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Abstract

The asymptotic behavior of the least squares (LS) estimators of the parameters in threshold

autoregressive models has been completely studied in the literature. It is well known

that in some cases the least absolute deviation (LAD) estimators are superior to the LS-

estimators. This paper is devoted to studying the strong consistency and the asymptotic

normality of the LAD-estimators in two cases where the threshold is known and/or

unknown.
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1. Introduction

Nonlinear time series analysis is a field of growing popularity. Several classes of
nonlinear time-series models have been proposed and illustrated in the literature.
One particular class of models which has received a great deal of attention is the
TAR model. This model is originally introduced by Tong [14]. In [15], numerous
examples from diverse fields are described in which the notion of a threshold is
dominant such as radio engineering, medical engineering, population biology,
economics, ecology and so on. Specifically, in this paper we will treat the following
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TAR(p) model:

Xt ¼
Xm

j¼1

Xp

i¼1
yijXt�iHjðXt�dÞ þ et; t ¼ 0; 1;y; ð1Þ

where m; p are known positive integers and the delay d ð1pdppÞ is known;
HjðXt�dÞ ¼ IðXt�dAFjÞ; Ið:Þ is the indicator function and F1;y;Fm are disjoint

subsets of R such that
Pm

j¼1 Fj ¼ R; fetg is an independent identically distributed

(i.i.d.) random sequence with median zero, finite variance and et is independent of

the past Xt�1;Xt�2;y: y ¼ ðy01;y; y0mÞ
0 (where yj ¼ ðy1j;y; ypjÞ0; j ¼ 1;y;m) is

the mp-dimensional parameter vector to be estimated and belongs to the stationary
area S of model (1) (see [3] for necessary and sufficient conditions for stationarity).
When the TAR model is nonergodic, Pham et al. [12] studied the strong

consistency of the LS-estimators of the parameters.
When the TAR model is stationary ergodic and the thresholds are known, the

LS-estimators are strongly consistent and asymptotically normal [5,11]. However,
in practice, the thresholds might be unknown and need to be estimated. In the
case when the thresholds are unknown, Petruccelli [10] proved the strong
consistency of the conditional LS-estimator of the threshold for the case p ¼
d ¼ 1; m ¼ 2: Chan [2] derived the strong consistency and the limiting distribution
of the conditional LS-estimator of model (1) for the case of arbitrary p and m ¼ 2:
In his paper the threshold parameter is unknown and it is shown that the
estimator of the threshold parameter is N consistent and its limiting distribution
is related to a compound Poisson process. But it is still not known what is
the exact limiting distribution. Furthermore, in [2] it was assumed that the
autoregressive function was discontinuous. Recently, Chan and Tsay [4] investigated
the limiting properties of the conditional least squares estimator for a continuous
TAR model.
It was pointed out in earlier papers that in the observed data of time-series models

there may be some outlier points quite often and the LAD-estimation is more robust
and efficient against the outliers than the LS-estimation. Thus it is of practical
importance to study the asymptotic properties of LAD-estimation for time series
models. In [18] we investigated the asymptotic normality of LAD-estimators of
stationary linear autoregressive models. However, as far as we know, there are few
works considering this problem for nonlinear TAR models. Koul [8] obtained the
asymptotic normality of LAD-estimation for TAR(1) model with known threshold
and m ¼ 2:
In this exposition we first discuss the case when the thresholds of TAR(p) model

(1) are known and obtain the strong consistency and the asymptotic normality of
LAD-estimator of the parameter vector y under some regularity conditions similar
to that of LS-estimators. Then we assume that the threshold is unknown and the
autoregressive function is discontinuous for model (1) with m ¼ 2 and briefly
establish the N consistency and the limiting distribution of the estimator of the
threshold. We will not study the threshold-unknown case for arbitrary m: Generally
speaking, the case m42 is rare in practice and much difficult to tackle (see [15,16]).
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We can see from Section 3 that the m ¼ 2 case is already very complicated. Anyway,
it is beyond the scope of this paper.
Namely, we suppose that there are N observations X1;y;XN from model (1) and

we use the method of LAD-estimation to estimate the true parameter y0: The
estimator, denoted by yN ; is the optimal solution of the following minimizing
problem:

min
yAS

XN

t¼pþ1
Xt �

Xm

j¼1

Xp

i¼1
yijXt�iHjðXt�dÞ

�����
�����: ð2Þ

Our main goal is to show that under some mild conditions yN converges to y0 almost

surely and N
1
2ðyN � y0Þ converges in distribution to a normal random vector. These

results are stated in Theorems 2.1.1 and 2.2.1. Essentially problem (2) is a stochastic
optimization problem. It is natural to use optimization theory to get our desired
results. In Section 3, we examine the asymptotic properties of the estimators in the
case that m ¼ 2 and the threshold is unknown. The proofs of the theorems in Section
2 are presented in the appendix.

