ~ ( a , J ~ + ' " + a , , , )  z 

Tr(A) Tr(A) i=1 

~z "r 

: X ~ , [ X a , ~ ' ,  + X a,,ea,,z] 
Tr{A) /=1 k=l k ~ l  

: ( : - -  I) ~ ~ a i ~ ' + ( : - - 2 2 )  ~ ~ a i , ( 1 - - a a )  
i=1 j = l  i = l  j = l  

T~(A~ 

Substituting for S~(x) given in (3.3) and simplifying we find 

and 

(r ~ -2ee (x ) )  : ( : - -21)  ~ ( 1 - - 2 e z ( x ) ) + n ( : ~ 2 2 ) ,  
TrfA) TI(A) 

e2(x) : ( : -  2) ~, e2(x)+ (n)(;). (3.1) 
T~.(A) TI(A) 

3 2 = aiikais~ �9 
Tr(A) i ~ l  k r  k ~ l C m  

Sa( x ) =  E ~ ( a , J l + ' " + a i # )  z 
Tr(A) Tr{A) t~ l  

Next to prove (3.2) we proceed similarly: 
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Tr(A) /=1 j=l i=1 j=l 

-~ ( : -  33) ~ ~ ( a l j -  3a~j -~ 2a~) 
i~l j=l 

-- [(: -- ll) -- 3 (n -- 22) + 2 (n -- 33) ] ~ Sz(x ) 
TI(A) 

f i - 3 [ ( : - - 2 ) - - ( : - - 3 3 )  ] ~ Sa(x) q- n ( :  -- 33). 
TI(A) 

Substituting for S2(x) and Sa(x) and simplifying we obtain (3.2). 
In this paper we use only the particular case r = 2: 

e2(x ) = ( n -  2) ~ e2(x)+  (2)' 
T2(A) TI(A) 

es(x) = (n- -4)  ~ e3(x) + (n -- 2) ~ e2(x ). 
T~(A) TI(A) TI(A) 
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(3.4) 

(3.5) 

4. THE CASE n = 4 

If A = (a,j) is a 4 • 4 doubly stochastic matrix, (1.1) becomes 

per A =  1 - -  E e4( x ) +  E e4(x)-- E e4(x) 
Ta(A) T2{A) TI(A) 

= 1 + ~ ( - -e  2 + e 3 - 2 e 4 ) ( x )  
TI(A) 

1 1 
+ ~ ~ ( + e  2 -- ez + 2e,)(x) --  7" 6. 

T2(A) 

Using (3.4) and (3.5) for n -- 4, we write 

p e r A =  c +  ~ f ( x ) +  ~ g(x), 
TI(A) T2(A) 

where c = --3 -}- 3o~ and 

f(x) -- [--(1 -- e,) e 2 + (1 -- fl) e3 -- 2e4](x) = --g(x). 

We seek values of (o~, fl) for which f(x) assumes its global minimum over 
(x I 0 ~ xi ~< 1, ~ x~ = 1} at (�88 ~ �88 5) and g(x) assumes its minimum 
over {x I 0 ~< x~ ~< 1, Z xi = 2) at (�89 �89 �89 �89 Theorem 1 requires that 
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(a, fl) satisfy a number  o f  inequalities. I f  the set of  (~,/3) satisfying these 
inequalities is non-empty,  which it is, then the p roo f  o f  the conjecture 
for n = 4 is complete. One particular decomposi t ion with the desired 
properties is: 

1 
_ _ l_ + 9 ~ ( _ 4 e  2 + 9ea - -  18e4)(x) per A --  3 TltA ) 

+ 1~ ~ (4e2 - -  9e3 -~ 18e4)(x). 
T2tA) 

Now, we have the following values for  the summands:  

x (-4e2 + 9e3 - 18e4)(x) x (4e2 - 9e3 + 18e,)(x) 

1 1 (~, :f, ~, ~) --129/128 1 1 (~, ~, �89 �89 2~ 
(0, 1 1 1 3-,~,~) - I  (1,1 1 1 ~, ~-, g) 2} 
(0, O, 1 1 ~, ~) - 1 ( 0 ,  2 2 .~, ~, ~-) 2w 
(0,0,0,1) 0 (0,0,1,1) 4 

(1,0,1 ~-, ~) 2~, 

which, in light o f  Theorem 1, establish: 

THEOREM 4. I f  A = (a~) is a 4 • 4 doubly stochastic matrix then 
per A ~ 4!/44 == 3/32, with equality i f  and only i f  A = �88 

5. THE CASE n = 5 

For  this case we have not  been able to obtain a suitable decomposit ion 
of  per A as the sum of  two functions, each o f  which assumes its minimum 
at the symmetric point, as for  the case n ----- 4, and have no p r o o f  of  the 
conjecture for  n = 5. However,  partial results, for  example those in the 
following two Theorems, may be obtained by use o f  the same techniques. 

THEOREM 5. Let A = (agj) be a 5 • 5 doubly stochastic matrix such 
that any one o f  the following conditions hoM 

(i) maxi,j aij ~< �89 

(ii) some row (or column) = (-~ ~ ~ ~ -~); 

(iii) the elements of  the sum o f  any two columns (or rows) are <~ �89 

(iv) any row (or column) = (�89 �89 0 0 0). 
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Then 

5 ! 24 
pe rA ) 55 -- 625" 

THEOREM 6. / f  A : (a~j) is a 5 • 5 doubly stochastic matr ix  then 

22.4609375 
per A >~ 

625 

(Note the van der Waerden bound is 24/625.) 
We prove case (i) of Theorem 5 for illustration, and omit the remaining 

proofs because they are tedious and introduce no new technique. 

