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Abstract

The asymptotic behavior of the least squares (LS) estimators of the parameters in threshold
autoregressive models has been completely studied in the literature. It is well known
that in some cases the least absolute deviation (LAD) estimators are superior to the LS-
estimators. This paper is devoted to studying the strong consistency and the asymptotic
normality of the LAD-estimators in two cases where the threshold is known and/or
unknown.
© 2004 Elsevier Inc. All rights reserved.
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1. Introduction

Nonlinear time series analysis is a field of growing popularity. Several classes of
nonlinear time-series models have been proposed and illustrated in the literature.
One particular class of models which has received a great deal of attention is the
TAR model. This model is originally introduced by Tong [14]. In [15], numerous
examples from diverse fields are described in which the notion of a threshold is
dominant such as radio engineering, medical engineering, population biology,
economics, ecology and so on. Specifically, in this paper we will treat the following
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TAR(p) model:
m_p
Xo=Y > 04X Hi(Xia)+e, 1=01,.., )
j=1 =1

where m,p are known positive integers and the delay d (1<d<p) is known;
H;(X,—q) =1(X,—4€F;),I(.) is the indicator function and Fi, ..., F, are disjoint

subsets of R such that 7" | F; = R;{e,} is an independent identically distributed

(i.i.d.) random sequence with median zero, finite variance and e, is independent of
the past X,1, X;-2,.... 0=(0],...,0.)" (where 0; = (0, ...,0pj), j=1,...,m) is
the mp-dimensional parameter vector to be estimated and belongs to the stationary
area S of model (1) (see [3] for necessary and sufficient conditions for stationarity).

When the TAR model is nonergodic, Pham et al. [12] studied the strong
consistency of the LS-estimators of the parameters.

When the TAR model is stationary ergodic and the thresholds are known, the
LS-estimators are strongly consistent and asymptotically normal [5,11]. However,
in practice, the thresholds might be unknown and need to be estimated. In the
case when the thresholds are unknown, Petruccelli [10] proved the strong
consistency of the conditional LS-estimator of the threshold for the case p =
d =1, m = 2. Chan [2] derived the strong consistency and the limiting distribution
of the conditional LS-estimator of model (1) for the case of arbitrary p and m = 2.
In his paper the threshold parameter is unknown and it is shown that the
estimator of the threshold parameter is N consistent and its limiting distribution
is related to a compound Poisson process. But it is still not known what is
the exact limiting distribution. Furthermore, in [2] it was assumed that the
autoregressive function was discontinuous. Recently, Chan and Tsay [4] investigated
the limiting properties of the conditional least squares estimator for a continuous
TAR model.

It was pointed out in earlier papers that in the observed data of time-series models
there may be some outlier points quite often and the LAD-estimation is more robust
and efficient against the outliers than the LS-estimation. Thus it is of practical
importance to study the asymptotic properties of LAD-estimation for time series
models. In [18] we investigated the asymptotic normality of LAD-estimators of
stationary linear autoregressive models. However, as far as we know, there are few
works considering this problem for nonlinear TAR models. Koul [8] obtained the
asymptotic normality of LAD-estimation for TAR(1) model with known threshold
and m = 2.

In this exposition we first discuss the case when the thresholds of TAR(p) model
(1) are known and obtain the strong consistency and the asymptotic normality of
LAD-estimator of the parameter vector 6 under some regularity conditions similar
to that of LS-estimators. Then we assume that the threshold is unknown and the
autoregressive function is discontinuous for model (1) with m =2 and briefly
establish the N consistency and the limiting distribution of the estimator of the
threshold. We will not study the threshold-unknown case for arbitrary m. Generally
speaking, the case m>?2 is rare in practice and much difficult to tackle (see [15,16]).
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We can see from Section 3 that the m = 2 case is already very complicated. Anyway,
it is beyond the scope of this paper.
Namely, we suppose that there are N observations Xj, ..., Xy from model (1) and

we use the method of LAD-estimation to estimate the true parameter 6°. The

estimator, denoted by 0", is the optimal solution of the following minimizing
problem:

m

Iglelg Z Z Gt/Xr i Xf d) (2)

t=p+1

Our main goal is to show that under some mild conditions " converges to 6° almost

surely and N%(HN — 0°) converges in distribution to a normal random vector. These
results are stated in Theorems 2.1.1 and 2.2.1. Essentially problem (2) is a stochastic
optimization problem. It is natural to use optimization theory to get our desired
results. In Section 3, we examine the asymptotic properties of the estimators in the
case that m = 2 and the threshold is unknown. The proofs of the theorems in Section
2 are presented in the appendix.

