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Abstract 

Concerning the Horton-Strahler number (or register function) of binary trees, Yekutieli and 
Mandelbrot posed the problem of analyzing the bihtrcation ratio of the root, which means how 
many maximal subtrees of register function one less than the whole tree are present in the 
tree. We show that if all binary trees of size n are considered to be equally likely, then the 
average value of this number of subtrees is asymptotic to 3.341266+6(log, n), where an analytic 
expression for the numerical constant is available and S(x) is a (small) periodic function of period 
1, which is also given explicitly. Additionally, we sketch the computation of the variance and 
also of higher bifurcation ratios. 

1. Introduction 

This paper solves a problem that was left open (and attacked empirically) in [ 161. 

It concerns binary trees and Horton-Strahler orderings. Here, we phrase everything in 

the equivalent notion of the register function. The register function became popular 

with computer scientists in the late seventies when Flajolet and his team and Kemp 

independently determined the average number of registers needed to evaluate a binary 

tree of size n [S, 9, 10,3]. 

If we have an extended binary tree, we label the leaves with 0, and, recursively, if 

the left subtree of a node is labeled with a and the right subtree with b, we label the 

node with max{a, b} if a # b and with a + 1 otherwise. The value attached to the root 

is called the register function of the tree t. The value attached to a particular node is 

the register function of the subtree having this node as its root. 

The authors in [16] consider the bifurcation ratio (at the root), which we will 

call the YM-parameter throughout. It is meant to be the number of maximal subtrees 

(which is not the same as the number of internal nodes (!)) having register function 
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Fig. I. All 5 trees with 3 internal nodes 
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Fig. 2. A binary tree of size 15 with register function 3 and 3 maximal subtrees with register function 2, 

which are displayed in Fig. 3. 

exactly 1 less than the register function of the entire tree. See the original paper for 

a more elaborated problem statement and some motivation. Fig. 1 lists all 5 trees with 

3 nodes. The first tree in this list has YM-parameter 2, and the other four trees have 

YM-parameter 4. Hence, the average value of the YM-parameter is y in this instance. 

The tree in Fig. 2 has YM-parameter 3. 

It was observed empirically that the expected value of this parameter is asymptoti- 

cally a periodic f%nction of log, n if all trees of size n (n internal nodes) are considered 

to be equally likely. Here we want to settle this problem by explicitly describing the 

periodic function in terms of the Fourier coefficients. In principle, a full asymptotic 

expansion could be given, but the computation of the lower-order term becomes more 

and more complicated. 



H. Prodinger I Theoretical Computer Science 181 (1997) 181-194 183 

2. The average value of the Yekutieli-Mandelbrot parameter 

We start our analysis with some notions and results from the literature. Let b,, Y~,~, 

and sp,,, denote the number of binary trees of size n, the number of binary trees of 

size n and register function = p, and the number of binary trees of size it, and register 

function > p, respectively. Then 

B(z) = C b,z" = 
l-d_ 

n>O 
2z 

with z= (1 JU)*, 

lP 
R,(z) = C rp,n~n = e 1 _ u2p+, 

It>0 
with z = &, 

~ with z= (1 lU)=. 

(1) 

The first generating function is classical, and the other two appeared in [5,9,1 l-131. 

The substitution (cf. [2]) z = u/( 1 + u)~ will be used throughout. Note that B(z) - Sp(z) 

is the generating function of the binary trees with n nodes and register function < p. 

Now, let Wp& be the number of binary trees with n nodes, register function p, and 

YM-parameter k, and let 

&(z, Y) = c Wp,k,n ykZ” 
n,k>O 

(2) 

be its bivariate generating function. 

To find the expected values, we have to work with T,(z) = & Wp(z, y)lv = 1 and 

(3) 

The coefficient of z” in T(z), divided by (“,“)/(n + l), is the expected value sought by 

Yekutieli and Mandelbrot. 

