I-SEEC2011

Characterization of Aluminum Oxide Films Deposited on Al₂O₃-TiC by RF Diode Sputtering

H. Panitchakan²* and P. Limsuwan²,a

²Department of Physics, King Mongkut’s University of Technology Thonburi, Bangkok, 10140, Thailand
³Thailand Center of Excellence in Physics, CHE, Ministry of Education, Bangkok 10400, Thailand

Elsevier use only: Received 30 September 2011; Revised 10 November 2011; Accepted 25 November 2011.

Abstract

In magnetic head recording storage, Al₂O₃ film was deposited onto Al₂O₃-TiC substrate, as insulating and protection layers, using RF diode sputtering. Pure Al₂O₃ (99.5%) with a dimension of 43.2 cm x 43.2 cm x 2.0 cm was used as a sputtering target. The base pressure for all depositions was 1 x 10⁻⁶ m Torr and the deposition time was 12.2 min. The target sputtering power and substrate bias voltage were varied from 4 to 8 kW and 80 to 180 V, respectively. The surface morphology of Al₂O₃ films was investigated using atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was found that the roughness of deposited Al₂O₃ films depends on sputtering power. SEM cross-sectional image clearly showed good adhesion between substrate and Al₂O₃ film. The mechanical properties, including elastic modulus and hardness, of Al₂O₃ films were performed on nanoindentator. The results showed that both elastic and hardness of Al₂O₃ films increased with the increase of target sputtering power.

© 2010 Published by Elsevier Ltd. Selection and/or peer-review under responsibility of I-SEEC2011

Open access under CC BY-NC-ND license.

Keywords: Al₂O₃ film; Al₂O₃-TiC substrate; RF diode sputtering

1. Introduction

Aluminum oxide (Al₂O₃) or traditional name “alumina” is well known material used in variety applications in microelectronic, optical application, protection layer and magnetic head recording. Because of its desirable both mechanical and insulating properties [1]. In magnetic recording, Al₂O₃ film is used as undercoating layer to construct the devices on it and it is also used as over coating layer to seal off all construction devices at the final process including dielectric gap layer between the device layers [2-
Al₂O₃ films can be prepared with several methods such as atomic layer deposition, e-beam evaporation, filtered cathodic vacuum arc, reactive sputtering and non-reactive sputtering [5-11]. In particular, growth of Al₂O₃ film as insulator by non-reactive sputtering method is less complex process compared with reactive sputtering method. For Al₂O₃ films, obtained from non-reactive sputtering, the properties of Al₂O₃ films depend on the sputtering conditions, such as substrate bias voltage, target sputtering power and sputtering pressure. Thus, the aim of this work is to prepare Al₂O₃ films onto Al₂O₃-TiC substrate with Al₂O₃ target using RF diode sputtering, i.e. non-reactive sputtering. The sputtering conditions used for deposition of Al₂O₃ films are target sputtering power and substrate bias voltage. The deposited films were then characterized by atomic force microscopy (AFM).

2. Experimental

Al₂O₃ films were deposited by a commercial RF diode sputtering system (Comptech 2460). Pure Al₂O₃ of 99.5% purity was used as a sputtering target. The dimension of Al₂O₃ target is 43.2 cm in width, 43.2 cm in length and 2.0 cm thick. The substrate is Al₂O₃-TiC wafer with a round shape of 15.2 cm in diameter. The substrate was preliminary cleaned by high pressure spray of deionized water to remove small particles contamination and then they were cleaned in vacuum chamber with O₂ plasma to remove the native oxide layer. The target to substrate distance was 23.76 mm. The sputtering gas was Ar of 99.9% purity and He gas was used to cool the substrate. The chamber was evacuated to a base pressure of 2×10⁻⁶ Torr. Prior to the film deposition, the target surface and the substrates were cleaned by Ar⁺ ions at a pressure of 2×10⁻² Torr for 3 and 2 min, respectively. During cleaning, the target and the substrates were applied with the powers of 4 kW and 800 W, respectively.

Two experiments on the preparation of Al₂O₃ were conducted. In the first experiment, Al₂O₃ films were deposited at different substrate bias voltages from 80 to 180 V with an increasing step of 20 V. In the second experiment, Al₂O₃ films were deposited at various target sputtering powers from 4 to 8 kW with an increasing step of 1 kW. The depositing conditions of Al₂O₃ films are listed in Table 1 and Table 2.