2. Asymptotics of the least absolute deviation estimator
2.1. Strong consistency of 0

In this subsection we prove the strong consistency of the LAD-estimator 6%
Note that

Z Z OOX, H X, d)+€; (3)

J=

Substituting (3) into problem (2), we get an equivalent minimizing problem

. —1 - 0 _
1’(}’161? N g { Z Z i 0 Xt i (Xt d) |€[|}. (4)

Obviously, the LAD-estimator, 0", is the optimal solution of (4). Denote the
objective function of (4) by IE}VV(e, 0), where e = (e, ..., ex)'.

The reason why we choose this special form of problem (4) to replace program (2)
can be completely figured out by the proof of Theorem 2.1.1 in the appendix.
Here we briefly discuss the technique which is basically different from the classical
one. We do not prove directly the strong consistency of 0. Actually, we convert
the consistency problem into the convergence of the optimal solution of the
mathematical programming. First, we show that 0° is the optimal solution of the
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- Ie,}- (5)

Then we prove that the objective function Evv(e, 0) of program (4) converges almost

surely to the objective function G(0) of program (5). Hence the almost sure

convergence of 8" to 6° can be established along this line (see the proof of Theorem

2.1.1 in the appendix). That is why we substitute problem (4) for problem (2).
Denote the mp x mp matrix

mathematical program ming. g G(6), where

ey —

m 4
> (05— 0) X, iHy(Xa)

R N
G(0) = lim N~! E{
1 i=1

N- o
t=p+1

J

¢G 0 ... 0
|t e

0 0 ... Cy

EXPZHJ-(X[,H,d) EX, X, \Hi(Xp11-a) ... EX,X\H{(Xp11-q)
G = EXp Xy 1 Hj(Xp11-a) Eszle/'(Xprd) o EX, 1 X Hj(Xpi0-a)

EX, X\ Hj(Xp41-a) EX, 1 X\H/(Xp11-a) .. EXlej(XpH_d)
j=1 .., m

We assume the following regularity conditions

Condition 1. Model (1) is strictly stationary, having finite fourth moments and the
stationary finite-dimensional distribution of (X1, ..., X)) admits a density function A
and the matrix C is positive definite.

Condition 2. {¢,} is an i.i.d. random sequence with median zero, finite variance and
the density function g(-) of e, is continuously differentiable at zero, ¢(0)>0.

Condition 3. {Y;} has a unique invariant measure 7n(-) such that there exists
K,p<l1, for any xeR’ and any n,|P"(x,-) — n()|<K(1 + ||x||)p", where Y, =
(Xi—1y ooy Xi—p), P"(x, A) (xeRP, A is a Borel set) stands for the n-step transition
probability of the Markov chain {Y;} and |- | and || - || denote the total variation
norm and the Euclidean norm, respectively.

Reviewing the literature on the LS-estimation for TAR models, we see that similar
conditions as conditions 1-3 were also imposed (cf. [2]) to study the properties of LS-
estimators in TAR models.

Lemma 2.1.1. Assume that conditions 1 and 2 hold, then there exists an open

neighborhood U of 0° such that 6° is the unique local optimal solution of the
program (5).
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The first main result of this paper is the following

Theorem 2.1.1. Assume that X, is a bounded random variable and conditions 1-3 hold,
then 0~ —0° almost surely as n— .

Theoretically speaking, the first assumption in Theorem 2.1.1 is very restrictive.
However, in practical situation, we can always get the bounded observations.