We can find an equation for W,(z, y) by considering 3 cases. Either both subtrees 

have register function p - 1, then we have y2 since the YM-parameter is 2. Or, we have 

to go down recursively. If the smaller subtree (with respect to the register function!) 

of the root has register function p - 1, we have to label by a y, if it is even smaller 

we do not label. Observe that there is a unique path from the root to a node with both 

successors having register function p - 1. Hence we have for p > 1, 

and, 

W,(z,y)=zy2R~_,(z)+2z~Wp(z,~)Rp--1(~)+2zWp(z,~)(B(z) -sp-~(z)) 

therefore (since Rp_-l(z) + B(z) - Sp_l(z) = B(z) - Sp(z)), 

q(z) = 2zR;_,(z) + 2zRp(z)Rp--1(z) + 2zTp(z)(B(z) - Sp(z)) 

(4) 
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or 

T(z)= 2+-1(4(~~-1(z) +&J(z)) 
P 

1 - 2z(B(z) - $(z)) . 

One may now use the definitions (1) to easily verify 

1 - 2z(B(z) - S,(z)) = E g. 

Therefore, (5) may be rewritten as 

1 + U 1 - u2P 2U 
Tp(z)= -~___ 

1 -ul+P(l +u)2 

1 - 242 

=2&--- 

3 u32-’ 

+ . 24 1 - U2Pf’ (1 + u2”)(1 _ u2P+‘) I 

Hence we get, upon summing on p and performing some easy simplifications, 

T(z) = 2* c 

1 

u2p u3.2p-’ 

p>l 1 - zPf’ + (1 + P)(l - P+‘) 
I 

1 - u2 
=2- 

u3.2p-’ 

u p>l (1 + P)(l - zPf’) 
I 

Let us concentrate on the series 

cJ= c 

u3.2p-’ 

Pal (1 + U2p)2(1 - U2’) 
= c 

U3.2p-‘+(i+j)2”(_ 1 )i(i + 1) 

p>l,i,j>O 

appearing in (7), since the other terms in (7) are easy. Now 

;$o(-l)‘(i+ l)==(-l)k 

and, thus, 

fl= c 
p20,kZO 

= c U2P(2k+l)(_l)k-l 

pZO,k31 

(6) 

(7) 

(8) 

= -p~okuzP(4k+1) + pzO(k + l)~~~(~~+~). 
1 / > / 

(9) 
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The further methodology is to find the behavior of T+(u)) as u + 1, itself giving 

the local expansion of T(z) about the singularity z = a. Since elementary methods fail, 

we proceed as follows. Setting u = e-‘, we are interested in t -+ 0. As it is now 

standard, and described in [6,7, 131, we compute the Mel/in transform (see the survey 

[4]) of the series 

6= _ c ke-QP(4k+l) + c (k + qe-QP(4k+3). 

p,k>O p,k>O 

Since e-O’ maps into a-‘&), (T maps into T(s) times 

-pF>ok2-p’(4k + l)-” + ,F o(k + 1)2-PS(4k + 3)-“. 
> / 3 2 

These series are easily evaluated by means of the Hurwifz zeta function [15] 

1 

We just mention that the so-called fundamental strip is (2, cc). We find 

c k(4k + 1)-’ =4-“kTok(k + $)-” =4-’ ([(s - 1, $) - $(.s, ;)) 
k30 / 

and 

C(k+1)(4k+3)-S=4-SC(k+l)(k+$S 
k>O k>O 

=4-~(~(s-l,~)+&,~)). 

Also, 

i(s, $) + i(s, i) = 4s( 1 - 2-9i(s). 

Hence, CT maps into 

* [-4-S (Qs - 1, t> - i(s - 1, i)) + ;(I - 2-%(s)] 

= -2&y 1) (Rs - l,$> - I;(s - 1,;)) + $ww. (10) 

To find the asymptotic behavior of 0, we must consider the residues of the last 

quantity times tpS left to the line 8s = i. As already stated, more information about 

this methodology can be found in [6,7,11-131. 

The Hurwitz zeta functions have simple poles at s = 2, but they cancel out. The zeta 

function has a simple pole at s = 1, and the corresponding residue is 1/(4t). At s = 0, 

at the first glance, it looks like a second-order pole. However, according to [ 151, we 

have the following. Write /3(s) = [(s, $ ) - i(s, $ ), then 

p(s) = 4(87c)s-‘r( 1 - s) cos yp( 1 - s). (11) 
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The presence of the cosine gives the value /I-l) = 0. We also need /3’(- 1). Deriving 

the product, only the term derived with the cosine survives, and we find 

The series 

g = & (2% = k/3(2) = 0.9159655942.. . (12) 

is called Catalan’s constant [l]. Hence as s + 0, p(s - 1) - sz. 