The film thickness was measured by N&K analyzer (N&K Instrument). The surface morphology of Al₂O₃ film was analyzed by atomic force microscopy (AFM) [12]. The mechanical properties were carried out by adhesion test and film hardness test [13]. Adhesion between the film and substrate was performed by slicing the sample into a bar with a size of 1.24 mm × 45.72 mm × 0.25 mm using a high speed diamond blade at a cutting speed of 9000 rpm. The cross section of the bars were then analyzed by scanning electron microscopy [12]. The hardness test of deposited Al₂O₃ films was performed using a cube corner indenter of nanoindentator with a loading force of 150 μN and a convention depth of 10% of the film thickness.
3. Results and discussion

3.1. Deposition rate of Al₂O₃ film

The thickness of Al₂O₃ films obtained from two experiments corresponding to sputtering conditions as shown in Table 1 and Table 2 was measured by N&K analyzer and the results are given in Table 3 and Table 4. The deposition rate was then calculated and the results are also given in Table 3 and Table 4.

Table 3. Thickness and deposition rate of Al₂O₃ film for various substrate bias voltages

<table>
<thead>
<tr>
<th>Substrate bias voltage (V)</th>
<th>Target sputtering power (kW)</th>
<th>Operating pressure (mTorr)</th>
<th>Deposition Time (min)</th>
<th>Thickness (nm)</th>
<th>Deposition rate (nm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>80</td>
<td>7</td>
<td>24</td>
<td>12.2</td>
<td>596</td>
<td>48.8</td>
</tr>
<tr>
<td>100</td>
<td>7</td>
<td>24</td>
<td>12.2</td>
<td>609</td>
<td>49.9</td>
</tr>
<tr>
<td>120</td>
<td>7</td>
<td>24</td>
<td>12.2</td>
<td>618</td>
<td>50.6</td>
</tr>
<tr>
<td>150</td>
<td>7</td>
<td>24</td>
<td>12.2</td>
<td>622</td>
<td>50.9</td>
</tr>
<tr>
<td>180</td>
<td>7</td>
<td>24</td>
<td>12.2</td>
<td>630</td>
<td>51.6</td>
</tr>
</tbody>
</table>

Table 4. Thickness and deposition rate of Al₂O₃ film for various target sputtering powers

<table>
<thead>
<tr>
<th>Target sputtering power (kW)</th>
<th>Substrate bias voltage (V)</th>
<th>Operating pressure (mTorr)</th>
<th>Deposition Time (min)</th>
<th>Thickness (nm)</th>
<th>Deposition rate (nm/min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>150</td>
<td>24</td>
<td>12.2</td>
<td>407</td>
<td>33.4</td>
</tr>
<tr>
<td>5</td>
<td>150</td>
<td>24</td>
<td>12.2</td>
<td>464</td>
<td>38.0</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>24</td>
<td>12.2</td>
<td>565</td>
<td>46.3</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>24</td>
<td>12.2</td>
<td>636</td>
<td>53.0</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>24</td>
<td>12.2</td>
<td>709</td>
<td>58.1</td>
</tr>
</tbody>
</table>

The relation between the deposition rate and the substrate bias voltage is shown in Fig. 1 (a) and the relation between the deposition rate and the target sputtering power is shown in Fig. 1 (b)

Fig. 1. (a) Relation between the deposition rate and the substrate bias voltage and (b) relation between the deposition rate and the target sputtering power
It is clearly seen from Fig. 1(a) that the deposition rate is independent of the substrate bias voltage. On the other hand, the deposition rate almost linearly increases with the increase of the target sputtering power. Hence, it can be concluded that the target sputtering power is more influence on the deposition rate of Al$_2$O$_3$ film than the substrate bias voltage. The increase of the deposition rate with target sputtering power is due to the increase of positive ion or Ar$^+$ ion attacking on Al$_2$O$_3$ target and result in higher ionization to target. From this study, a high deposition rate of 0.96 nm/sec was obtained at a target sputtering power of 8 kW and a substrate bias voltage of 150 V.

3.2. Surface morphology of Al$_2$O$_3$ film

The surface morphology of Al$_2$O$_3$ film was investigated by an optical microscope with a magnification of 200X objective in order to determine the defects in the film and the film characteristic. Fig. 2 shows the photograph of Al$_2$O$_3$ film deposited at a target sputtering power of 7 kW and a substrate bias voltage of 150 V for 12.2 min. Fig. 2 indicates that the Al$_2$O$_3$ film is transparent and hence we can see the grains of Al$_2$O$_3$–TiC substrate at the underneath of Al$_2$O$_3$ film. In the picture, Al$_2$O$_3$ grains are black and TiC grains are white. The defects in the film can also be observed as shown by a black area in the circle. The presence of the defects is due to the residual aluminum oxide contamination on the chamber, shutter and shielding fall down onto the substrate during deposition. Therefore, the chamber cleaning before the Al$_2$O$_3$ film deposition is required.