2. Asymptotics of the least absolute deviation estimator

2.1. Strong consistency of yN

In this subsection we prove the strong consistency of the LAD-estimator yN :
Note that

Xt ¼
Xm

j¼1

Xp

i¼1
y0ijXt�iHjðXt�dÞ þ et: ð3Þ

Substituting (3) into problem (2), we get an equivalent minimizing problem

min
yAS

N�1
XN

t¼pþ1
et �

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

( )
: ð4Þ

Obviously, the LAD-estimator, yN ; is the optimal solution of (4). Denote the

objective function of (4) by fFNFNðe; yÞ; where e ¼ ðe1;y; eNÞ0:
The reason why we choose this special form of problem (4) to replace program (2)

can be completely figured out by the proof of Theorem 2.1.1 in the appendix.
Here we briefly discuss the technique which is basically different from the classical

one. We do not prove directly the strong consistency of yN : Actually, we convert
the consistency problem into the convergence of the optimal solution of the

mathematical programming. First, we show that y0 is the optimal solution of the
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mathematical program minyAS G̃ðyÞ; where

G̃ðyÞ ¼ lim
N-N

N�1
XN

t¼pþ1
E et �

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

( )
: ð5Þ

Then we prove that the objective function fFNFNðe; yÞ of program (4) converges almost

surely to the objective function G̃ðyÞ of program (5). Hence the almost sure

convergence of yN to y0 can be established along this line (see the proof of Theorem
2.1.1 in the appendix). That is why we substitute problem (4) for problem (2).
Denote the mp � mp matrix

C ¼

C1 0 y 0

0 C2 y 0

^ ^ ^ ^

0 0 y Cm

0BBB@
1CCCA;

Cj ¼

EX 2
p HjðXpþ1�dÞ EXpXp�1HjðXpþ1�dÞ y EXpX1HjðXpþ1�dÞ

EXpXp�1HjðXpþ1�dÞ EX 2
p�1HjðXpþ1�dÞ y EXp�1X1HjðXpþ1�dÞ

^ ^ ^ ^

EXpX1HjðXpþ1�dÞ EXp�1X1HjðXpþ1�dÞ y EX 2
1 HjðXpþ1�dÞ

0BBBB@
1CCCCA;

j ¼ 1;y;m:

We assume the following regularity conditions

Condition 1. Model (1) is strictly stationary, having finite fourth moments and the
stationary finite-dimensional distribution of ðX1;y;XpÞ admits a density function h

and the matrix C is positive definite.

Condition 2. fetg is an i.i.d. random sequence with median zero, finite variance and
the density function gð�Þ of et is continuously differentiable at zero, gð0Þ40:

Condition 3. fYtg has a unique invariant measure pð�Þ such that there exists

K ; ro1; for any xARp and any n; jPnðx; �Þ � pð�ÞjpKð1þ jjxjjÞrn; where Yt ¼
ðXt�1;y;Xt�pÞ0;Pnðx;AÞ (xARp; A is a Borel set) stands for the n-step transition

probability of the Markov chain fYtg and j � j and jj � jj denote the total variation
norm and the Euclidean norm, respectively.

Reviewing the literature on the LS-estimation for TAR models, we see that similar
conditions as conditions 1–3 were also imposed (cf. [2]) to study the properties of LS-
estimators in TAR models.

Lemma 2.1.1. Assume that conditions 1 and 2 hold, then there exists an open

neighborhood U of y0 such that y0 is the unique local optimal solution of the

program (5).
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The first main result of this paper is the following

Theorem 2.1.1. Assume that X1 is a bounded random variable and conditions 1–3 hold,

then yN-y0 almost surely as n-N:

Theoretically speaking, the first assumption in Theorem 2.1.1 is very restrictive.
However, in practical situation, we can always get the bounded observations.