Therefore, the corresponding residue is 

l%? 1 _-- - _ 
log22rt 8’ 

There are also simple poles at s = Xk = 2kni/log 2 (k # 0) with residue 

r(Xk > 
-lag2&k - l>t-a. 

The other residues at the negative integers (originating from the r-function) lead to 

smaller-order terms and will be neglected. 

Therefore the contribution of the series CJ is 

1 1% 1 
- - - - - j - j--& kso r(Xk)&k - 1 >t-xk. 
4t log 2 2rl 

(13) 

Let us recall that we want the expansion of T(z) in terms of 1 - 42. First, we give it 

in terms of t (t + 0): 

T(z) - 2 - 2t + 4t 

and, since 

t - 2Ji-q 

we obtain 

1 I%? 1 
- - -- - s - &kFo’.(“)ir(x* - l)t-“’ > 
4t log 2 2z 1 (14) 

T(Z)-3- (~+5)~-~~,.(/k)B(u-1)(1-4z)(1-"k'1. 

(15) 

Now, according to [7], we can go over to the asymptotics of the coefficients, using the 

rule 

[z”]( 1 - z)E N n-a-’ . 
rc-a> 

For the sake of simplicity, we stated all the asymptotic expansions in terms of ‘N’ 

(asymptotic equivalence). However, in all instances, Lo-terms are available (decreasing 

the readability), and a “Lo-transfer” [7] is possible; we only state a Lo-result in our main 
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theorem. In this way we get 

b”lT(z) N & (&+5)Cn?‘” 

-(log;)&Q - 1>r ($) P(XA - 1)4nn-3’2elos4n,2krri. (16) 

Since 

1 2n 

-( 1 n+l n 
- L4”&, 

J;; 

we get the desired result by dividing these two quantities. 

The value 

2W 
+ 2=3.341266... 

(log2)rt 2 

is the value around which the expected value of the YM-parameter fluctuates, in agree- 

ment with the numerical observations in [ 161. 

Theorem 1. The average value of the Yekutieli-Mandelbrot parameter, if all binary 
trees of size n are considered to be equally likely, is given by 

L+++t(log,n)+O(~). 
(log 2)n 

(17) 

The periodic function 6(x) has mean value 0 and admits the following representation 
as a Fourier series, 

6(x)= - &ZEIo(zk - l)r ($) lj(xk - lk2k”“; 

the function p(x) is dejined in (11) and Xk = 2krci/log 2. 

Remark. Although it is not needed for the solution of the present problem, it is possible 

to get an exact formula for [z”]T(z). For that, we use Cauchy’s integral formula 

VT’(z) = & f 5 T(z) 

f 

du( 1 - u)( 1 + u)~+’ 
U”+l [u + *,l 

= 2[u”]( 1 - u)( 1 + u)2n-’ [U+ !+] 

=2(~_11)-2(~~;)+2,u”+‘](l-u)‘(l+u)% 

2 2n =- 
( > n+l n 

+ 2( [z/-t1 ] - 2[u”] + [Q--l 1 I( 1 + ““T1 $(m>u”, 
/ 
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where the arithmetical function $(m) is defined by 

$(m)= -k 
C 

if m = 2’(4k + 1) for some i and k, 

k + 1 if m = 2’(4k + 3) for some i and k 
(19) 

for convenience. Note that each integer has a unique representation as 2’(4k + 1) or 

2’(4k + 3). Hence (apart from a normalization factor (‘,“)/(n + l), an exact value of 

the expected value of the YM-parameter in an n-node binary tree is 

WV%) = & (T) 

+2P@)[ (,,:“,) -qnTm) + (n-:“m)]. (20) 

One could also work out the asymptotics from this formula, but it is less recommended 

because of more involved computations. 

3. The variance 

The variance can be analyzed in the same style. We give the key steps. 