2.2. Limiting distribution of N'/*(0" — 0°)

In this subsection we turn to establish the asymptotic normality of LAD-estimator
of TAR model (1). Introducing a new optimization vector

U= (Ul1y eees Uply ovs Ul <oy Upm) :Nl/z(()— 0°).

Here the definition of v is rational, see Lemma 2.2.2. Then we can rewrite (2) as

N
rL}"élIr/l { - |€t}7 (6)
t=p+1

where V = {v = N'2(0—0°): 0S}. Denote by Fy(e,v) and vV the objective
function and the optimal solution of (6). It is clear that vV = N'/2(0Y —@°). As
stated in Section 2.1, in order to show the asymptotic normality of N'/2(6" — 6°) by
our special technique, we should use program (6) to replace program (2). The main
idea for deriving the limiting distribution of vV is as follows. First, we try to find a
function G(#,v) such that Fy(e,v)— G(n,v) in distribution. Thereafter we show that
the optimal solution vV of (6) converges weakly to the optimal solution v* of
min,ey G(1,v). As we will see from Lemma 2.2.1, G(n,v) is a stochastic quadratic
function. Thus the distribution of v* can be found easily. This is the desired limiting
distribution of N'/2(6" — ¢°).

The way adapted here was also used by Prakasa Rao [13], Wang [17] and Wang
and Wang [18] to study the asymptotic behavior of LS-estimators and LAD-
estimators for nonlinear regression models and linear time series models respectively.

The following lemma gives the limit function of Fy(e,v).

m )4

e = N2 "N " vpX i Hi(X—a)
j=1 =1

Lemma 2.2.1. Under conditions 1 and 2, for any fixed v, Fy(e,v) converges in
distribution to

G(n,v) = —v'n + g(0)v' C,

where 1 is a mp-dimensional normal random vector with zero mean and covariance
matrix C.

The following lemma is important for the proofs of Theorems 2.1.1 and 2.2.1 and
may be of independent interest on its own.



248 L. Wang, J. Wang | Journal of Multivariate Analysis 89 (2004) 243-260

Lemma 2.2.2. Under conditions 1 and 2, we have that v = N'/2(0" — 0°) is bounded
in probability.

With Lemmas 2.2.1 and 2.2.2 we can show

Theorem 2.2.1. Under conditions 1 and 2, we have
N1/2(0N _ 90) St
in distribution, where v* is mp-dimensional normal vector, centered at the origin, with

covariance matrix ¥ = (4¢*(0)C) "

3. Asymptotics of the estimator of the threshold

In this section we only consider the case m = 2. Then (1) becomes

X, — {GHXH +.o 00X, te, if X _a<r, ™)
0pX 1+ ... +0p2Xt7p+ef, if X,_g>r.

Here we suppose r is unknown and H(X;—y) = I(X,—q <r), Hy(X1—q) = [(X1—a>T).

The true value of r is r°. The LAD-estimator 6" can be derived by two steps. First for

any fixed r, we minimize

N )4 P
min Fy(0,r) = X =D 00X I (X a<r) = 00X, I(X,g>1)|.
t=p+1 i=1 i=1

(&)

After we get the optimal solution 0" (r) and the optimal value Fy (0" (r), r), we solve
the following problem:

mrin Fx (0N (r),r) 9)

and obtain the optimal solution 7V as the estimator of the threshold. Practically,
when analyzing the data Xi, ..., Xy observed from model (7), we usually rearrange
them as X, ..., X(n), the order statistics of the sample. Then we choose the
threshold r from the points of 25%,35%, 50%, 75%, etc. significance levels in this
order statistics sequence and compute the optimal values Fy (0" (r),r) using these
thresholds. Finally, the threshold involved in the smallest one among these optimal
values is the estimator of the threshold r (see [16] for details).
We first verify the conclusion that 7V is a consistent estimator of r°.

Theorem 3.1. Under the conditions assumed in Theorem 2.1.1 and condition 4 in Chan
2], N(rN —°) is bounded in probability.