2.2. Limiting distribution of N1=2ðyN � y0Þ

In this subsection we turn to establish the asymptotic normality of LAD-estimator
of TAR model (1). Introducing a new optimization vector

v ¼ ðv11;y; vp1;y; v1m;y; vpmÞ0 ¼ N1=2ðy� y0Þ:

Here the definition of v is rational, see Lemma 2.2.2. Then we can rewrite (2) as

min
vAV

XN

t¼pþ1
et � N�1=2

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

�����
������ jetj

( )
; ð6Þ

where V ¼ fv ¼ N1=2ðy� y0Þ: yASg: Denote by FNðe; vÞ and vN the objective

function and the optimal solution of (6). It is clear that vN ¼ N1=2ðyN � y0Þ: As
stated in Section 2.1, in order to show the asymptotic normality of N1=2ðyN � y0Þ by
our special technique, we should use program (6) to replace program (2). The main

idea for deriving the limiting distribution of vN is as follows. First, we try to find a
function GðZ; vÞ such that FNðe; vÞ-GðZ; vÞ in distribution. Thereafter we show that

the optimal solution vN of (6) converges weakly to the optimal solution v� of
minvAV GðZ; vÞ: As we will see from Lemma 2.2.1, GðZ; vÞ is a stochastic quadratic
function. Thus the distribution of v� can be found easily. This is the desired limiting

distribution of N1=2ðyN � y0Þ:
The way adapted here was also used by Prakasa Rao [13], Wang [17] and Wang

and Wang [18] to study the asymptotic behavior of LS-estimators and LAD-
estimators for nonlinear regression models and linear time series models respectively.
The following lemma gives the limit function of FNðe; vÞ:

Lemma 2.2.1. Under conditions 1 and 2, for any fixed v;FNðe; vÞ converges in

distribution to

GðZ; vÞ ¼ �v0Zþ gð0Þv0Cv;

where Z is a mp-dimensional normal random vector with zero mean and covariance

matrix C.

The following lemma is important for the proofs of Theorems 2.1.1 and 2.2.1 and
may be of independent interest on its own.
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Lemma 2.2.2. Under conditions 1 and 2, we have that vN ¼ N1=2ðyN � y0Þ is bounded

in probability.

With Lemmas 2.2.1 and 2.2.2 we can show

Theorem 2.2.1. Under conditions 1 and 2, we have

N1=2ðyN � y0Þ-v�

in distribution, where v� is mp-dimensional normal vector, centered at the origin, with

covariance matrix S ¼ ð4g2ð0ÞCÞ�1:

3. Asymptotics of the estimator of the threshold

In this section we only consider the case m ¼ 2: Then (1) becomes

Xt ¼
y11Xt�1 þyþ yp1Xt�p þ et; if Xt�dpr;

y12Xt�1 þyþ yp2Xt�p þ et; if Xt�d4r:



ð7Þ

Here we suppose r is unknown and H1ðXt�dÞ ¼ IðXt�dprÞ;H2ðXt�dÞ ¼ IðXt�d4rÞ:
The true value of r is r0: The LAD-estimator yN can be derived by two steps. First for
any fixed r; we minimize

min
yAS

FNðy; rÞ ¼
XN

t¼pþ1
Xt �

Xp

i¼1
yi1Xt�iIðXt�dprÞ �

Xp

i¼1
yi2Xt�iIðXt�d4rÞ

�����
�����:
ð8Þ

After we get the optimal solution yNðrÞ and the optimal value FNðyNðrÞ; rÞ; we solve
the following problem:

min
r

FNðyNðrÞ; rÞ ð9Þ

and obtain the optimal solution rN as the estimator of the threshold. Practically,
when analyzing the data X1;y;XN observed from model (7), we usually rearrange
them as Xð1Þ;y;XðNÞ; the order statistics of the sample. Then we choose the

threshold r from the points of 25%; 35%; 50%; 75%; etc. significance levels in this

order statistics sequence and compute the optimal values FNðyNðrÞ; rÞ using these
thresholds. Finally, the threshold involved in the smallest one among these optimal
values is the estimator of the threshold r (see [16] for details).

We first verify the conclusion that rN is a consistent estimator of r0:

Theorem 3.1. Under the conditions assumed in Theorem 2.1.1 and condition 4 in Chan

[2], NðrN � r0Þ is bounded in probability.

Proof. From Theorem 2.1.1, yN is strongly consistent, then the parameter space can

be restricted to a neighborhood of y0: First we consider the case p ¼ d ¼ 1: In order
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to show that NðrN � r0Þ is bounded in probability, it suffices to prove that for

any e40; there exists some 0odo1 and K40 such that jy1j � y01jjod; j ¼ 1; 2;

jr � r0j4K=N and with probability greater than 1� e

FNðy11; y12; rÞ � FNðy11; y12; r0Þ40:

First we consider the case rXr0: In fact, from (7) and (8), we obtain

FNðy11; y12; rÞ � FNðy11; y12; r0Þ

¼
XN

t¼pþ1
fjet � ðy11 � y011ÞXt�1j � jetjgIðr0oXt�1prÞ

þ
XN

t¼pþ1
fjetj � jet � ðy12 � y012ÞXt�1jgIðr0oXt�1prÞ:

Moreover, by the convexity of the absolute value function and the fact that signðuÞ is
one of subgradients of j � j at u; we have

jet � ðy11 � y011ÞXt�1j � jetjX� ðy11 � y011ÞXt�1 signðetÞ

and

jetj � jet � ðy12 � y012ÞXt�1jXðy12 � y012ÞXt�1 sign ðet � ðy12 � y012ÞXt�1Þ;

where

sign ðuÞ ¼
1; u40;

0; u ¼ 0;

�1; uo0:

8><>:
It follows that

FNðy11; y12; rÞ � FNðy11; y12; r0Þ

X

XN

t¼pþ1
f�ðy11 � y011ÞXt�1 sign ðetÞIðr0oXt�1prÞg

þ
XN

t¼pþ1
fðy12 � y012ÞXt�1 sign ðet � ðy12 � y012ÞXt�1ÞIðr0oXt�1prÞg: ð10Þ

The RHS of (10) is bounded in absolute value by c1
PN

t¼pþ1 Iðr0oXt�1prÞ for some
constant c1 independent of N and r0orpr0 þ d:
For any e40; c240; there exists K40 such that

P sup
K=Nor�r0pd

PN
t¼pþ1 Iðr0oXt�1prÞ

NEfIðr0oX1prÞg � 1

�����
�����oc2

( )
41� e:

(This result is proved in Claim 2 of Proposition 1 in [2].)
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Let c2 be chosen so that c1ð1� c2Þ40: Then for K=Nor � r0pd;

PfFNðy11; y12; rÞ � FNðy11; y12; r0ÞXc1ð1� c2ÞNEfIðr0oX1prÞg40g41� e:

That is, r � r04K=N implies that FNðy1; y2; rÞ4FNðy1; y2; r0Þ with probability
greater than 1� e:
The case of ror0 is similar. This is the proof for the case p ¼ d ¼ 1:

For the general case, by Condition 4 in [2], there exists Y � ¼ ðrp�1; rp�2;y; r0Þ0

such that ðy01 � y02Þ
0
Y �a0 and rp�d ¼ r0: Then there exists $40 such that ðy01 �

y02Þ
0
Y is bounded away from 0 for all Y such that jjY � Y �jjp$: Then the preced-

ing proof would go through only if we replace each Iðr0oX1prÞ by

Iðr0oXt�dpr; jjYt � Y �jjp$Þ; where Yt ¼ ðXt�1;y;Xt�pÞ0: In detail, again

we have

FNðy1; y2; rÞ � FNðy1; y2; r0Þ

X

XN

t¼pþ1
fðy2 � y02 � y1 þ y01Þ

0
YtIðr0oXt�1pr; jjYt � Y �jjp$Þg:

Then again for K=Nor � r0pd; we get

PfFNðy1; y2; rÞ � FNðy1; y2; r0Þ40g41� e:

Hence we have

rN ¼ r0 þ Oð1=NÞ ð11Þ

in probability for arbitrary p; 1pdpp: This completes the proof of
Theorem 3.1. &

Remark. From the results of Theorems 2.1.1 and 3.1, we know that yNðrÞ-y0

almost surely for any r satisfying jr � r0jpK=N: This means that

yNðrNÞ-y0

almost surely. On the other hand, let CðrÞ denotes the covariance matrix C of Z in
Lemma 2.2.1. By Condition 1 and Schwartz inequality, it is easy to check that the

matrix CðrÞ is continuous in r: Therefore rN-r0 in probability implies that

CðrNÞ-Cðr0Þ in probability. Now Theorem 2.2.1 yields that

N1=2ðyNðrNÞ � y0Þ-v�

in distribution. Then we conclude that the asymptotic behaviors of the LAD-
estimator for model (7) with unknown threshold are equal to that in the case when
the threshold is known.

As to the limiting behavior of NðrN � r0Þ; applying the discussions in Kushner [9],
it can be shown that the limiting law of NðrN � r0Þ is related to a compound Poisson
process, see the following relation (15).

Now we briefly prove this result. First we define a new variable w ¼ Nðr � r0Þ and
then by (11) we change the objective function of problem (9) to get an equivalent
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problem

min
jwjpK

TNðwÞ ¼ FNðyNðr0 þ w=NÞ; r0 þ w=NÞ � FNðyNðr0Þ; r0Þ: ð12Þ

Obviously NðrN � r0Þ is the optimal solution of program (12). From Lemma 2.2.2,
we obtain

yN
ij ðr0 þ w=NÞ ¼ y0ij þ N�1=2vN

ij ðr0 þ w=NÞ; i ¼ 1;y; p; j ¼ 1; 2

and

jvN
ij ðr0 þ w=NÞjpc3

in probability for some positive constant c3: Moreover, note that if wX0;