Let U,(Z)= (a2/8y2)Wp(z,y)ly= 1 be the second factorial moment. We find from 

the basic recursion (2) 

2 

U&> = 
2zR,_,(z)+4zTp(Z)~p-l(Z) 

1 - 2z(B(z) - S,(z)) 

1 - U2 
=2- 

UZP 
1 _ u2P+’ + 4 

u3.2p-’ 
u2 

P+l 

I.4 (1 +U2P)2(1 -P) + 4(1 + U2p)3(1 - ZP) 

and 

U(z) := C U,(z) = 2u + 8- 
p>l u 

with 

u* 
P+l 

r:= c 
p>o (1 + U2P)3(1 - ZP) 

(21) 

(22) 

(23) 

We compute 

r= c U2P(2+i+j) -3 

p,i,j>O ( > i 
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=c U2P(k+2)( _ 1 )k 

p,k20 

= C U2Pkk2 _ C U2P(2k+1)k(k + 1) 

p,k>l p,k>O 

=: CT1 - cJ2. (24) 

We set 24=e+ and compute the Mellin transform of 61 

and of 02 

2f-2 - 1 

mm - 2)2‘ - ~r(sNs) 
so that f maps into 

2T(s)&s - 2)K + &s)i(s). 

We must find the residues of this times tP, which yields, apart from the fluctuating 

terms 

1 7[‘(-2) 1 

-4t+41og2-8. 
(25) 

Inserting this into (22) and using the results about CJ, we are led to the local expansion 

of U(z) (no fluctuations are given), 

u(a) N 8 - (26) 

To get the “mean” of the fluctuating function we have to take the coefficient of dm 

and divide it by -2, which gives a numerical value 10.595047.. . 

This is consistent with explicit computations performed with MAPLE: For that we 

computed the first 10 values of W,(z, y) and differentiated this function twice w.r.t. 

y, followed by y = 1. The resulting function was expanded as a series in z, and for 

instance the coefficient of z3’, divided by the 30th Catalan number b30, gives a value 

11.2763;28; a similar computation gives 3.263013186 in the instance of the expectation 

(again n = 30). 

The fluctuations are not too small in amplitude (usually, in the “register” context, 

they are of the order 10e2, which originates from x1/2 = rti/ log 2 and the value of the 

r-function at this point, see [5]); however, with the first few Fourier coefficients, they 

could be approximated very well. Since this was only the second factorial moment, we 
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have to add the expectation (mean term) 3.341266.. . and subtract the square of it. The 

resulting numerical value is 2.7722547.. . This does not match with the plot in [ 161, 

and we are not able to reproduce the computations done in this paper. Furthermore, 

one should be aware of the fact that, when squaring the expectation, the square of the 

periodic function 6(x) which is involved does no longer have mean zero. Since this 

function is not too small in amplitude, the numerical value 2.7722547.. . is not too 

meaningful either. Since we find it difficult to get explicit numerical values for the 

Fourier coefficients of S2(x), we do not pursue this further. 

4. Higher bifurcation rates 

This section indicates that the machinery used in the previous sections to deal with 

the original YM-parameter is powerful enough to deal with more general situations 

(higher bifurcation rates). Since the necessary computations become quite messy, we 

confine ourselves with a sketch of the key steps of one particular case. 

We want to count into how many maximal subtrees of register function p - 2 the 

maximal subtrees of register function p - 1 bifurcate, if the whole tree has register 

function p for some p. In the example of Fig. 1, only the first tree contributes 4, and 

the other ones 0. For the tree in Fig. 2, the value is 7, which might be seen more 

easily from Fig. 3. To formulate it differently, this parameter counts the number of 

maximal subtrees of register function 2 less than the whole tree. 

We can use essentially the same decomposition as in the earlier case. Let us label 

all those maximal subtrees of register function p - 2 by the variable y and use (as an 

ad hoc notation) the generating function DP(z, y). We obtain (for p 2 2) 

D~(Z,Y)=Z~~__I(Z,Y)~~ZD~(Z,Y)W~-~(Z,Y)~~ZD~(Z,Y)(B(~)-S~--I(Z)). (27) 

Set $JC2’(z) = (alay) DJz, y)i_YE I, then we get 

7-(qz) = 2zTp_,(z) Rp--1(z) + Uz) 
P 1 - 2z(B(z) - Sp(z)j 

(28) 

Fig. 3. The 3 maximal subtrees with register function 2 
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We computed already that (cf. (5) and (6)) 

R,_l(Z) + R,(z) 

2z 1 - 2z(B(z) - SP(Z)) 

= 2u2P-’ 1 + u2p-’ + u2p 
(1 + zP)2 

and 

G(z) = 
2(1 - u*> P(1 - zP)(l + ZP- + ZF) 

u (1 _ u2p+‘)2 . 

