
Journal of Algebra 323 (2010) 729–737

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 
Contents lists available at ScienceDirect

Journal of Algebra

www.elsevier.com/locate/jalgebra

Quantifying residual finiteness

Khalid Bou-Rabee

The University of Chicago, Department of Mathematics, 5734 S. University Avenue, Chicago, IL, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 29 July 2008
Available online 10 November 2009
Communicated by Martin Liebeck

Keywords:
Quantifying residual finiteness
Free groups
Grigorchuk group
Arithmetic groups
Finitely generated nilpotent groups
Asymptotic group theory
Cebotarëv’s Density Theorem

We introduce the notion of quantifying the extent to which
a finitely generated group is residually finite. We investigate this
behavior for examples that include free groups, the first Grigorchuk
group, finitely generated nilpotent groups, and certain arithmetic
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Introduction

Given a finitely generated group G , one natural question that has attracted interest is the asymp-
totic growth of the number of subgroups of G of index n. Indeed, the subject of subgroup growth
predates the study of word growth (see Lubotzky and Segal [5, p. xvi]). In this context, the class of
residually finite groups is particularly interesting as they have a rich collection of finite index sub-
groups. Recall that such groups have the property that the intersection of all finite index subgroups
is trivial. Given this property, one might ask how quickly this intersection becomes trivial or in the
same vein, how well finite quotients of G approximate G . The goal of this article is to make precise
and investigate this question for several classes of residually finite groups. Before stating our main
results on this, some notation is required.

For a fixed finite generating set S of G and g ∈ G , let ‖g‖S denote the word length of g with
respect to S . Define

kG(g) := min
{|Q |: Q is a finite quotient of G where g �= 1

}
,
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and

F S
G(n) := max

{
kG(g): ‖g‖S � n

}
.

The objective of this paper is to study the asymptotic properties of F S
G and one of its variants.

Throughout the paper, we write f1 � f2 to mean that there exists a C such that f1(n) � C f2(Cn)

for all n, and we write f1 � f2 to mean f1 � f2 and f2 � f1. The dependence of FG on the generating
set is mild, a fact that we will see in Section 1. Consequently, we will suppress the dependence of
FG on S for the remainder of the introduction. In that same section, we will also provide some
general facts on the behavior of FG under group extensions, passage to subgroups, and taking direct
products.

Our first main result establishes the polynomial growth of FG for certain arithmetic lattices – see
Section 2 for the definition of OL .

Theorem 0.1. Let L be a finite extension of Q. If k � 2, then FSLk(OL )(n) � nk2−1 . Moreover, if k > 2, then
FSLk(OL )(n) � n.

Notice that the asymptotic upper bound for FG depends only on the dimension of the algebraic
group SLn(C) and not on the field L. Further, since Z ∗ Z � SL2(Z), we have, as a consequence of
Theorem 0.1 and Lemma 1.1, that F F (n) � n3 for any finitely generated non-abelian free group F . The
author, unfortunately, does not know of a sharper upper bound for the growth of F F (n).

There are examples of groups with sub-polynomial and super-polynomial FG growth. Let the Hirsch
number of G , denoted h(G), be the number of infinite cyclic factors in a series for G with cyclic or
finite factors. In Section 3 we find a general bound for nilpotent groups of a given Hirsch number:

Theorem 0.2. Let P be a finitely generated nilpotent group. Then F P (n) � log(n)h(P ) .

In Section 4, we present some calculations that show that the first Grigorchuk group has exponen-
tial FG growth.

In the last section we restrict our attention to finite nilpotent quotients and the asymptotic growth
of the associated function for these quotients. To be precise, let

knil
G (g) = min

{|Q |: Q is a finite nilpotent quotient of G where g �= 1
}

and

F nil
G (n) = max

{
knil

G (g): ‖g‖ � n
}
.

Then we get the following characterization of finitely generated nilpotent groups in Section 5.

