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Efficacy of natural antimicrobials in toothpaste formulations
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Objectives: To evaluate the antimicrobial efficacies of two toothpaste formulations contain-

ing natural antimicrobials (herbal extracts and chitosan) against oral biofilms of different

composition and maturational status.

Methods: Bacteria from a buffer suspension or fresh saliva were adhered for 2 h to a salivary

conditioning film and subsequently grown for 16 h. Dual-species biofilms were prepared

from Actinomyces naeslundii T14V-J1 and Streptococcus oralis J22, whilst multi-species biofilms

were grown from freshly collected human saliva. Biofilms were exposed to 25 wt% tooth-

paste supernatants. A chlorhexidine-containing mouthrinse and a buffer were used as

positive- and negative-controls, respectively. Antibacterial efficacy was concluded from

acute killing, bacterial removal, prevention of bacterial re-deposition and continued killing

during re-deposition.

Results: The herbal- and chitosan-based supernatants showed immediate killing of oral

biofilm bacteria, comparable with chlorhexidine. Moreover, exposure of a biofilm to these

supernatants or chlorhexidine, yielded ongoing killing of biofilm bacteria after exposure

during re-deposition of bacteria to a matured 16 h biofilm, but not to a much thinner initial

biofilm formed by 2 h adhesion only. This suggests that thicker, more matured biofilms can

absorb and release oral antimicrobials.

Conclusions: Supernatants based on herbal- and chitosan-based toothpastes have compa-

rable immediate and ongoing antibacterial efficacies as chlorhexidine. Natural antimicro-

bials and chlorhexidine absorb in oral biofilms which contributes to their substantive action.
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1. Introduction

Biofilm formation is a natural process in the oral environment,

but needs to be controlled through regular brushing in order to

prevent the development of caries and periodontal diseases.

Regular toothpaste formulations contain a combination of

fluorides and detergents, mainly sodium dodecyl sulphate to
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enhance the efficacy of brushing and thereby preventing

diseases. Yet, in most people, brushing alone is inadequate to

remove oral biofilm to an extent that the development of

periodontal diseases and caries is prevented.1 Therefore a

variety of toothpaste and mouthrinse formulations with

antibacterial properties have been developed and evaluated

in vitro and in vivo. Common antimicrobials added are
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triclosan, stannous fluoride, cetyl pyridinium chloride and

chlorhexidine.2

Despite the efficacy of many toothpaste formulations with

antibacterial properties,2,3 there is an increasing societal

desire to rely on naturally occurring compounds for health

care, which has also found its way into dentistry.4 Parodon-

tax1, for instance is a widely known herbal-based toothpaste,

containing sodium bicarbonate and several herbal-containing

components for which medicinal properties are claimed:

chamomilla extract has anti-inflammatory properties, echi-

nacea extract stimulates the immune response, salvia extract

decreases tissue bleeding, myrrha extract is a natural anti-

septic and the extract of mentha piperita is anti-septic, anti-

inflammatory and antimicrobial.5,6 Chitosan is another natu-

ral compound derived from the bio-polysaccharide chitin and

has a poly-cationic carbohydrate structure. Chitin is the

second most abundant biopolymer in nature and can be found

in the exoskeletons of arthropods, shells of crustaceans and

the cuticles of insects. Chitosan has many interesting

properties amongst which non-toxicity and antimicrobial

activity.7 Applications of the antimicrobial activity of chit-

osans are currently investigated in food packaging, textile and

cosmetic industries and in medicine, including dentistry.8–10

Chitosan has antibacterial properties against oral bacterial

strains11–13 as well as the ability to adsorb to and change the

physico-chemical properties of salivary conditioning films (or

‘‘pellicles’’),14 which suggests possible effects on bacterial re-

deposition after use. Due to its cationic nature, however, it can

be questioned whether these properties are preserved in a

toothpaste formulation. Recently, however, the first tooth-

paste formulations containing chitosan have been made

available on the market through the Internet (see, e.g.

www.chitodent.de; www.dentachin.net).

The aim of this paper was to evaluate in vitro the

antimicrobial efficacies of two toothpaste formulations con-

taining natural antimicrobials (herbal extracts and chitosan)

in terms of immediate and delayed bacterial killing in oral

biofilms of different composition and maturational status. In

addition, the antimicrobial efficacies of these natural anti-

microbials were compared with the golden standard for

chemical control of oral biofilms: chlorhexidine.

2. Materials and methods

2.1. Toothpastes supernatants, chlorhexidine and buffer

A herbal-based toothpaste, Parodontax1 without fluoride

(GlaxoSmithKline Consumer Healthcare B.V., Utrecht, The

Netherlands) and Chitodent1 (B&F Elektro GmbH, Filsum,

Germany), a chitosan-based formulation were used. For

biofilm exposure, a toothpaste supernatant was prepared by

dissolving 25 wt% of toothpaste in adhesion buffer (2 mM

potassium phosphate, 50 mM potassium chloride and 1 mM

calcium dichloride, pH 6.8), which was centrifuged (10,000 � g,

5 min) to remove abrasive particles. Corsodyl1, a 0.2%

chlorhexidine-containing mouthrinse (Corsodyl1, GlaxoS-

mithKline Consumer Healthcare B.V., Zeist, The Netherlands)

