Some Remarks on the van der Waerden Conjecture

P. J. Eberlein and Govind S. Mudholkar*
State University of New York at Buffalo, Amherst, New York, 14226
and
University of Rochester, River Campus Station, Rochester, New York, 14627
Communicated by H. J. Ryser

Abstract

Elementary proofs of the van der Waerden conjecture are given for the cases $n=3$ and $n=4$. Some partial results are found for the case $n=5$, and the conjecture is shown true for a special class of matrices.

1. Introduction

Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n \times n$ matrix. The permanent of \mathbf{A} is defined by:

$$
\operatorname{per} \mathbf{A}=\sum_{\sigma \in S_{n}} \prod_{i=1}^{n} a_{i \sigma(i)}
$$

where S_{n} is the symmetric group of order n. Van der Waerden conjectured [1] that if \mathbf{A} is doubly stochastic then per $\mathbf{A} \geqslant n!/ n^{n}$, with equality holding if and only if $\mathbf{A}=(1 / n) \mathbf{J}$, where J is the matrix having all entries equal to one. If $n=2$ it is trivial to prove the conjecture true; it is known to hold for $n=3$ [2]. If A satisfies certain additional hypotheses, positive semidefinite symmetric for example, the conjecture holds. For a survey of the present state of the conjecture and related problems see [3].

In this paper we present elementary proofs for $n=3$ and $n=4$ and some partial results, especially for $n=5$. In our proofs we make extensive use of the following theorem due to Julian Keilson [4]:

Theorem 1. Let $\phi\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ be a real symmetric function in the variables $x_{1}, x_{2}, \ldots, x_{n}$, defined on the set

$$
C=\left\{\left(x_{1}, \ldots, x_{n}\right) \mid 0 \leqslant x_{i} \leqslant 1, \quad i=1,2, \ldots, n, \quad \sum_{i=1}^{n} x_{i}=\alpha\right\}
$$

[^0]and linear in each variable taken separately. Then the maximum and minimum of ϕ over C are assumed either at the symmetric point or among the symmetric points of the boundary, i.e., points of the type
$$
\left(1,1, \ldots, 1, \frac{\alpha-r}{k}, \frac{\alpha-r}{k}, \ldots, \frac{\alpha-r}{k}, 0,0, \ldots, 0\right)
$$
having r ones, $r \leqslant \alpha, k$ terms $(\alpha-r) / k$, and $(n-r-k)$ zeros,
$$
0 \leqslant \alpha-k \leqslant r \leqslant \alpha \leqslant k+r \leqslant n
$$

The relevance of Keilson's theorem to the permanent function is based on the following expansion due to Ryser [3]. Let $\mathbf{a}^{\mathbf{1}}, \mathbf{a}^{\mathbf{2}}, \cdots, \mathbf{a}^{n}$ denote the columns of \mathbf{A} and $e_{r}(\mathbf{x})=e_{r}\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ denote the r-th elementary function of $\left(x_{1}, x_{2}, \ldots, x_{n}\right) r=1,2, \ldots, n$; let $T_{r}(\mathbf{A})$ denote the set of all $\binom{n}{r}$ sums of the columns of \mathbf{A} taken r at a time; i.e., let

$$
\begin{aligned}
T_{r}(\mathbf{A})= & \left\{\mathbf{x}=\mathbf{a}^{i_{1}}+\mathbf{a}^{i_{2}}+\cdots+\mathbf{a}^{i_{r}} \mid\left(i_{1}, i_{2}, \ldots, i_{r}\right)\right. \\
& \text { is a } r \text {-subset of }(1,2, \ldots, n)\} .
\end{aligned}
$$

Then

$$
\begin{equation*}
\operatorname{per} \mathbf{A}=\sum_{T_{n}(A)} e_{n}(\mathbf{x})-\sum_{T_{n-1}(\mathbf{A})} e_{n}(\mathbf{x})+\cdots+(-1)^{n-\mathbf{1}} \sum_{T_{1}(\mathbf{A})} e_{n}(\mathbf{x}) \tag{1.1}
\end{equation*}
$$