Theorem 0.3. Let G be any finitely generated group. Then F nil
G (n) has growth which is polynomial in log(n) if

and only if G is nilpotent.

The ingredients used in the proofs of the above theorems include the prime number theorem,
Cebotarëv’s Density Theorem, the Strong Approximation Theorem, the congruence subgroup property
of SLk(Z) for k > 2, and Mal’cev’s representation theorem for nilpotent groups.
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1. Basic theory

In this first section, we lay out some basic lemmas for the sequel. Recall that a group G is residually
finite if for any nontrivial g in G there exists a finite group Q and a homomorphism ψ : G → Q such
that g /∈ kerψ . We begin with a lemma that when applied twice with G = H , will let us drop the
decoration S in F S

G(n).

Lemma 1.1. Let G and H � G be residually finite groups finitely generated by S and L respectively. Then
F L

H (n) � F S
G(n).

Proof. As any homomorphism of G to Q restricts to a homomorphism of H to Q , it follows that
kH (h) � kG(h) for all h ∈ H . Hence,

F L
H (n) = sup

{
kH (g): ‖g‖L � n

}
� sup

{
kG(g): ‖g‖L � n

}
. (1)

Further, there exists a C > 0 such that any element in L can be written in terms of at most C elements
of S . Thus,

{
h ∈ H: ‖h‖L � n

} ⊆ {
g ∈ G: ‖g‖S � Cn

}
. (2)

So by (1) and (2), we have that

F L
H (n) � sup

{
kG(g): ‖g‖L � n

}
� sup

{
kG(g): ‖g‖S � Cn

} = F S
G(Cn),

as desired. �
The previous lemma implies that the growth functions for all non-abelian finitely generated free

groups are equivalent. The next lemma shows that FG is well behaved under direct products. We
leave the proof as an exercise to the reader, as it is straightforward.

Lemma 1.2. Let G and H be residually finite groups generated by finite sets S and T respectively. Then

max
{

F S
G(n), F T

H (n)
} = F J

G×H (n),

where J = S × T .

The next lemma shows that growth under finite group extensions is moderately well-behaved. We
leave the proof as an exercise to the reader, as it is also straightforward.

Lemma 1.3. Let H � G be two finitely generated groups with [G : H] < ∞. Then FG(n) � (F H (n))[G:H] .

2. Arithmetic groups

In order to quantify residual finiteness for arithmetic groups, we require some auxiliary results
concerning the ring analogue of growth for rings of algebraic integers OL .
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2.1. The integers

Fix the generating set {1} for the integers Z. For Z we can do much better than the obvious bound
FZ(n) � n + 1. In fact, the elements with the largest value of kZ are of the form ψ(r) := lcm(1, . . . , r).

Lemma 2.1. If l1 < ψ(m) < l2 < ψ(m + 1), then kZ(ψ(m)) is greater than or equal to kZ(l1) and kZ(l2).

Proof. We prove this by induction on m. The base case with ψ(2) = 2 and ψ(3) = 6 are easily
checked. For the inductive step, suppose the statement is true for m < n, and let l1 < ψ(m + 1) <

l2 < ψ(m + 2). By the inductive hypothesis, and the fact that kZ(ψ(·)) is nondecreasing, we deduce
that kZ(ψ(m + 1)) � kZ(l1). In order for kZ(ψ(m + 1)) < kZ(l2) we must have that l2 satisfies j|l2 for
all j = 1, . . . ,m + 2. Thus l2 is a multiple of 1, . . . ,m + 2 and thus l2 � ψ(m + 2), which is absurd. �

The function ψ(x) is well-studied, as the asymptotic behavior of ψ is used to prove the prime
number theorem in analytic number theory. In fact (see Proposition 2.1, p. 189, in Stein and
Shakarchi [8]),

lim
x→∞

log(ψ(x))

x
= 1. (3)

Since Lemma 2.1 shows that FZ and ψ are related, it is no surprise that (3) is used to prove the
following theorem.