PROOF OF 5(i): We may write 

p e r A =  1 ~- ~ (--ezq-ea--e4q-2ea)(x) 
TI(A) 

+ ~ (e~ -- e3 -k e4 -- 2es)(x) -- 10. 
T2(A) 

Then, using (3.1) and (3.2) for n = 5, we have 

where 

perA= - - . 8 4 +  ~ f ( x ) +  ~ g(x), 
TI(A) T2(A~ 

f (x)  = (--.184ez + .456e3 - -  e 4 @- 2es)(X), 

g(x) = (.184e2 -- .456e3 + e4 --  2e.~)(x). 

By Theorem 1, g(x) assumes its minimum on {0 ~< xi ~< 1, Y x~ = 2} 
uniquely at x -- (~-, ~,.., ~). Now considerf(x),  where 

t ' I x ~  0 ~ x i ~ , ~ x i =  1 ; 

or, equivalently, consider 

( e, e, 2eq(x) 
f ( x )  ----- - - . 1 8 4 f f +  .45627 81 ~- 2431 over {0 ~<x~ ~< 1 , ~ x i  = 3}. 

Again by Theorem 1, f(x) assumes its minimum for x ~ {0 ~ xi ~< 1, 
x~ = 3} at the symmetry point. Hence when (i) holds the theorem 

follows. 
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6. A SPECIAL CASE 

A special class of  doubly  stochastic matrices defined in Theorem 7 is 
easily handled by our  technique. 

THEOREM 7. Let  A - - ( a i j )  be an n • n doubly stochastic matrix 
having m ~ n identical columns, : a / m ,  and the remaining n --  m columns 
identical, ~ bin --  m. Then 

per A ~ n!/W ~, with equality i f  and only i f  A = 1 j .  
n 

PROOF: W e  have 

A = ( a / m ,  a / m  . . . . .  a / m ,  b i n  - -  m ,  b i n  - -  m , . . . ,  b / n  - -  m )  

where 

~ a i ~ -  m and ~ b i - ~ n - - m ,  a i + b i =  1, i =  1,2, . . . ,n.  
i=1 i= l  

I t  m a y  be verified that  (1.1) reduces to 

(n -- ,~'m m"m] [( (m m + 1) (m m + 2) per A = ( n - - ~  t\  em --  e~/+l + era+, + "'" 

+ ( - -  1)'~-m (mn) e,)(a) ] . (6.1) 

We denote the funct ion in the bracket  by ~(a). By Theorem 1, 4(a)  
assumes its m in imum a m o n g  the points  

m - - r  m - - r  
x(r, k) = (1, 1,,.., 1, k ' " "  k ,0 ,  0,..., 0) 

where there are r ones, k o f  the (m -- r) /k  components ,  and  (n - -  k - -  r)  
zeros. We h a v e 0 ~ < m - - k ~ < r ~ < m  ~ < k + r ~ < n .  F r o m  (6.1) we see 

/e+r 

~(x ( r ,k ) )  = ~ ( - - 1 ) ~ - m ( P ) e , ( x ) .  (6.2) 
p=m 

We wish to evaluate ~ at  the critical points  x(r, k). I f  r = m, or  if  
m - -  r = k then all componen t s  are one, and e,~ = 1 is the only non-  
vanishing e~, for  m ~< p ~< k + r. In  this case ff = 1. We assume tha t  
r < m ,  and m - - k < r ,  and 0 < ~ m - - k < r < m ~ k + r  <~m. To 
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compute  the %(x), we m a y  choose cr o f  the "ones and  p - -  cr of  the 
componen t s  (m --  r ) / k  for  o = 0, 1,..., r. Hence 

~ ( r } (  k ' l ( m - - r ]  ~-~ 
%(x(r ,  k ) )  = 

(6.3) 

Note  tha t  p cr /> m r ~ 0 but  tha t  - -  - -  (~_~) will vanish for  cr < p - -  k. 
Subst i tu t ing (6.3) into (6.2) we obta in  

q~(x(r,k)) = 2 ( - - 1 ) ' - ' ~ ( p )  r k ~-~. 
~=m m a=o ~r p ~ o" 

We change the summat ion  index to ~- = p  - -  ~, and  

4,(x(r, k)) = E 
~r r k m - -  r m+.o(. )(o)(,)( w-) 

We note  tha t  the extra  terms in t roduced  for  r < m, and  omi t ted  for  
r > k, are all zero. But 

o ~ 0  

'7" 

and 

,k(x(r, k)) = "- E ( - - l ) - ~ + ' + ~ ( r  n k m - - r  " 

k m § r](  m - -  r ]" 
m -I- r / ~  k / 

= (m k ! ( m - - r !  ~ - r  
- rf C - - - U - - I  ~ ( -  1),-,-+~ 

7~7R--~ 

[k  - -  m + r][ m - r ]'-~+r 
x \ ~- m + r / \  k ] 

-- (m ~-- ,,,l(-~=Z-lm; , -'(~, m k-- r)~-m+', 

and finally 

k !  ( k  - -  m + r)~-"~+" ( m  - -  r )  ~ - ~  
~(x(r, k)) ---- k~ (k - -  m + r)! (m - -  r)! 
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Recall we have k > m - -  r > 0. For a fixed r, this function is decreasing 
for increasing k. Hence 

~(x(r ,  k))  ~> ~(x(r ,  n - -  r)).  

But we also have ~b(x(r, n - -  r ) )  ~ ~b(x(0,  n ) )  and Theorem 7 follows. 
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