When \mathbf{A} is doubly stochastic we have

$$
\sum_{T_{n}(\mathbf{A})} e_{n}(\mathbf{x})=1
$$

In Section 2 we present two different proofs of the conjecture when $n=3$. One of these is a direct proof based on the above expansion (1.1), the other is a simple application of Theorem 1. In Section 3 we prove identities connecting

$$
\sum_{T_{r}(\mathbf{A})} e_{k i}(\mathbf{x})
$$

with

$$
\sum_{T_{\mathbf{1}}(\mathbf{A})} e_{s}(\mathbf{x}), \quad k=2,3
$$

which are needed in the application of Keilson's theorem to the cases $n=4,5$ of the conjecture. In Section 4, the van der Waerden conjecture is proved for $n=4$. In Section 5 we state some partial results for the case
$n=5$. In the last section we show that the van der Waerden bound holds when m columns of the $n \times n$ doubly stochastic matrix \mathbf{A} are equal and so are the remaining ($n-m$) columns.

2. The Case $n=3$.

In this section we present two elementary proofs of the conjecture for $n=3$. (An earlier proof occurs in [2].) The first argument illustrates a characteristic aspect of the behavior of the permanent of a doubly stochastic matrix, namely, it is the sum of two, or more, vector functions, some of which take on a maximum and some of which assume a minimum at the point of symmetry; the second proof is an example of the application of Theorem 1.

Theorem 2. If $\mathbf{A}=\left(a_{i j}\right)$ is a 3×3 doubly stochastic matrix then per $\mathbf{A} \geqslant 3!/ 3^{3}=2 / 9$ with equality if and only if $\mathbf{A}=\frac{1}{3} \mathbf{J}$.

Proof: From (1.1), for $n=3$ we have

$$
\operatorname{per} \mathbf{A}=1-\sum_{r_{2}(\mathbf{A})} e_{3}(\mathbf{x})+\sum_{T_{1}(\mathbf{A})} e_{3}(\mathbf{x})=1+\sum_{T_{1}(\mathbf{A})}\left(-e_{2}+2 e_{3}\right)(\mathbf{x})
$$

that is,

$$
\begin{equation*}
\operatorname{per} \mathbf{A}=1+\sum_{i=1}^{\mathbf{3}}\left(-e_{2}+2 e_{3}\right)\left(\mathbf{a}^{i}\right) \tag{2.1}
\end{equation*}
$$

where the stochastic vector \mathbf{a}^{i} is the i-th column of \mathbf{A}. The theorem follows directly from the following:

Lemma. If $\mathbf{x}=\left(x_{1}, x_{2}, x_{3}\right)$ is a stochastic vector $\left(0 \leqslant x_{i} \leqslant 1, \sum x_{i}=1\right)$ then $f(\mathbf{x})=e_{2}(\mathbf{x})-2 e_{3}(\mathbf{x})=x_{1} x_{2}+x_{1} x_{3}+x_{2} x_{3}-2 x_{1} x_{2} x_{3}$ assumes its maximum at $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

Proof 1. $f(\mathbf{x})$ is a continuous symmetric function, and assumes its global maximum on the closed compact set

$$
\left\{\mathbf{x} \mid 0 \leqslant x_{i} \leqslant 1, \sum x_{i}=1\right\} \text { at, say, } \mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)
$$

If $\mathbf{a} \neq\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$ then at least one of the $a_{i}<\frac{1}{3}$. Suppose $a_{3}<\frac{1}{3}$. Then $f\left(a_{1}, a_{2}, a_{3}\right)-f\left(\frac{a_{1}+a_{2}}{2}, \frac{a_{1}+a_{2}}{2}, a_{3}\right)=\left(a_{1}-a_{2}\right)^{2}\left[\frac{1}{2}\left(-\frac{1}{2}+a_{3}\right)\right] \leqslant 0$,
with equality if and only if $a_{1}=a_{2}$ and $a_{3}=1-2 a_{1}$, since $a_{3}<\frac{1}{3}<\frac{1}{2}$. Also for $\frac{1}{3}<a_{1} \leqslant \frac{1}{2}$,