Theorem 2.2. We have FZ(n) � log(n).

Proof. Lemma 2.1 gives

FZ(n)

log(n)
= kZ(ψ(kn))

log(n)
,

where kn is the maximum value of m with ψ(m) � n. Since log is increasing we have

kZ(ψ(kn))

log(ψ(kn + 1))
� kZ(ψ(kn))

log(n)
� kZ(ψ(kn))

log(ψ(kn))
. (4)

The left-hand side of (4) with kZ(ψ(kn)) � kn + 1 and (3) gives

lim
n→∞

kZ(ψ(kn))

log(n)
� 1.

The right-hand side of (4) with kZ(ψ(kn)) � 2kn and (3) gives

lim
n→∞

kZ(ψ(kn))

log(n)
� 2.

Thus FZ(n) � log(n) as desired. �
Corollary 2.3. We have F

Zd (n) � log(n).

Proof. This follows immediately from Lemma 1.2 and Theorem 2.2. �



K. Bou-Rabee / Journal of Algebra 323 (2010) 729–737 733
2.2. Rings of integers

Let L/Q be a finite extension, and let OL be the ring of integers. With these conditions and some
work, it can be shown that OL is a residually finite ring and a finitely generated abelian group. We
need to define F OL while keeping the ring structure of OL in mind, because SLn(−) is a functor from
the category of rings to the category of groups. Equip OL with a word metric as a finitely generated
abelian group and define

kOL (g) := min
{|Q |: ψ(g) �= 1, ψ : OL → Q

}
,

where the maps ψ are ring homomorphisms, and

F OL (n) := max
{
kOL (g): ‖g‖ � n

}
.

The obvious analogue of Lemma 1.1 holds for F OL (n).
To study the asymptotic behavior of F OL (n), we need some algebraic number theory. If p is a

prime ideal of Z, then pOL is an ideal of OL and has factorization

pOL = p
e1
1 · · ·pec

c ,

where pi are distinct. Let fpi be the degree of the field extension [OL/pi : Z/p]. If ei = 1 and fpi = 1
for all i, we say that p splits in OL . In the case where p = (p) where p is a prime number in Z, we
have that p splits only if each prime pi that appears in the factorization satisfies OL/pi = p. Thus,
the primes (p) that split are nice in that they then give small quotients for OL . These nice primes
appear quite often. Indeed, the Cebotarëv Density Theorem (see Theorem 11, p. 414 in Lubotzky and
Segal [5]) implies that the natural density of such primes is nonzero in the set of all primes. This
implication, along with the prime number theorem, implies the following result:

Lemma 2.4. There exists a constant C > 0 such that for any n large enough, there exists a prime q such that
n � q � Cn and (q) splits over OL .

Proof. Let δ be the natural density of all the primes ideals in Z that split over OL . Then Cebotarëv’s
Density Theorem implies that δ is nonzero. Choose a real number C > 1/δ. We claim that for any n
large enough, there must exist a prime p such that (p) splits over OL and n � p � Cn. Otherwise, the
prime number theorem gives, for n large enough,

δ � n/ log(n)

(Cn)/ log(Cn)
,

which, as n → ∞, gives δ � 1/C , an impossibility. �
This lemma will play a key role in the proof of the upper bound in the next theorem.

Theorem 2.5. We have F OL (n) � log(n).

Proof. The lower bound, F OL (n) � log(n), follows from Lemma 1.1 for rings and Theorem 2.2.
For the upper bound, the main idea is that we will first use the bound for Z to ensure that one

of the coordinates in an integral basis for OL will not vanish in a small quotient, then we will use
Lemma 2.4 find an even smaller quotient where the element does not vanish. Let S = {b1, . . . ,bk} be
an integral basis for OL , and fix a nontrivial g in OL with ‖g‖S = n. Then g = ∑n

i=1 aibi where ai ∈ Z

and |ai | � n. Since g �= 0 there exists k such that ak �= 0. Furthermore, by the proof of Theorem 2.2,
and for n large enough, there exists a prime p ∈ Z such that p � 2 log(n) and ak �= 0 mod q for all
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primes q � p. We may further assume that all primes are sufficiently large so that Lemma 2.4 holds.
And so by Lemma 2.4, there exists a C > 0, which does not depend on n, and a prime q such that
p � q � C