FNðyNðr0 þ w=NÞ; r0 þ w=NÞ � FNðyNðr0Þ; r0Þ

� ðFNðy0; r0 þ w=NÞ � FNðy0; r0ÞÞ

¼
XN

t¼pþ1
Xt �

Xp

i¼1
Xt�iy

N
i1ðr0 þ w=NÞ

�����
������ Xt �

Xp

i¼1
Xt�iy

0
i1

�����
�����

(

� Xt �
Xp

i¼1
Xt�iy

N
i2ðr0Þ

�����
������ Xt �

Xp

i¼1
Xt�iy

0
i2

�����
�����

 !)
� Iðr0oXt�dpr0 þ w=NÞ: ð13Þ

Using similar arguments as in the proof of Theorem 3.1, we have

Xt �
Xp

i¼1
Xt�iy

N
i1ðr0 þ w=NÞ

�����
������ Xt �

Xp

i¼1
Xt�iy

0
i1

�����
�����

¼ Xt �
Xp

i¼1
Xt�iy

0
i1 � N�1=2

Xp

i¼1
Xt�iv

N
i1ðr0 þ w=NÞ

�����
������ Xt �

Xp

i¼1
Xt�iy

0
i1

�����
�����

p� N�1=2
Xp

i¼1
Xt�iv

N
i1ðr0 þ w=NÞ sign Xt �

Xp

i¼1
Xt�iy

0
i1

 

�N�1=2
Xp

i¼1
Xt�iv

N
i1ðr0 þ w=NÞ

!
:

And

Xt �
Xp

i¼1
Xt�iy

N
i2ðr0Þ

�����
������ Xt �

Xp

i¼1
Xt�iy

0
i2

�����
�����

X� N�1=2
Xp

i¼1
Xt�iv

N
i2ðr0Þ sign Xt �

Xp

i¼1
Xt�iy

0
i2

 !
:
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Let Di ¼ max1ptpNXt�iIðr0oXt�dpr0 þ w=NÞ; then

Di ¼ max
1ptpN

Xt�ifIðr0oXt�dpr0 þ w=N; jjYt � Y �jjp$Þ

þ Iðr0oXt�dpr0 þ w=N; jjYt � Y �jj4$Þg:

If jjYt � Y �jj4$; by Condition 4 in [2], we know that ðy01 � y02Þ
0
Yt ¼ 0: Since

y01ay02; it holds that jjYtjjoN almost surely. This means that DioN almost surely.

Hence by (13), Schwartz inequality and the properties of ‘‘sign’’ function, when n

big enough, we have

Var fTNðwÞ � ½FNðy0; r0 þ w=NÞ � FNðy0; r0Þ�g

pE N�1=2
XN

t¼pþ1

Xp

i¼1
Xt�i vN

i2ðr0Þ sign Xt �
Xp

i¼1
Xt�iy

0
i2

 !"(

� vN
i1ðr0 þ w=NÞ sign Xt �

Xp

i¼1
Xt�iy

0
i1 � N�1=2

Xp

i¼1
Xt�iv

N
i1ðr0 þ w=NÞ

 !#

� Iðr0oXt�dpr0 þ w=NÞ
)2

pc23N
�1E

XN

t¼pþ1

Xp

i¼1
Xt�i signðetÞ

"(

� sign et � N�1=2
Xp

i¼1
Xt�iv

N
i1ðr0 þ w=NÞ

 !#

� Iðr0oXt�dpr0 þ w=NÞ
)2

pc23N
�1E

Xp

i¼1
Di

XN

t¼pþ1
sign ðetÞ � sign et � N�1=2c3

Xp

i¼1
Di

 !" #( )2

pc23N
�1 E

Xp

i¼1
Di

( )4
8<:

9=;
1=2

E
XN

t¼pþ1
oP N�1=2c3

Xp

i¼1
Di

 !( )4
8<:

9=;
1=2

pc23N
�1 E

Xp

i¼1
Di

" #48<:
9=;

1=2

oðNÞ

pc23 E
Xp

i¼1
Di

" #48<:
9=;

1=2

oð1Þ

-0 as N-N;
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where oPð:Þ stands for convergence in probability as N-N:We get similar result for
the case wo0: Hence Chebyshev’s inequality yields

sup
jwjpK

jTNðwÞ � fFNðy0; r0 þ w=NÞ � FNðy0; r0Þgj-0 ð14Þ

in probability. Owing to (14), we can approximately write TNðwÞ as

TNðwÞ ¼

P
et þ

Pp
i¼1

ðy0i2 � y0i1ÞXt�i

���� ����� jetj

 �

Iðr0oXt�dpr0 þ w=NÞ; wX0;