$$
f\left(a_{1}, a_{1}, 1-2 a_{1}\right)=4 a_{1}^{3}-5 a_{1}^{2}+2 a_{1}, f^{\prime}=2\left(3 a_{1}-1\right)\left(2 a_{1}-1\right),
$$

and $f^{\prime \prime}=24 a_{1}-10$. Hence

$$
f\left(a_{1}, a_{1}, 1-2 a_{1}\right)<\frac{7}{27} \quad \text { for } \quad \frac{1}{2} \geqslant a_{1}>\frac{1}{3}
$$

which proves the lemma.
Proof 2: $f(\mathbf{x})$ satisfies the conditions of Theorem 1 , and therefore attains its extrema on $\left\{\mathbf{x} \mid 0 \leqslant x_{i} \leqslant 1, \sum x_{i}=1\right\}$ among the points $(1,0,0), \quad\left(\frac{1}{2}, \frac{1}{2}, 0\right),\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$. Now $f(1,0,0)=0, f\left(\frac{1}{2}, \frac{1}{2}, 0\right)=\frac{1}{4}$, and $f\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)=7 / 27$. So $f(\mathbf{x})$ assumes its maximum uniquely at $\left(\frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$.

3. Two Identities

For $n>3$ the expansion for per \mathbf{A} does not reduce to a single sum over $T_{1}(\mathbf{A})$. For example, for $n=4$ we have

$$
\operatorname{per} \mathbf{A}=1+\sum_{T_{1}(\mathbf{A})}\left(-e_{2}+e_{3}-2 e_{4}\right)(\mathbf{x})+\sum_{T_{2}(\mathbf{A})} e_{4}(\mathbf{x})
$$

where the $\Sigma_{T_{1}(\mathrm{~A})}$ assumes a minimum and the $\sum_{T_{2}(\mathrm{~A})}$ assumes a maximum at $\left(\frac{1}{4} \cdots \frac{1}{4}\right)$. Our method of proof consists in expressing per \mathbf{A} as a sum of sums over $T_{r}(\mathbf{A})$ of symmetric vector functions such that each one of these assumes its minimum at the symmetric point. To find suitable functions we require identities relating $\sum_{\boldsymbol{T}_{r}(\mathbf{A})} e_{k}(\mathbf{x})$ to sums of $e_{s}(\mathbf{x})$ over $T_{1}(\mathbf{A}), s \leqslant k$. We prove such identities for $k=2$ and 3 . For $k>3$ we were unable to find appropriate relationships; the reason for this, as one may see from the proof below, is that for $k>3$ the Newton identities are non-linear. For our purposes we need only the case $r=2$, but we include the proof for general r.

Theorem 3. If $\mathbf{A}=\left(a_{i j}\right)$ is an $n \times n$ doubly stochastic matrix then

$$
\begin{equation*}
\sum_{T_{r}(\mathbf{A})} e_{2}(\mathbf{x})=\binom{n-2}{r-1} \sum_{T_{1}(\mathbf{A})} e_{2}(\mathbf{x})+\binom{n}{r}\binom{r}{2} \tag{3.1}
\end{equation*}
$$

and

$$
\begin{align*}
\sum_{T_{r}(\mathbf{A})} e_{3}(\mathbf{x})= & {\left[\frac{(n-2 r)}{(r-1)}\binom{n-3}{r-2}\right] \sum_{T_{1}(\mathbf{A})} e_{3}(\mathbf{x}) } \\
& +(r-1)\binom{n-2}{r-1} \sum_{T_{1}(\mathbf{A})} e_{2}(\mathbf{x})+\binom{r}{3}\binom{n}{r} \tag{3.2}
\end{align*}
$$