2 p such that (q) splits over OL . Hence, we have that (q) = q1 · · ·qc with |OL/qi | = q. Further,
since q does not divide ak and since the integral basis S gets sent to a basis in OL/(q), we have that
g �= 1 in OL/(q). Hence, there exists one qi with g �= 1 in OL/qi . As the cardinality of OL/qi is equal
to q which is no greater than C log(n), we have the desired upper bound. �
2.3. Proof of Theorem 0.1

Let L/Q be a finite extension, and let OL be the ring of integers. With the results of the pre-
vious section, we can now obtain results for SLk(OL). Note that SLk(OL) is finitely generated, but
this fact is highly nontrivial (see Platonov and Rapinchuk [9, Chapter 4]). For A ∈ SLk(OL), let
‖A‖2 = max{‖Ax‖/‖x‖: x ∈ Rk − {0}} be the L2 operator norm of A.

Theorem 2.6. If k � 2, we have FSLk(OL )(n) � nk2−1 .

Proof. The strategy in this proof is to bound the entries of a word of length n in SLk(OL) and then
to use this bound to approximate the group using the F OL

result. Let A1, . . . , Ar be generators for
SLk(OL). Let g ∈ SLn(OL) be a nontrivial element with word length less than or equal to n. The basic
properties of ‖ · ‖2 give that ‖g‖2 � (

√
λ)n where λ is the absolute value of the largest eigenvalue

of any of the Ai AT
i , where i = 1, . . . , r. Since g �= 1 and ‖g‖2 � (

√
λ)n we may find an off-diagonal

nonzero entry, a �= 0, or a diagonal entry a �= 1 of the matrix g that is no greater than (
√

λ)n . For
simplicity we assume that a is an off-diagonal entry, a similar argument to what we will give works
otherwise. Since a is in OL , Theorem 2.5 gives a D > 0, depending only on L, and a ring homomor-
phism ψ : OL → Z/dZ where d < D(log((

√
λ)n)) such that a /∈ kerψ . The function ψ induces a map

ψ ′ : SLk(OL) → SLk(Z/dZ) where g /∈ kerψ ′ . By our bound for d we have

dk2−1 � Dk2−1(log
(
(
√

λ )n))k2−1 � Dk2−1(log(
√

λ )
)k2−1

nk2−1,

giving FSLk(OL )(n) � nk2−1 as asserted. �
For the next theorem we need to introduce some definitions concerning certain subgroups of

SLk(Z/nZ). A normal subgroup of SLk(Z/nZ) is said to be a principal congruence subgroup if it is
the kernel of some map ϕ : SLk(Z/nZ) → SLk(Z/dZ) induced from the natural ring homomorphism
Z/nZ → Z/dZ, where d properly divides n. A subgroup in SLk(Z/nZ) which contains some principal
congruence subgroup is said to be a congruence subgroup. A subgroup in SLk(Z/nZ) which does not
contain any principal congruence subgroups is said to be essential.

Theorem 2.7. If k > 2, then FSLk(OL )(n) � n.

Proof. We first pick a candidate for the lower bound. By Lubotzky, Mozes and Raghunathan [4, Theo-
rem A], there exists a finite generating set, S , for SLk(Z) (see also Riley [6]) and a C > 0 satisfying

‖−‖S � C log
(‖−‖1

)
,

where ‖−‖1 is the 1-operator norm for matrices. Thus, as log(‖Eij(ψ(n))‖1) � log(ψ(n)) � n, the
elementary matrix Eij(ψ(n)) may be written in terms of at most Cn elements from S . This elementary
matrix is our candidate.