Proof. From Theorem 2.1.1, 0" is strongly consistent, then the parameter space can
be restricted to a neighborhood of 0°. First we consider the case p = d = 1. In order
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to show that N(r¥ — %) is bounded in probability, it suffices to prove that for
any >0, there exists some 0<d<1 and K>0 such that |0, —0?j|<(3, j=1,2,
|r — | > K /N and with probability greater than 1 — ¢

Fy(011,012,7) — Fy(011,012,/°)>0.
First we consider the case r>7°. In fact, from (7) and (8), we obtain
Fy(011,012,7) — Fy(011,012,1°)

N
= Z {lec = (011 = 09) X 1| — e M (P < X1y <7)
t=p+1

N
+ 3 {ledd = ler — (012 — 09) Xy [H (P < X,y <7).
t=p+1

Moreover, by the convexity of the absolute value function and the fact that sign(u) is
one of subgradients of |- | at u, we have

e, — (011 —0))Xi—1| — |ed] = — (011 — 0),) X1 sign(e;
ler — (011 — 09 Xio1| — led = — (011 — 69))X, (er)
and
el —les — (012 — 0),) Xi—1| = (012 — 0),) Xi—1 sign (e, — (012 — 015) Xi—1),
e = ler — (012 — 00) Xi—1| > (012 — 0},) X, (er — (012 — 09,)Xi—1)
where
1, u>0,
sigh(u) =¢ 0, u=0,
, u<0.
It follows that
Fy(011,012,7) — Fy (011, 012,1°)

N
> Z {=(011 — 09,) X,y sign (e)I(F° < X, <r)}
t=p+1

N
+ ) {02 — 0%,) Xy sign (e, — (012 — 03,) X, )I(° <X, <r)}. (10)
t=p+1

The RHS of (10) is bounded in absolute value by c¢; ZiV:pH I1(r°< X, | <r) for some

constant ¢; independent of N and r* <r<r® + 4.
For any ¢>0, ¢, >0, there exists K >0 such that

N
P sup Zt:p+1 I(VO<X[_1<V) <c >1_¢
K/N<r—r'<s ? ’

-1
NE{I("<X,<r)}
(This result is proved in Claim 2 of Proposition 1 in [2].)
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Let ¢, be chosen so that ¢;(1 — ¢;)>0. Then for K/N <r —r’<d,
P{Fy(011,012,7r) = Fy(011,012,/°) =1 (1 — ) NE{I(r"* < X, <r)} >0} > 1 —&.

That is, r—°>K/N implies that Fy(0,0,,7)>Fy(01,0,,°) with probability
greater than 1 —e.

The case of r<r? is similar. This is the proof for the case p =d = 1.

For the general case, by Condition 4 in [2], there exists Y™* = (¥,_1,7,_2, oy to)
such that (6 — 03)'Y*#0 and r, 4 = r°. Then there exists zo>0 such that (09 —
09)'Y is bounded away from 0 for all ¥ such that || ¥ — Y*||<z. Then the preced-
ing proof would go through only if we replace each I(°<X;<r) by
1P <X,_y<r;||Y:— Y*||<w@), where Y,=(X,1,...,X,p). In detail, again
we have

E(017027r) - F_N(017027r0)

> ZN: {0, =050, + ) Y I <X, <r;||Y, — Y¥||<@)}.
t=p+1
Then again for K/N <r —°<J, we get
P{Fy(01,02,r) — Fy(01,02,°)>0}>1 —&.
Hence we have
™ ="+ 0(1/N) (11)

in probability for arbitrary p,1<d<p. This completes the proof of
Theorem 3.1. [

Remark. From the results of Theorems 2.1.1 and 3.1, we know that 0" (r)—0°
almost surely for any r satisfying |r — °| <K /N. This means that
HN (VN) N 00

almost surely. On the other hand, let C(r) denotes the covariance matrix C of 5 in
Lemma 2.2.1. By Condition 1 and Schwartz inequality, it is easy to check that the
matrix C(r) is continuous in r. Therefore ¥ - in probability implies that

C(rV)— C(r) in probability. Now Theorem 2.2.1 yields that
NI/2<9N(VN) _ 00) St

in distribution. Then we conclude that the asymptotic behaviors of the LAD-
estimator for model (7) with unknown threshold are equal to that in the case when
the threshold is known.