Proof: For a vector $\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ let

$$
S_{r}(\mathbf{x})=\sum_{i=1}^{n} x_{i}{ }^{r}
$$

For $\mathbf{x} \in T_{r}(\mathbf{A})$ we have by Newton's identities

$$
\begin{align*}
& S_{1}(\mathbf{x})=e_{1}(\mathbf{x})=r \\
& S_{2}(\mathbf{x})=r^{2}-2 e_{2}(\mathbf{x}) \tag{3.3}\\
& S_{3}(\mathbf{x})=r^{3}-3 r e_{2}(\mathbf{x})+3 e_{3}(\mathbf{x})
\end{align*}
$$

Any $\mathbf{x} \in T_{r}(\mathbf{A})$ has coordinates $a_{i j_{1}}+a_{i j_{2}}+\cdots+a_{i j_{r}}, i=1,2, \ldots, n$, and

$$
\begin{aligned}
\underset{\boldsymbol{T}_{r}(\mathbf{A})}{\mathbf{E}_{2}} S_{2}(\mathbf{x}) & =\sum_{\boldsymbol{T}_{r}(\mathbf{A})} \sum_{i=1}^{n}\left(a_{i j_{1}}+\cdots+a_{i j_{r}}\right)^{2} \\
& =\sum_{T_{r}(\mathrm{~A})} \sum_{i=1}^{n}\left[\sum_{k=1}^{r} a_{i j_{k}}^{2}+\sum_{k \neq l} a_{i j_{k}} a_{i j_{l}}\right] \\
& =\binom{n-1}{r-1} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}+\binom{n-2}{r-2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}\left(1-a_{i j}\right) \\
& =\left[\binom{n-1}{r-1}-\binom{n-2}{r-2}\right] \sum_{T_{1}(\mathbf{A})} S_{2}(\mathbf{x})+n\binom{n-2}{r-2} .
\end{aligned}
$$

Substituting for $S_{2}(\mathbf{x})$ given in (3.3) and simplifying we find

$$
\sum_{T_{r}(\mathbf{A})}\left(r^{2}-2 e_{2}(\mathbf{x})\right)=\binom{n-2}{r-1} \sum_{T_{1}(\mathbf{A})}\left(1-2 e_{2}(\mathbf{x})\right)+n\binom{n-2}{r-2}
$$

and

$$
\begin{equation*}
\sum_{T_{r}(\mathbf{A})} e_{2}(\mathbf{x})=\binom{n-2}{r-1} \sum_{T_{1}(\mathbf{A})} e_{2}(\mathbf{x})+\binom{n}{r}\binom{r}{2} . \tag{3.1}
\end{equation*}
$$

Next to prove (3.2) we proceed similarly:

$$
\begin{aligned}
\sum_{T_{r}(\mathrm{~A})} S_{3}(\mathbf{x}) & =\sum_{T_{r}(\mathbf{A})} \sum_{i=1}^{n}\left(a_{i j_{l}}+\cdots+a_{i j_{r}}\right)^{3} \\
& =\sum_{T_{r}(\mathbf{A})} \sum_{i=1}^{n}\left[\sum_{k=1}^{r} a_{i j_{k}}^{3}+3 \sum_{k \neq l} a_{i j_{k}}^{2} a_{i j_{l}}+\sum_{k \neq l \neq m} a_{i j_{k}} a_{i j_{l}} a_{i j_{m}}\right]
\end{aligned}
$$

$$
\begin{aligned}
\sum_{T_{r}(\mathbf{A})} S_{3}(\mathbf{x})= & \binom{n-1}{r-1} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{3}+3\binom{n-2}{r-2} \sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j}^{2}\left(1-a_{i j}\right) \\
& +\binom{n-3}{r-3} \sum_{i=1}^{n} \sum_{j=1}^{n}\left(a_{i j}-3 a_{i j}^{2}+2 a_{i j}^{3}\right) \\
= & {\left[\binom{n-1}{r-1}-3\binom{n-2}{r-2}+2\binom{n-3}{r-3}\right] \sum_{T_{1}(\mathbf{A})} S_{3}(\mathbf{x}) } \\
& +3\left[\binom{n-2}{r-2}-\binom{n-3}{r-3}\right] \sum_{T_{1}(\mathbf{A})} S_{2}(\mathbf{x})+n\binom{n-3}{r-3} .
\end{aligned}
$$