Now we show that our candidate, Eij(ψ(n)), takes on the lower bound. Suppose that Q is the
finite quotient with the smallest cardinality such that Eij(ψ(n)) does not vanish. Since SLk(Z) has the
congruence subgroup property (see Bass, Lazard and Serre [10]), then for the map δ : SLk(Z) → Q , we
have an integer d such that the following diagram commutes.
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SLk(Z)
δ

Q

SLk(Z/dZ).

Hence, by our choice of Eij(ψ(n)), we have that Q = SLk(Z/dZ)/N where d � n. In the case where N
is a principal congruence subgroup, we see that the smallest finite quotient of SLk(Z) where Eij(ψ(n))

is nontrivial has size greater than |SLk(Z/nZ)| � n. If N is a congruence group, then taking the quo-
tient by the largest principal congruence group N contains reduces to the case of N being an essential
group. Then by Proposition 6.1.1 in Lubotzky and Segal [5], we have that there exists a c > 0, depend-
ing only on k, such that |Q | � cn. Since SLk(Z) is contained in SLk(OL), Lemma 1.1 gives the claim. �
3. Proof of Theorem 0.2

In the proof of Theorem 0.2, we require the following lemma.

Lemma 3.1. Let U be the group of d × d integral upper triangular unipotent matrices. If G � U , then FG(n) �
C log(n)h(G) , where C does not depend on n.

Proof. It is easy to see that entries of matrices of word length n in G are bounded by Cnr for some
fixed r. Take g ∈ G . Then Theorem 2.2 gives some D > 0, which does not depend on n, such that p �
D log(n) and the natural map ψ : U → U p has g /∈ kerψ , where U p is the image of U in GLd(Z/pZ)

consisting of unipotent upper triangular matrices. So long as p is greater than d, we have that U p has
exponent p. Thus |G| � ph(G) , giving |G| � Dh(G) log(n)h(G) . Setting C = Dh(G) finishes the proof. �

In the following proof we will reduce the general case to the case in the previous lemma.

Proof of Theorem 0.2. To start, we may assume, without loss of generality, that G is a torsion-free,
finitely generated nilpotent group. By Mal’cev’s Theorem (see Segal [7, Chapter 5, §B, Theorem 2], or
Hall [3, Theorem 7.5, p. 56]) there exists a canonical injective homomorphism βN : G → U , where U is
a group of d × d integral upper triangular unipotent matrices. Hence, the bound given by Lemma 3.1
finishes the proof. �
4. The first Grigorchuk group

Let T be the collection of finite sequences of 1s and 0s of length n � 0. We will be interested in
the automorphisms of T defined inductively by:

a(ξ1, . . . , ξn) = (ξ1, ξ2, . . . , ξn),

b(0, ξ1, . . . , ξn) = (0, ξ1, . . . , ξn),

b(1, ξ1, . . . , ξn) = (
1, c(ξ1, . . . , ξn)

)
,

c(0, ξ1, . . . , ξn) = (0, ξ1, . . . , ξn),

c(1, ξ1, . . . , ξn) = (
1,d(ξ1, . . . , ξn)

)
,

d(0, ξ1, . . . , ξn) = (0, ξ1, . . . , ξn),

d(1, ξ1, . . . , ξn) = (
1,b(ξ1, . . . , ξn)

)
,
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where 1 = 0 and 0 = 1. Let the first Grigorchuk Group be Γ := 〈a,b, c,d〉 as in Grigorchuk [1] (see also
de la Harpe [2, Chapter VIII]). In the case when g ∈ Aut(T ) fixes the first k entries of any element
in T , we will write g = (γ1, . . . , γ2k )k in order to record the action beyond level k only. In this case,
we say that g has level k. For example, b = (a, c)1, c = (a,d)1, and d = (1,b)1 all have level 1.