As to the limiting behavior of N(rV — r°), applying the discussions in Kushner [9],
it can be shown that the limiting law of N (¥ — 1°) is related to a compound Poisson
process, see the following relation (15).

Now we briefly prove this result. First we define a new variable w = N(r — °) and
then by (11) we change the objective function of problem (9) to get an equivalent
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problem

min Tx(w) = Fy(0V (©° +w/N),r* +w/N) — Fx (0" (°), ). (12)

w|<K

Obviously N(r¥ — 1) is the optimal solution of program (12). From Lemma 2.2.2,
we obtain

OY (r° +w/N) =00 + N“V2N (" +w/N), i=1,..p, j=12
and
|vfy(r0 +w/N)|<c;
in probability for some positive constant ¢3. Moreover, note that if w=0,
Fy (0¥ (° +w/N), 1 +w/N) — Fy (0" (1°),1°)
— (Fx(0°,1° +w/N) — Fy(6°,1))

=i{

ZXI 0 (0 +W/N‘

Z Xl
t=p+1 i=1
BN AT

(gl o))

x I(r” <Xt,d<r +w/N). (13)

Using similar arguments as in the proof of Theorem 3.1, we have

-yt

)4
—Z X, 0% — 1/22 X, (r* 4+ w/N) ‘

i=1

P
- Z X_i0N(° +w/N) ‘
i=1

Z Xy

<N i (53

i=1

P
—-N"12 Z X (P + W/N)).

i=1

And

Z X, 05 (0 Z X, 0%
> — N’l/zz X0 (1" 51gn< Z X, ,0?2>

i=1
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Let A; = max; <, <y X, d(r° < X,_4<1* +w/N), then
A= max X, I <X,_q<” +w/N,||Y, - Y'||<w@)
I<I<N

+ 1 <X, _g<t* +w/N,||Y, = Y*||>@)}.

If ||Y, — Y*||>w, by Condition 4 in [2], we know that (67 —05)'Y, = 0. Since
09 69, it holds that || ¥;||< oo almost surely. This means that 4; < co almost surely.

Hence by (13), Schwartz inequality and the properties of “‘sign’ function, when »
big enough, we have

Var {Ty(w) — [Fx(0°,1° + w/N) — Fy(6°,1°)]}

{ -1/ Z Z X, ,lv 51gn<X, Z Xi- 19?2>

t=p+1 i= i=1

P
— ol (" + w/N) sign (X, - Z X, 0% — N~1/2 Z Xl (0 + w/N))]
=1

i=1

2
x (P <X,_g<r® + w/N)}

<C§N1E{ Z Z X ,[mgn er)

t=p+1 i=

— sign (e, — N2 Z Xl (0 + w/N))}

i=1

2
x I <X,_g<r® +w/N)}

P P 2
<c3N 1E{Z: Z lsign (er) — sign <e, — N '2¢4 Z A,-)] }
= i=1

t=p+1
) 4y 1/2 N ) 4N 172
<AENT! E{Z A,} E{ > op <N—1/2c3 > A,~>}
i=1 t=p+1 i=1
) 4y 12
<SGNCE| A,-] o(N)
i=1
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where op(.) stands for convergence in probability as N — co. We get similar result for

the case w<0. Hence Chebyshev’s inequality yields
sup |Tw(w) — {Fy(0°,1° +w/N) — Fy(6°,1°)}| >0 (14)

[wl<K

in probability. Owing to (14), we can approximately write Ty (w) as

=
o

Employing weak convergence theory for random processes in [9], it can be shown
that under conditions 1-4 in Chan [2],

{Tn(w),w<0} - {TW(w), w<0},
{Tv(w),w=0} = {T (w), w=0}

2.0 0
e + 21(91'2 —0;) X

- |e,|}1(r0<X,_d<r0 +w/N), w=0,
Tn(w) =

20 a0
€y + ;(9” — sz)thi

- |et|}1(r0 +w/N<X,_4<r), w<O.

in distribution. Here {7 (w), w<0} and {T® (w),w>0} are compound Poisson
processes with the distributions of jump being given by the conditional distribution
lepsr + 320 (0% — 0%)Xps1i| — |eps1| given X, 4=r" and the conditional
distribution |e, 1 + > %, (0?2 — G?I)Xp+1,,-| — lep+1] given X, _g = rﬂ, respectively.