Substituting for $S_{2}(\mathbf{x})$ and $S_{3}(\mathbf{x})$ and simplifying we obtain (3.2).
In this paper we use only the particular case $r=2$:

$$
\begin{gather*}
\sum_{T_{2}(\mathbf{A})} e_{2}(\mathbf{x})=(n-2) \sum_{T_{1}(\mathbf{A})} e_{2}(\mathbf{x})+\binom{n}{2}, \tag{3.4}\\
\sum_{T_{2}(\mathbf{A})} e_{3}(\mathbf{x})=(n-4) \sum_{T_{1}(\mathbf{A})} e_{3}(\mathbf{x})+(n-2) \sum_{T_{1}(\mathbf{A})} e_{2}(\mathbf{x}) . \tag{3.5}
\end{gather*}
$$

4. The Case $n=4$

If $\mathbf{A}=\left(a_{i j}\right)$ is a 4×4 doubly stochastic matrix, (1.1) becomes

$$
\begin{aligned}
\operatorname{per} \mathbf{A}= & 1-\sum_{T_{3}(\mathbf{A})} e_{4}(\mathbf{x})+\sum_{T_{2}(\mathbf{A})} e_{4}(\mathbf{x})-\sum_{T_{1}(\mathbf{A})} e_{4}(\mathbf{x}) \\
= & 1+\sum_{T_{1}(\mathbf{A})}\left(-e_{2}+e_{3}-2 e_{4}\right)(\mathbf{x}) \\
& +\frac{1}{2} \sum_{r_{2}(\mathbf{A})}\left(+e_{2}-e_{3}+2 e_{4}\right)(\mathbf{x})-\frac{1}{2} \cdot 6
\end{aligned}
$$

Using (3.4) and (3.5) for $n=4$, we write

$$
\operatorname{per} \mathbf{A}=c+\sum_{T_{1}(\mathbf{A})} f(\mathbf{x})+\sum_{T_{2}(\mathbf{A})} g(\mathbf{x})
$$

where $c=-3+3 \alpha$ and

$$
f(\mathbf{x})=\left[-(1-\alpha) e_{2}+(1-\beta) e_{3}-2 e_{4}\right](\mathbf{x})=-g(\mathbf{x}) .
$$

We seek values of (α, β) for which $f(\mathbf{x})$ assumes its global minimum over $\left\{\mathbf{x} \mid 0 \leqslant x_{i} \leqslant 1, \sum x_{i}=1\right\}$ at ($\frac{1}{4} \frac{1}{4} \frac{1}{4} \frac{1}{4}$) and $g(\mathbf{x})$ assumes its minimum over $\left\{\mathbf{x} \mid 0 \leqslant x_{i} \leqslant 1, \sum x_{i}=2\right\}$ at $\left(\frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{2}\right)$. Theorem 1 requires that
(α, β) satisfy a number of inequalities. If the set of (α, β) satisfying these inequalities is non-empty, which it is, then the proof of the conjecture for $n=4$ is complete. One particular decomposition with the desired properties is:

$$
\begin{aligned}
\operatorname{per} \mathbf{A}= & -\frac{1}{3}+\frac{1}{9} \sum_{T_{1}(\mathbf{A})}\left(-4 e_{2}+9 e_{3}-18 e_{4}\right)(\mathbf{x}) \\
& +\frac{1}{18} \sum_{T_{2}(\mathbf{A})}\left(4 e_{2}-9 e_{3}+18 e_{4}\right)(\mathbf{x})
\end{aligned}
$$

Now, we have the following values for the summands:

\mathbf{x}	$\left(-4 e_{2}+9 e_{3}-18 e_{4}\right)(\mathbf{x})$	\mathbf{x}	$\left(4 e_{2}-9 e_{3}+18 e_{4}\right)(\mathbf{x})$
$\left(\frac{1}{4}, \frac{1}{4}, \frac{1}{4}, \frac{1}{4}\right)$	$-129 / 128$	$\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$	$2 \frac{5}{8}$
$\left(0, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	-1	$\left(1, \frac{1}{3}, \frac{1}{3}, \frac{1}{3}\right)$	$2 \frac{2}{3}$
$\left(0,0, \frac{1}{2}, \frac{1}{2}\right)$	-1	$\left(0, \frac{2}{3}, \frac{2}{3}, \frac{2}{3}\right)$	$2 \frac{2}{3}$
$(0,0,0,1)$	0	$(0,0,1,1)$	4
		$\left(1,0, \frac{1}{2}, \frac{1}{2}\right)$	$2 \frac{3}{4}$,

which, in light of Theorem 1, establish:
Theorem 4. If $\mathbf{A}=\left(a_{i j}\right)$ is a 4×4 doubly stochastic matrix then per $\mathbf{A} \geqslant 4!/ 4^{4}=3 / 32$, with equality if and only if $\mathbf{A}=\frac{1}{4} \mathbf{J}$.

5. The Case $n=5$

For this case we have not been able to obtain a suitable decomposition of per \mathbf{A} as the sum of two functions, each of which assumes its minimum at the symmetric point, as for the case $n=4$, and have no proof of the conjecture for $n=5$. However, partial results, for example those in the following two Theorems, may be obtained by use of the same techniques.

Theorem 5. Let $\mathbf{A}=\left(a_{i j}\right)$ be a 5×5 doubly stochastic matrix such that any one of the following conditions hold
(i) $\max _{i, j} a_{i j} \leqslant \frac{1}{3}$;
(ii) some row (or column) $=\left(\frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5} \frac{1}{5}\right)$;
(iii) the elements of the sum of any two columns (or rows) are $\leqslant \frac{1}{2}$;
(iv) any row (or column) $=\left(\frac{1}{2} \frac{1}{2} 000\right)$.

Then

$$
\text { per } A \geqslant \frac{5!}{5^{5}}=\frac{24}{625} .
$$

Theorem 6. If $\mathbf{A}=\left(a_{i j}\right)$ is a 5×5 doubly stochastic matrix then

$$
\operatorname{per} \mathrm{A} \geqslant \frac{22.4609375}{625}
$$

(Note the van der Waerden bound is $24 / 625$.)
We prove case (i) of Theorem 5 for illustration, and omit the remaining proofs because they are tedious and introduce no new technique.

Proof of 5(i): We may write

$$
\begin{aligned}
\operatorname{per} \mathbf{A}= & 1+\sum_{T_{1}(\mathbf{A})}\left(-e_{2}+e_{3}-e_{4}+2 e_{5}\right)(\mathbf{x}) \\
& +\sum_{T_{2}(\mathbf{A})}\left(e_{2}-e_{3}+e_{4}-2 e_{5}\right)(\mathbf{x})-10
\end{aligned}
$$

Then, using (3.1) and (3.2) for $n=5$, we have

$$
\operatorname{per} \mathbf{A}=-.84+\sum_{T_{1}(\mathbf{A})} f(\mathbf{x})+\sum_{T_{2}(\mathbf{A})} g(\mathbf{x}),
$$

where

$$
\begin{aligned}
& f(\mathbf{x})=\left(-.184 e_{2}+.456 e_{3}-e_{4}+2 e_{5}\right)(\mathbf{x}) \\
& g(\mathbf{x})=\left(.184 e_{2}-.456 e_{3}+e_{4}-2 e_{5}\right)(\mathbf{x})
\end{aligned}
$$