Let T (k) be the collection of sequences of length at most k. The truncation T → T (k) induces a
map ψk : Γ → Aut(T (k)); a principal congruence subgroup is equal to kerψk for some k. Let Γk be the
image of ψk in Aut(T (k)). We borrow from de la Harpe [2, p. 238]:

Lemma 4.1. For k � 3, |Γk| = 25·2k−3+2 .

Theorem 4.2. We have FΓ (n) � 2n.

Proof. Let g be an element of word length � n. We will show that there exists a C > 0, not depending
on g , such that kΓ (g) � C2n . To this end, we claim that there exists k � log(n) such that at level k
there is an odd number of a symbols appearing in some coordinate of g . Hence ψk(g) �= 1. Suppose
g is in reduced word form. Then the relations cb = bc = d and dc = cd = b give that g must be
in a form conjugate to g = ae1ae2a · · · ekr where ei ∈ {b, c,d,b−1, c−1,d−1} and r ∈ {1,a}. If r = a,
then we are done, as ψ1(g) �= 1. Otherwise, we see that the number of the symbols describing g
on some coordinate of level 2 is nonzero and no greater than (|g| + 1)/2. And so, by induction, the
number of symbols describing g on some coordinate of level k + 1 is nonzero and no greater than
(((|g| + 1)/2 + 1)/2 + · · · + 1)/2 = |g|2−k + 2−1 + 2−2 + · · · + 2−k = 2−k|g| + (1 − 2−k). Hence, we see
that there is some k with 2−k|g| � 1, such that some coordinate of level k + 1 has an odd number
of a symbols. And so ψk+2(g) �= 1 where |g| � 2k , giving some C > 0 such that kΓ (g) � C2n by
Lemma 4.1. �
Lemma 4.3. There exists a C > 0 such that the element (1, . . . ,1, (ab)2)k is in Γ and has word length less
than C2k.

Proof. We will prove this by induction on k. For the base case, observe that

(ab)2
0d−1(ab)−2

0 d = (abad)2
0 = (c,a)1(1,b)1(c,a)1(1,b)1 = (

1, (ab)2)
1.

For the inductive step, let gk = (1,1, . . . ,1, (ab)2)k . Then conjugating gk by one of b, c or d yields
(1,1, . . . ,1, (ab)2)k+1. �
Theorem 4.4. We have FΓ (n) � 2n.

Proof. By Lemma 4.3 there exists a nontrivial element g ∈ Γ of word length no greater than C2n

such that any k < n has ψk(g) = 1. Let N be the normal subgroup of Γ of smallest index such that
g /∈ N . If any element in N has level k, then by the proof of Theorem 42 on p. 239 in de la Harpe [2],
N must contain kerψk+6. Hence, as g /∈ N , the normal subgroup N must act trivially on the first n − 6
levels of the rooted binary tree. Thus, N is contained in kerψn−6 and so has index greater than or
equal to 25·2n−9+2 when n � 9, by Lemma 4.1, giving the desired lower bound. �
5. Proof of Theorem 0.3

Theorem 0.3 follows from Lemma 5.1, below, and Theorem 0.2.

Lemma 5.1. If G is a finitely generated group that is not nilpotent, then n � F nil
G (n).
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Proof. Let S be a finite set of generators for G . It suffices to show that there exists a C > 0 such
that for any n, there exists g with ‖g‖S � C2n and knil

G (g) � 2n . Fix n > 0, then since G is not nilpo-
tent, Γn(G) �= 1. Recall that Γn(G) is normally generated by elements of the form [a1, . . . ,an] where
ai ∈ S or a−1

i ∈ S for every i. Since Γn(G) �= 1, there exists some element [a1, . . . ,an] as above that
is nontrivial. Hence, there exists some g with ‖g‖S � C2n with g ∈ Γn(G). Any finite nilpotent quo-
tient Q where g �= 1 must be nilpotent of class n + 1 or more giving |Q | � 2n . Thus knil

G (g) � 2n , as
desired. �
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