![Fig. 2. Photograph of of 0.6 \mu m thick Al$_2$O$_3$ film deposited on Al$_2$O$_3$-TiC substrate with a magnification of 200X](image)

Atomic force microscopy (AFM) was used to investigate the surface roughness of Al$_2$O$_3$ films. Figure 3 (a-d) shows AFM images of Al$_2$O$_3$ films prepared at a constant substrate bias voltage of 150 V and different target sputtering power of (a) 8 kW, (b) 7 kW, (c) 6 kW and (d) 5 kW. The roughness was measured by scanning the AFM tip pass through the center of the sample. The scan size for all images was 5×5 \mu m2. The RMS roughness and R$_{max}$ are given in Table. 5. It can be seen that the roughness of Al$_2$O$_3$ film surface significantly increases with target sputtering power.
The values of roughness shown in Table 5 are two characteristics surface roughness (i) the root–mean–square (RMS) roughness and (ii) the difference between the highest and lowest points in the scan range (Rmax). The plots between the roughness and the target sputtering power is shown in Fig. 4. It is seen that the roughness increased as the target sputtering power was increased.
3.3. Mechanical properties

3.3.1. Adhesion property

The Al₂O₃ films deposited at different target sputtering powers of 5, 6, 7 and 8 kW were used for adhesion test. Each sample was sliced into a bar of dimension 1.24 mm × 45.72 min × 0.25 min. The cutting edge of each sample was investigated by SEM. Fig. 6 shows typical cross-section images of SEM micrograph for Al₂O₃ films deposited at (a) 6 kW and (b) 8 kW. It was found that all deposited Al₂O₃ films show no delaminating from Al₂O₃-TiC substrate. Furthermore, Fig. 5 confirms that the Al₂O₃ film deposited at 8 kW is thicker than that of 6 kW.

Table 6. Hardness and elastic modulus of Al₂O₃ films deposited at various target sputtering powers

<table>
<thead>
<tr>
<th>Sputtering power (kW)</th>
<th>Substrate bias voltage (V)</th>
<th>Elastic Modulus (GPa)</th>
<th>Hardness (GPa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>150</td>
<td>27.6</td>
<td>6.6</td>
</tr>
<tr>
<td>6</td>
<td>150</td>
<td>50.3</td>
<td>7.2</td>
</tr>
<tr>
<td>7</td>
<td>150</td>
<td>61.9</td>
<td>7.5</td>
</tr>
<tr>
<td>8</td>
<td>150</td>
<td>62.8</td>
<td>7.6</td>
</tr>
</tbody>
</table>

Fig. 5. SEM micrograph of Al₂O₃ film deposited at target sputtering powers of (a) 6 kW and (b) 8 kW

3.3.2. Hardness property

The hardness of deposited Al₂O₃ films obtained by nanoindentator with a cube corner of curvature radius of 150 nm and a loading force of 150 μN is given in Table 6. The plots between the hardness with the target sputtering power and between the elastic modulus with the target sputtering power are shown in Fig. 6. It is seen that the roughness increased as the target sputtering power was increased.

Fig. 6. The plots of elastic modulus and hardness of Al₂O₃ film with target sputtering power

It is seen from Table 6 that the hardness of Al₂O₃ film obtained in this work is in the range of 6.62 to 7.62 GPa. Furthermore, the hardness and the elastic modulus increased with the increase of target sputtering power from 5 kW to 8 kW while elastic modulus (Er) is obviously increase from between 27.6 GPa to 62.8 GPa.
4. Conclusion

In this work, Al₂O₃ films were deposited onto Al₂O₃-TiC substrate using RF diode sputtering. The target sputtering power and the substrate bias voltage were varied from 4 to 8 kW and 80 to 180 V, respectively. It was found that the deposition rate of Al₂O₃ films depended only on the target sputtering power. The maximum deposition rate of 0.96 nm/sec was obtained for a target sputtering power of 8 kW and a substrate bias voltage of 150 V. Furthermore, the RMS roughness and hardness of the films slightly increased with the increase of target sputtering power.

Acknowledgements

The Author would like to acknowledge Ms Latchanan Rakktham for performing indentation test and Ms Ekkakit Sutkhanneogn for performing Atomic force. This work had partially been supported by Thailand Center of Excellence in Physics (ThEP) and King Mongkut’s University of Technology Thonburi under The National Research University Project.

References