By Theorem 1, $g(\mathbf{x})$ assumes its minimum on $\left\{0 \leqslant x_{i} \leqslant 1, \Sigma x_{i}=2\right\}$ uniquely at $\mathbf{x}=\left(\frac{2}{5}, \frac{2}{5}, \ldots ; \frac{2}{5}\right)$. Now consider $f(\mathbf{x})$, where

$$
\mathbf{x} \in\left\{0 \leqslant x_{i} \leqslant \frac{1}{3}, \sum x_{i}=1\right\}
$$

or, equivalently, consider
$\bar{f}(\mathbf{x})=\left(-.184 \frac{e_{2}}{9}+.456 \frac{e_{3}}{27}-\frac{e_{4}}{81}+\frac{2 e_{5}}{243}\right)(\mathbf{x})$ over $\left\{0 \leqslant x_{i} \leqslant 1, \sum x_{i}=3\right\}$.

Again by Theorem $1, \bar{f}(\mathbf{x})$ assumes its minimum for $\mathbf{x} \in\left\{0 \leqslant x_{i} \leqslant 1\right.$, $\left.\sum x_{i}=3\right\}$ at the symmetry point. Hence when (i) holds the theorem follows.

6. A Special Case

A special class of doubly stochastic matrices defined in Theorem 7 is easily handled by our technique.

Theorem 7. Let $\mathbf{A}=\left(a_{i j}\right)$ be an $n \times n$ doubly stochastic matrix having $m \leqslant n$ identical columns, $=\mathbf{a} / m$, and the remaining $n-m$ columns identical,$=\mathbf{b} / n-m$. Then

$$
\text { per } \mathbf{A} \geqslant n!/ n^{n} \text {, with equality if and only if } \mathbf{A}=\frac{1}{n} \mathbf{J} \text {. }
$$

Proof: We have

$$
A=(\mathbf{a} / m, \mathbf{a} / m, \ldots, \mathbf{a} / m, \mathbf{b} / n-m, \mathbf{b} / n-m, \ldots, \mathbf{b} / n-m)
$$

where

$$
\sum_{i=1}^{n} a_{i}=m \text { and } \sum_{i=1}^{n} b_{i}=n-m, \quad a_{i}+b_{i}=1, \quad i=1,2, \ldots, n
$$

It may be verified that (1.1) reduces to

$$
\begin{gather*}
\operatorname{per} \mathbf{A}=\frac{(n-m)!}{(n-m)^{n-m}} \frac{m!}{m^{m}}\left[\left(e_{m}-\binom{m+1}{m} e_{m+1}+\binom{m+2}{m} e_{m+2}+\cdots\right.\right. \\
\left.\left.+(-1)^{n-m}\binom{n}{m} e_{n}\right)(\mathbf{a})\right] \tag{6.1}
\end{gather*}
$$

We denote the function in the bracket by $\phi(\mathbf{a})$. By Theorem 1, $\phi(\mathbf{a})$ assumes its minimum among the points

$$
\mathbf{x}(r, k)=\left(1,1, \ldots, 1, \frac{m-r}{k}, \ldots, \frac{m-r}{k}, 0,0, \ldots, 0\right)
$$

where there are r ones, k of the $(m-r) / k$ components, and $(n-k-r)$ zeros. We have $0 \leqslant m-k \leqslant r \leqslant m \leqslant k+r \leqslant n$. From (6.1) we see

$$
\begin{equation*}
\phi(\mathbf{x}(r, k))=\sum_{p=m}^{k+r}(-1)^{p-m}\binom{p}{m} e_{p}(\mathbf{x}) \tag{6.2}
\end{equation*}
$$

We wish to evaluate ϕ at the critical points $\mathbf{x}(r, k)$. If $r=m$, or if $m-r=k$ then all components are one, and $e_{m}=1$ is the only nonvanishing e_{p} for $m \leqslant p \leqslant k+r$. In this case $\phi=1$. We assume that $r<m$, and $m-k<r$, and $0 \leqslant m-k<r<m \leqslant k+r \leqslant m$. To
compute the $e_{p}(\mathbf{x})$, we may choose σ of the ones and $p-\sigma$ of the components $(m-r) / k$ for $\sigma=0,1, \ldots, r$. Hence

$$
\begin{equation*}
e_{\mathcal{p}}(\mathbf{x}(r, k))=\sum_{\sigma=0}^{r}\binom{r}{\sigma}\binom{k}{p-\sigma}\left(\frac{m-r}{k}\right)^{p-\sigma}, \quad m \leqslant p \leqslant k+r . \tag{6.3}
\end{equation*}
$$