P
et þ

Pp
i¼1

ðy0i1 � y0i2ÞXt�i

���� ����� jetj

 �

Iðr0 þ w=NoXt�dpr0Þ; wo0:

8>>><>>>:
Employing weak convergence theory for random processes in [9], it can be shown
that under conditions 1–4 in Chan [2],

fTNðwÞ;wo0g-fT ð1ÞðwÞ;wo0g;

fTNðwÞ;wX0g-fT ð2ÞðwÞ;wX0g

in distribution. Here fT ð1ÞðwÞ;wo0g and fT ð2ÞðwÞ;wX0g are compound Poisson
processes with the distributions of jump being given by the conditional distribution

jepþ1 þ
Pp

i¼1 ðy
0
i1 � y0i2ÞXpþ1�ij � jepþ1j given Xpþ1�d ¼ r0� and the conditional

distribution jepþ1 þ
Pp

i¼1 ðy
0
i2 � y0i1ÞXpþ1�ij � jepþ1j given Xpþ1�d ¼ r0þ; respectively.

For completeness we outline the proof of the above statement. In fact, by Lemma
3.2 in Ibragimov and Has’minskii [7], it is easy to check the tightness of

fT ð1ÞðwÞ;wo0g and fT ð2ÞðwÞ;wX0g: Therefore, to complete the proof, it suffices
to show the weak convergence of finite-dimensional distributions of fTNðwÞ;wo0g
and fTNðwÞ;wX0g: This can be established by following the arguments in the proof
of Theorem 2 in [2]. The main difference is that we replace Je

N in Chan [2] by

Je
N ¼ et þ

Xp

i¼1
ðy0i2 � y0i1ÞXt�i

�����
������ jetj

 !
Iðr0oXt�dpr0 þ w=NÞ:

Now by the weak convergence of fTNðwÞ;wo0g; fTNðwÞ;wX0g; and by adapting
the similar method used in the proof of Theorem 2.2.1, we get the conclusion that

NðrN � r0Þ-w� ð15Þ

in distribution, where w� is the global minimizer of the function T ð1ÞðwÞIðwo0Þ þ
T ð2ÞðwÞIðwX0Þ:
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Appendix

Proof of Lemma 2.1.1. What we should do is to compute

XN

t¼pþ1
E et �

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

( )
:

By condition 2, for any e40; there exists d40 such that for any jujod;

gðuÞ ¼ gð0Þ þ OðeÞ:

Let U ¼ fy: jjy� y0jjpdgCS denotes the open neighborhood of y0: Then for any
yAU ; by the independence of et and ðXt�1;y;Xt�pÞ; we have

E et �
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

( )

¼ 2

Z
u40;u�to0

ðt� uÞgðuÞhðv1;y; vpÞ du dv1ydvp

þ 2

Z
uo0;u�t40

ðu � tÞgðuÞhðv1;y; vpÞ du dv1ydvp

¼ 2

Z
N

�N

Z t

0

ðt� uÞgðuÞdu


 �
hðv1;y; vpÞdv1ydvp

¼ 2

Z
N

�N

1

2
t2½gð0Þ þ OðeÞ�hðv1;y; vpÞdv1ydvp

¼ gð0Þðy� y0Þ0Cðy� y0Þ þ Oðeðy� y0Þ0ðy� y0ÞÞ;

where t ¼
Pm

j¼1
Pp

i¼1 viHjðvdÞðyij � y0ijÞ: Let e-0; we obtain

lim
N-N

N�1
XN

t¼pþ1
E et �

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

( )
¼ gð0Þðy� y0Þ0Cðy� y0Þ: ðA:1Þ

Since gð0Þ40 and C is positive definite, then y0 is the unique local optimal solution

of minyASG̃ðyÞ: &

Proof of Theorem 2.1.1. Set Zt ¼ et �
Pm

j¼1
Pp

i¼1 ðyij � y0ijÞXt�iHjðXt�dÞ
��� ���� jetj þPm

j¼1
Pp

i¼1 ðyij � y0ijÞXt�iHjðXt�dÞ signðetÞ: Then fFNFNðe; yÞ ¼ N�1PN
t¼pþ1

Zt �
Pm

j¼1
Pp

i¼1 ðyij � y0ijÞXt�iHjðXt�dÞ signðetÞ
n o

:

At first step we prove that for any fixed y;fFNFNðe; yÞ-G̃ðyÞ
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almost surely. It suffices to show that