For completeness we outline the proof of the above statement. In fact, by Lemma
3.2 in Ibragimov and Has’minskii [7], it is easy to check the tightness of
{TW(w),w<0} and {T®(w),w=0}. Therefore, to complete the proof, it suffices
to show the weak convergence of finite-dimensional distributions of { Ty (w),w<0}
and {7y (w),w=0}. This can be established by following the arguments in the proof
of Theorem 2 in [2]. The main difference is that we replace J5 in Chan [2] by

i

Now by the weak convergence of {Tn(w),w<0}, {Tny(w),w=0}, and by adapting
the similar method used in the proof of Theorem 2.2.1, we get the conclusion that

NN =) - w* (15)

p
e+ Z (65 — 02) X,

i=1

- |e,|>l(r0<X,_d<r0 +w/N).

in distribution, where w* is the global minimizer of the function 7)) (w)I(w<0) +
T (w)I(w=0).
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Appendix

Proof of Lemma 2.1.1. What we should do is to compute

ol )

t=p+1
By condition 2, for any ¢>0, there exists 6 >0 such that for any |u| <9,

g(u) = g(0) + O(e).

3

P

Z 00 Xr i (Xt d)

j=1 i=1

Let U = {0: ||0 — 0°||<J} =S denotes the open neighborhood of 6°. Then for any

0e U, by the independence of ¢; and (X;_, ..., X;—,), we have
)
E e,—zz QOsz Hij(X,—a)| — e/]
=1 =
=2 (t—u)g(u)h(vi, ...,v,) dudv ...dv,
u>0u—1<0
+2 (u—1)g(u)h(vi, ...,v,) dudv ...dv,

u<Ou—t>0

= 2/_0;: {/Of(r - u)g(u)du}h(ul, e Up)dvy ..oy

— 2/7OO ;12[9(0) + O(e)]h(vi, ..., vp)dv; ... dv,

o0

9(0)(0 — 0% C(0 — 0%) + O(e(0 — 0°)' (0 — 0°)),

where © = 377" 327 viHj(va) (0 — 02). Let ¢—0, we obtain

N m )4
Jim N7 D E{ =2 2 (O = Xt (i) —|e,}
Jj=1 =l

t=p+1
=g(0)(0 — 0°Y'C(0 — 6°). (A1)

Since g(0) >0 and C is positive definite, then 0° is the unique local optimal solution
of mingcsG(0). O

Proof of Theorem 2.1.1. Set 5, =

e — 2y 2y (05 — HO)Xt iHi(Xi—a)| — |ed] +
S S (0 — 0%) X i H;(X,—g) sign(er). Then Fy(e,0)=N"'SY .,
{ U Zj:l Z{":I (0 HO)Xt iHj(Xi—a) 51gn(et)}

At first step we prove that for any fixed 6,
Fy(e,0)~G(0)
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almost surely. It suffices to show that

- Z {1, — E(n,)} ~0, (A2)

t=p+1

m

N )4
> Z > (05— 03) X Hy(X,—q) sign (¢,) 0 (A.3)

t=p+1 j= i=1

almost surely. Using the similar arguments as in the proof of Theorem 3.1, we have

m

Z z,,: X (X, a)

j=1 i=1

—zm: i 90 ) Xi—iH;(X;—q) sign (e;)

i=1

— e

and

3

les| —

er — Z 00 Xr i (Xt d)

=1 i=1

m )4

m_p
Z Z i 90 VXi—iH;(Xi—a 51gn<e, Z Z 90 VXo— i Hi (X, d))

i=1 =1 j=1 i=1

~.