Therefore, 

T(2)(z) = 
4(1 _ U2) &p(l _ u3.*p-’ )( 1 + ZF + uzp- ’ ) 

P (29) u (1 ___2p+ ) 
2 

and 

7Gyz) . = c 77(2)(z) = 4(1 - U2) c 
u2p+2(1 _ u3.2p+’ )(I + u2p + u2p+’ ) 

P (1 _ u2p+3)2 . (30) 
p>2 u p30 

Let us forget about the factor 4( 1 - u2)/u for the moment and set u = e-’ in the 

remaining sum oc2). Its Mellin transform is 

1 

1-2-s 

times the Mellin transform of 

e-4f( 1 - e@)( 1 + e-’ + ee21) 

(1 - e-8t)2 
= C (k + l)e-8”e-4’( 1 - e+‘)(] + emr + ee2’), 

k>O 

which is 

1 1 

(8k + 5)” + (Sk + 6)” 

1 1 1 

-(8k + 10)” - (8k + ll)S - (Sk + 12)” 

=~k~o(k+l) &q+y&+& ( 2 8 4 
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Altogether the Mellin transform of the sum a(‘) is 

+as, ;I+ &x&;> + $a% t> + &x% ;I + fas, ;)I, (31) 

and we have to find the residues of this quantity times teS at the points s = 1,0 and 

Xk. We will not explicitly exhibit the periodic term, so we stick to s = 1 and 0. 

Using properties such as [ 151 

K&a) N & (s ---$ I)> [(O, a) = ; - a, 

<(-1,a)- f - ; - A, (‘(0, a) = log T(a) - ; log(27c) 

and the functional equation of the Hurwitz’ <-function, an extremely boring computation 

gives the residue at s = 1 as 9/( 16t) and the residue at s = 0 as 

1 

( 

%? - --_ 
log2 2x 

~(~‘(2,Q)-2i(a~)+\/2r(2,~)-JZr(2,~) 

+2~(2,~)-JZ~(2,~))-~logn-log2+~1ogr(~)+~logr(~) . 
1 

(32) 

Its numerical value is - 1.287. 

Now we bring the ‘forgotten factor’ 4( 1 - u*)/u (see Eq. (30)) again into the picture 

and have 

T(*)(Z) N (8t + 0(t3)) (& - 1.287 + . . ) 

- ; - 10.298 t +. . 

9 
N-- 

2 
10.298 .2J1-42 + . 

Hence, apart from the ubiquitous fluctuations, 

[z”] T(*)(z) 

P'l B(z) 
N 10.298. (33) 

Thus, apart from fluctuations, the expected number of maximal subtrees 2 less than 

the register function of the entire tree is asymptotic to 10.298. With MAPLE, we get 

for instance the value [z3’] T(2)(z)/[z30] B(z) = 10.01241483. This must be put into per- 

spective by the previous value 3.341, and the quotient 

10.298 
- = 3.082 
3.341 
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is the asymptotic bifurcation ratio considered in this section (up to fluctuations, as 

always.) 

It is somehow surprising that we get a value 3.082, which is smaller than the 

previous values 3.341. However, the bifurcation ratio at the root is tending to 4, as 

was obtained in [ 161. So we might be tempted to believe in a higher value. One should 

note for instance that all trees t with register function = 1 do not contribute at all to 

this “2-bifurcation rate”! 

The considerations of this section can still be extended to higher bifurcation ratios. 

With an obvious notation, we have 

T(d)(z) =2zT;_;l)(z) R~-l(z) + &dz) 
P 1 - 22(8(z) - &(z))’ 

(34) 

It seems clear, that the explicit expressions for these quantities become quite unpleasant 

when d gets larger. The derivations presented in this paper should convince the reader 

however, that even in such a general case the asymptotic bifurcation ratio can be 

computed in principle. 

5. Conclusion 

We demonstrated that by the use of appropriate generating functions, Mellin truns- 
forms and singularity analysis problems which look very hard at first sight are reduced 

to more or less routine computations. The pattern is already described in the literature, 

and a forthcoming book by Flajolet and Sedgewick [8] will deal with it in much more 

detail. 

It is somehow amusing that Catalan numbers and Catalan’s constant appear in the 

same problem! It is the first time that the present author has seen that. 
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