N�1
XN

t¼pþ1
fZt � EðZtÞg-0; ðA:2Þ

N�1
XN

t¼pþ1

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ sign ðetÞ-0 ðA:3Þ

almost surely. Using the similar arguments as in the proof of Theorem 3.1, we have

et �
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
������ jetj

X�
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ sign ðetÞ

and

jetj � et �
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

�����
�����

X

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ sign et �

Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

 !
This means that

0pZtp
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

� signðetÞ � sign et �
Xm

j¼1

Xp

i¼1
ðyij � y0ijÞXt�iHjðXt�dÞ

 !( )
:

ðA:4Þ

Then for any fixed y and some constant c4; we have

0pZtpc4
Xp

i¼1
Xt�i: ðA:5Þ

Since fYtg is a stationary Markov process, by condition 3, we have that
Pp

i¼1 Xt�i

� �
is f-mixing with fn ¼ c5rn; where c5 is a positive constant (cf. p. 167, Example 2 of
Billingsley [1]).
Then following from a result in Billingsley [1](cf. p. 172, Lemma 4), we arrive at

E
XN

t¼pþ1

Xp

i¼1
Xt�i

 !4

pc6N
2

with positive constant c6:
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This, combined with (A.5) and Chebyshev’s inequality, now yieldsXN
N¼1

P N�1
XN

t¼pþ1
fZt � EðZtÞg

�����
�����4e

( )

pc44

XN
N¼1

E
PN

t¼pþ1
Pp

i¼1 Xt�i

�  4
N4e4

pc7
XN
N¼1

N�2oN;

where c7 is a positive constant. Then (A.2) follows from Borel-Cantelli’s lemma.
Similar arguments yield (A.3).

Now we have showed that for any fixed yAS; the objective function fFNFNðe; yÞ of
program (4) converges almost surely to the objective function G̃ðyÞ of program (5).

We are in the position to prove the almost sure convergence of yN to y0:
Let O denotes the underlying probability space and let O� A be a measure-zero

set in O: Assume that fFNFNðe; yÞðoÞ- eGGðyÞ for every oAA:
Note that the closure of the stationary region, cl S; is a compact subset of Rmp;

hence for every oAA; fyNðoÞg always contains convergent subsequence in cl S:

Without loss of generality we suppose that for every oAA; fyNðoÞg converges to

aoAcl S; aoay0: By the fact that N1=2ðyN � y0Þ is bounded in probability (this result
will be proved later, see Lemma 2.2.2 which is independent of Theorem 2.1.1), we see

that for each oAA; there exists a e40 such that oABe and yNðoÞAU when N is large

enough, where BeCO and PðBeÞX1� e;U is an open neighborhood of y0 defined in
the proof of Lemma 2.1.1. This implies that aoAU :

By Lemma 2.1.1, fy0g is the unique local minimizer of G̃ð:Þ; then G̃ðaoÞ4G̃ðy0Þ ¼
0: On the other hand, since fyNg is the optimal solution of fFNFNðe; yÞ; by the continuity
of the function G̃; we have

G̃ðaoÞ ¼ gð0Þðao � y0Þ0Cðao � y0Þ

¼ lim
N-N

G̃ðyNðoÞÞ ¼ lim
N-N

fFNFNðe; yNðoÞÞ

p lim
N-N

fFNFNðe; y0Þ ¼ G̃ðy0Þ ¼ 0:

Here limN-N means almost sure convergence. This contradiction proves that

yN-y0 almost surely as N-N: &

Proof of Lemma 2.2.1. Since Zt ¼ et � N�1=2Pm
j¼1
Pp

i¼1 vijXt�iHjðXt�dÞ
��� ���� jetj

þN�1=2Pm
j¼1
Pp

i¼1 vijXt�iHjðXt�dÞ sign ðetÞ: From (A.4), we have

0pZtpN�1=2
Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

� sign ðetÞ � sign et � N�1=2
Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

 !( )
:
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Then by Schwartz inequality and the properties of ‘‘sign’’ function, we get that, for
any fixed v;

VarðZtÞ

pN�1E
Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞoP N�1=2

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

 !( )2

¼ oð1ÞN�2E
Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

( )4

poð1ÞN�2E
Xm

j¼1

Xp

i¼1
vijXt�i

( )4

¼ oð1ÞN�2EX 4
1 :

Again by Schwartz inequality, we obtain

Var
XN

t¼pþ1
Zt

 !
pN2 Var ðZtÞpN2N�2EX 4

1 oð1Þ-0

as N-N: Now Chebyshev’s inequality yields

FNðe; vÞ � F�
Nðe; vÞ-0

in probability as N-N; where

F �
Nðe; vÞ ¼ � N�1=2

XN

t¼pþ1

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ sign ðetÞ

þ
XN

t¼pþ1
E et � N�1=2

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

�����
������ jetj

" #
:

Hence for our purpose it suffices to derive the limit of F �
Nðe; vÞ: First, by the

independence of et and Xs ðsotÞ and EfsignðetÞg ¼ 0; the central limit theorem for
martingales as given in Corollary 3.1 in [6] yields

N�1=2
XN

t¼pþ1

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ sign ðetÞ-v0Z ðA:6Þ

in distribution.
Moreover, (A.1) can be rewritten as

lim
N-N

XN

t¼pþ1
E et � N�1=2

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

�����
������ jetj

( )
¼ gð0Þv0Cv:

This, together with (A.6), completes the proof. &
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Proof of Lemma 2.2.2. Note that v ¼ 0 is a feasible solution of program (6) and vN is
the optimal solution of (6), that is,

0XFNðe; vNÞ � FNðe; 0Þ ¼ F�
Nðe; vNÞ þ oPð1Þ

Then it suffices to verify the following

Claim. For any e40; there exist positive constants Me; d such that with probability

greater than 1� e; when jjvjj4Me; we have F �
Nðe; vÞXd for N large enough. Clearly in

this case FNðe; vÞ40 for N large enough.
First, by Lemma 2.2.1, we know that

F �
N1ðe; vÞ-� v0Z

in distribution and

F �
N2ðvÞ ¼ gð0Þv0Cv þ oð1Þ;

where

F�
N1ðe; vÞ ¼ �N�1=2

XN

t¼pþ1

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ sign ðetÞ;

F�
N2ðe; vÞ ¼

XN

t¼pþ1
E et � N�1=2

Xm

j¼1

Xp

i¼1
vijXt�iHjðXt�dÞ

�����
������ jetj

" #
:

By condition 1, we know that C ¼ VarðZÞ is positive definite, then let
l1Xl2X?Xlmp40 be its characteristic roots and l1;y; lmp be its standardized

characteristic vectors, we have

Var ðF�
Nðe; vÞÞ-v0Cv ¼

Xmp

i¼1
lia

2
i pl1jjvjj2

here the vector v can be written as v ¼
Pmp

i¼1 aili: Hence for N large enough and any

e40; by Chebyshev’s inequality, we have

PfjF �
Nðe; vÞ � EfF �

Nðe; vÞgjpjjvjjbegX1� e ðA:7Þ

by choosing be ¼ ð2l1=eÞ1=2: (A.7) implies that
PfF�

Nðe; vÞX� jjvjjbe þ gð0Þv0Cv þ oð1ÞgX1� e: ðA:8Þ

Again since gð0ÞC is positive definite, still define l1Xl2X?Xlmp40 and l1;y; lmp

be characteristic roots and standardized characteristic vectors of gð0ÞC; we have

�jjvjjbe þ gð0Þv0Cv ¼ �jjvjjbe þ
Xmp

i¼1
lia

2
i Xlmpjjvjj2 � jjvjjbe:

For N large enough, let Me; d be chosen so that

inf
jjvjj4Me

f�jjvjjbe þ gð0Þv0Cv þ oð1ÞgXd:
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This, in turn, when using (A.8), means that

P inf
jjvjj4Me

fF �
Nðe; vÞgXd


 �
XP inf

jjvjj4Me

fF�
Nðe; vÞgX inf

jjvjj4Me

f�jjvjjbe þ gð0Þv0Cv þ oð1Þg

 �

X1� e

and hence the validity of Lemma 2.2.2. &

Proof of Theorem 2.2.1. Here we give only the sketch of the proof, since the details
are quite similar to that of Theorem 2 in [17].

The main idea is that we view vN as an image of the stochastic processes
fFNðe; vÞ; vAVg under the minimizing operator H and use continuous mapping
theorem in weak convergence theory of probability measures (see [1]). Here H is a
minimizing operator on CV (where CV is the space of all continuous functions
defined on V ) such that the image of f in CV under H is the optimal solution of

min f ðvÞ
s:t: vAV :

By Lemmas 2.2.1 and 2.2.2, the optimization theory, and the theory of stochastic
processes, we can show that the sequence of stochastic processes fFNðe; vÞ; vAVg
converges weakly to the stochastic process fGðZ; vÞ; vAVg and that Hð�Þ is a
continuous mapping in the sense that Hð fnÞ-Hð f Þ for fn-f if Hð f Þ is unique.
Then by continuous mapping theorem (see Theorem 5.1 in [1]), we obtain

HfFNðe; vÞ; vAVg-HfGðZ; vÞ; vAVg
in distribution. This implies that

vN-v�

in distribution, where v� is the unique solution of the equation @
@v

GðZ; vÞ ¼ 0; then

v� ¼ ð2gð0ÞCÞ�1Z: Thus we get the desired conclusion. &
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