This means that

m

p
0<n, < Y Y (05— )X, i Hi (X a)

j=1 i=l

X {Sign(€t> —sign(et i Y 90 )Xo Hj (X d))}

i=1

(A4)

Then for any fixed 6 and some constant ¢4, we have
P
0 <es )y Xy (A.5)
i1

Since { Y, } is a stationary Markov process, by condition 3, we have that {Z’i’:] X, 1_,»}
is ¢-mixing with ¢, = csp”, where cs is a positive constant (cf. p. 167, Example 2 of
Billingsley [1]).

Then following from a result in Billingsley [1](cf. p. 172, Lemma 4), we arrive at

with positive constant cg.
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This, combined with (A.5) and Chebyshev’s inequality, now yields
o0 N
> P{ NS {n,—E(n)} >8}
N=1

t=p+1
N Y4 4
4 E(Zt:p+l 2in1 XH') o,
<¢q N <o ZN <,
N=1 ’ N=1

where ¢; is a positive constant. Then (A.2) follows from Borel-Cantelli’s lemma.
Similar arguments yield (A.3).

Now we have showed that for any fixed €S, the objective function I:"]vv(e, 0) of
program (4) converges almost surely to the objective function G(6) of program (5).
We are in the position to prove the almost sure convergence of 8 to 6°.

Let Q denotes the underlying probability space and let Q2 — 4 be a measure-zero
set in Q. Assume that Fy(e, 0)(w)— G(0) for every we A.

Note that the closure of the stationary region, cl S, is a compact subset of R™,
hence for every wed,{0"(w)} always contains convergent subsequence in cl S.
Without loss of generality we suppose that for every we A4, {QN (w)} converges to
ayecl S,a,#6°. By the fact that N'/2(6" — 0°) is bounded in probability (this result
will be proved later, see Lemma 2.2.2 which is independent of Theorem 2.1.1), we see
that for each we A, there exists a ¢>0 such that we B, and 0" (w) e U when N is large

enough, where B,cQ and P(B,)>1 — ¢, U is an open neighborhood of 0° defined in
the proof of Lemma 2.1.1. This implies that a, e U.

By Lemma 2.1.1, {0°} is the unique local minimizer of G{(.), then G(a,,)> G(0") =
0. On the other hand, since {0} is the optimal solution of Fy (e, 0), by the continuity
of the function G, we have

G(a,) =9g(0)(a, — 90),C(aw - 00)
= lim G(0"(w)) = lim Fy(e,0" (w))
N-> N-> o
< lim Fy(e,6°) = G(6°) = 0.
N—
Here limy_ ., means almost sure convergence. This contradiction proves that

0" - 0° almost surely as N - co. [

Proof of Lemma 2.2.1. Since 5, =

e — N7V S U@/Xz—iH./(Xz—d)‘ = e
4_]\,_1/22}41:1 P v X iH;(X,—q) sign (e;). From (A.4), we have

m P
0<n,< Nﬁl/zz Z v Xi—iHi(Xi—q)
=1 =

m 4
X {sign (e;) — sign <et — N2 Z Z vin,_iI-Ij(X,_d)> }
=1 =1
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Then by Schwartz inequality and the properties of “‘sign” function, we get that, for
any fixed v,

Var(n,)

m )4 m 2
SNIE{Z Z U,/XI i XI d 0P< 1/22 Z Ul/Xt i Xl d))}

j=1 i=1

N

1

4
1 N2E{ Ep: v X—iHj(X,— d)}
=1 =l
m 14
<o(1)N {Z Z v X ,}
J

=o(1)N2EX}.
Again by Schwartz inequality, we obtain
N
Var< > m) <N?Var (n,) <SN*N2EX}o(1) -0
t=p+1

as N - 0. Now Chebyshev’s inequality yields

Fy(e,v) — Fy(e,v)—>0
in probability as N — oo, where

m

Fyle,v)=— N2 Z Z Z vy X iH;(X;—q) sign (e;)

t=p+1 j=1 i=1
N
+ Y E

€ — 1/22 Z Uz/Xt i Xt d) - |€r|‘|'
t=p+1

Hence for our purpose it suffices to derive the limit of Fj(e,v). First, by the
independence of ¢; and X (s<t) and E{sign(e;)} = 0, the central limit theorem for
martingales as given in Corollary 3.1 in [6] yields