Note that $p-\sigma \geqslant m-r \geqslant 0$ but that $\binom{k}{p-\sigma}$ will vanish for $\sigma<p-k$. Substituting (6.3) into (6.2) we obtain

$$
\phi(\mathbf{x}(r, k))=\sum_{p=m}^{k+r}(-1)^{p-m}\binom{p}{m} \sum_{\sigma=0}^{r}\binom{r}{\sigma}\binom{k}{p-\sigma}\left(\frac{m-r}{k}\right)^{p-\sigma}
$$

We change the summation index to $\tau=p-\sigma$, and

$$
\phi(\mathbf{x}(r, k))=\sum_{\sigma=0}^{r} \sum_{\tau=m-r}^{k}(-1)^{-m+\tau+\sigma}\binom{\tau+\sigma}{m}\binom{r}{\sigma}\binom{k}{\tau}\left(\frac{m-r}{k}\right)^{\tau}
$$

We note that the extra terms introduced for $\tau<m$, and omitted for $\tau>k$, are all zero. But

$$
\sum_{\sigma=0}^{r}(-1)^{\sigma}\binom{\tau+\sigma}{m}\binom{r}{\sigma}=(-1)^{r}\binom{\tau}{m-r}
$$

and

$$
\begin{aligned}
\phi(\mathbf{x}(r, k))= & \sum_{\tau=m-r}^{k}(-1)^{-m+\tau+r}\binom{\tau}{m-r}\binom{k}{\tau}\left(\frac{m-r}{k}\right)^{\tau} \\
= & \sum_{\tau=m-r}^{k}(-1)^{-m+\tau+r}\binom{k}{m-r}\binom{k-m+r}{\tau-m+r}\left(\frac{m-r}{k}\right)^{\tau} \\
= & \binom{k}{m-r}\left(\frac{m-r}{k}\right)^{m-r} \sum_{\tau=m-r}^{k}(-1)^{r-m+r} \\
& \times\binom{ k-m+r}{\tau-m+r}\left(\frac{m-r}{k}\right)^{\tau-m+r} \\
= & \binom{k}{m-r}\left(\frac{m-r}{k}\right)^{m-r}\left(1-\frac{m-r}{k}\right)^{k-m+r}
\end{aligned}
$$

and finally

$$
\phi(\mathbf{x}(r, k))=\frac{k!}{k^{k}} \frac{(k-m+r)^{k-m+r}}{(k-m+r)!} \frac{(m-r)^{m-r}}{(m-r)!}
$$

Recall we have $k>m-r>0$. For a fixed r, this function is decreasing for increasing k. Hence

$$
\phi(\mathbf{x}(r, k)) \geqslant \phi(\mathbf{x}(r, n-r))
$$

But we also have $\phi(\mathbf{x}(r, n-r)) \geqslant \phi(\mathbf{x}(0, n))$ and Theorem 7 follows.

References

1. B. L. van der Waerden, Aufgabe 45, Jber. Deutsch. Math.-Verein., 35 (1926), 117.
2. M. Marcus and M. Newman, On the Minimum of the Permanent of a Doubly Stochastic Matrix, Duke Math. J. 26 (1959), 61-72.
3. M. Marcus and H. Minc, Permanents, Amer. Math. Monthly 72 (1965), 577-591.
4. J. Kellson, A Theorem on Optimum Allocation for a Class of Symmetric Multilinear Return Functions, J. Math. Anal. Appl. 15 (1966), 269-272.
5. H. J. Ryser, Combinatorial Mathematics (Carus Monograph No. 14), Wiley, New York, 1963, p. 27.

[^0]: * The research of the second author was supported in part by National Science Foundation Grant GP 5801.