N m P
N Z Z Z vy Xi—iHj(Xi—q) sign (e;) > v’y (A.6)

t=p+1 j=1 i=1

in distribution.
Moreover, (A.1) can be rewritten as

N
ngnoc Z E{ a-N 1/22 Z 05 Xo-iHj(Xi-a)

t=p+1
This, together with (A.6), completes the proof. [

- el|} = g(0)v'Cv.
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Proof of Lemma 2.2.2. Note that v = 0 is a feasible solution of program (6) and v"¥
the optimal solution of (6), that is,

0> Fy(e,v") — Fy(e,0) = Fy(e, o) + 0p(1)

Then it suffices to verify the following

Claim. For any ¢>0, there exist positive constants M., such that with probability
greater than 1 — ¢, when ||v|| > M., we have F}(e,v) =0 for N large enough. Clearly in
this case Fy(e,v)>0 for N large enough.

First, by Lemma 2.2.1, we know that

Fi(e,v)—> — 'y
in distribution and
Frp(v) = g(0)0'Cv + o(1),

where

m

N P
Fyi(e,v) = —N~!/? Z Z Z v Xi—iHj(Xi—a) sign (e;),

t=p+1 i=1
Fy,(e,v) Z E - et|].

=p+1
By condition 1, we know that C = Var(n) is positive definite, then let
MZAy= - 2 Amp>0 be its characteristic roots and /i, ..., /,, be its standardized
characteristic vectors, we have

.

P
€r — 71/2 Z UUXI zFIj X d)
j=1 i=1

N

Var (F (ev))—»va—Z/la <A|lv|]?

i=1
here the vector v can be written as v = Y | a;/;. Hence for N large enough and any
e¢>0, by Chebyshev’s inequality, we have
P{|Fy(e,v) — E{Fy(e,v)}[<|[v][b.} =1 —¢ (A7)

by choosing b, = (211/8)1/2. (A.7) implies that

P{Fx(e,v)= — ||v||b: + ¢g(0)'Cv+o(1)} =1 —&. (A.8)
Again since g(0)C is positive definite, still define 4; =4,> - =4y, >0and 1y, ..., Ly,
be characteristic roots and standardized characteristic vectors of ¢g(0)C, we have

mp
~Ilollb: + g(0)0' Co = ~[[ollby + Y 4} = 2l 0l[* = [[0]|b-
i=1

For N large enough, let M,, d be chosen so that

" ‘1‘nf {=1|v||b: + g(0)'Cv + o(1)} =4.
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This, in turn, when using (A.8), means that

p{ inf {F} (e, U)}Zé}

[[el|> M

>P{ inf {Fy(e,v)}> inf x{|v||b,;+g(0)1/Cv+o(l)}}

(o> M, [[o]|> M.
=>1—c¢

and hence the validity of Lemma 2.2.2. O

Proof of Theorem 2.2.1. Here we give only the sketch of the proof, since the details
are quite similar to that of Theorem 2 in [17].

The main idea is that we view v" as an image of the stochastic processes
{Fy(e,v),veV} under the minimizing operator H and use continuous mapping
theorem in weak convergence theory of probability measures (see [1]). Here H is a
minimizing operator on Cj, (where Cy is the space of all continuous functions
defined on ¥) such that the image of f in Cp under H is the optimal solution of

min f(v)
s.t.  velV.

By Lemmas 2.2.1 and 2.2.2, the optimization theory, and the theory of stochastic
processes, we can show that the sequence of stochastic processes {Fy(e,v),ve V}
converges weakly to the stochastic process {G(n,v),veV} and that H(:) is a
continuous mapping in the sense that H(f,)— H(f) for f,—f if H(f) is unique.
Then by continuous mapping theorem (see Theorem 5.1 in [1]), we obtain

H{Fy(e,v),veV}—>H{G(n,v),veV}

in distribution. This implies that

oV st

in distribution, where v* is the unique solution of the equation %G(n,v) =0, then
v* = (29(0)C)"'y. Thus we get the desired conclusion. [
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