and adhesion buffer were used as positive and negative

controls, respectively.
2.2. Bacterial inocula

Actinomyces naeslundii T14V-J1 and Streptococcus oralis J22 were

used for co-adhering dual-species biofilms. A. naeslundii was

cultured in Schaedler’s broth supplemented with 0.01 g/L

hemin under anaerobic conditions and S. oralis in Todd Hewitt

broth (THB, OXOID, Basingstoke, UK) in ambient air, both at

37 8C. Strains were precultured in an overnight batch culture

and inoculated in a second culture which was grown for 16 h,

harvested by centrifugation for 5 min at 6,500 � g and washed

twice with adhesion buffer. To break bacterial chains or

aggregates, bacteria were sonicated intermittently whilst

cooling on ice for 30–40 s at 30 W. This procedure was found

not to cause cell lysis. Bacteria were diluted to a cell density of

1 � 108 per mL forA. naeslundii and 3 � 108 per mL for S. oralis in

adhesion buffer with 2% growth medium. The S. oralis

suspension was supplemented with 1.5 mg/mL lyophilized

human whole saliva.

Freshly collected human whole saliva from two healthy

volunteers, with 7 filled teeth on average and stimulated by

chewing Parafilm1, was used as a source for multi-species

biofilms. In the morning, fresh saliva was collected and the

bacterial density was determined by counting and found to

amount 3 � 1 � 108 per mL on average. The two saliva samples

were mixed and diluted 1:1 with adhesion buffer, therewith

reducing the bacterial concentration to 1.5 � 108 per mL for

initial adhesion. For growth, fresh human whole saliva from

the same volunteers was centrifuged, in order to remove

bacteria, tissue cells and debris, for 10 min at 10,000 � g at

10 8C. Subsequently, the saliva was filter sterilized by using a

1.2 mm filter followed by a 0.45 mm filter. Saliva was diluted to

10% in adhesion buffer in order to obtain a solution with a

viscosity that can be used in the parallel plate flow chamber.

All volunteers gave their informed consent to saliva donation,

with approval of the Medical Ethical Committee at UMCG,

Groningen (M09.069162), The Netherlands.

2.3. Biofilm formation and exposure to antimicrobials

First a salivary conditioning film was formed on microscope

glass slides (75 mm � 25 mm). To this end, human whole

saliva from at least 20 healthy volunteers of both genders was

collected into ice-cooled beakers after stimulation by chewing

Parafilm1. The saliva was pooled, centrifuged and treated by

adding phenylmethylsulfonyl fluoride to a final concentration

of 1 mM as a protease inhibitor in order to inhibit salivary

protein denaturation. The solution was again centrifuged,

dialyzed (molecular weight cut off, 6–8 kD) overnight at 4 8C

against demineralized water, and lyophilized in order to

effectively store saliva in unaltered form until needed.15,16 For

experiments, lyophilized saliva was dissolved at a concentra-

tion of 1.5 mg/mL in adhesion buffer. Glass slides were

incubated in this reconstituted saliva for 16 h at room

temperature.

Glass slides with a salivary conditioning film were used as

the bottom plate of a parallel plate flow chamber (dimensions:

l � w � h = 175 mm � 17 mm � 0.75 mm, see Fig. 1).17 The flow

chamber was mounted on the stage of a phase contrast

microscope equipped with a 40� ultra-long working distance

objective (Olympus ULWD-CD Plan 40 PL). The flow chamber

http://www.chitodent.de/
http://www.dentachin.net/
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Fig. 1 – (A) Parallel plate flow chamber consisting of bottom plate, spacer, top plate and in-/out-let. The open space in the

flow chamber is designed to hold a substratum (glass) plate. Temperature sensors and heating element are attached as

well. (B) Basic design of the entire flow system used, shown with only one flow chamber connected.
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and all tubing were sterilized before use. Prior to each

experiment, all tubes and the flow chamber were filled with

adhesion buffer and air bubbles were removed from the

system. Once the system was filled, and prior to the addition of

a bacterial suspension, adhesion buffer was pre-flowed for

30 min through the system in order to remove remnants of

saliva and allow the system to warm up to 33 8C, a relevant oral

surface temperature.18 Solutions were circulated through the

system at a constant flow rate of 1 mL/min, corresponding

with a wall shear rate of 10 s�1 which represents a moderate

oral shear.19

The biofilms used in this study were dual-species biofilms

of co-adhering bacteria and multi-species biofilms of oral

bacteria from freshly collected saliva. These biofilms were

prepared by initial 2 h adhesion and by initial adhesion

followed by growth for 16 h. For dual-species biofilms, A.

naeslundii was flowed until an arbitrary chosen surface

coverage of 1 � 106 bacteria/cm2 was reached. Subsequently,
flow was switched to buffer to remove unattached bacteria

from the flow chamber and tubes for 30 min. Co-adhesion was

initiated by switching the flow to S. oralis in saliva for 2 h,

resulting in an initial biofilm. When appropriate, flow was

switched to THB as a growth medium after initial adhesion

and continued for 16 h at the same flow rate, followed by a

30 min buffer flow to remove THB and unattached bacteria.

Initial biofilms of 2 h and biofilms after 16 h growth were

exposed to toothpaste supernatants or controls for 10 min by

perfusing the flow chamber and subsequent to 2 h re-

deposition of S. oralis. After exposure to antimicrobials, the

flow was switched to adhesion buffer for 30 min to remove

unattached bacteria from the flow chamber and tubes.

For multi-species biofilms, initial bacterial adhesion from

fresh human whole saliva was achieved by flowing with a 50%

dilution of saliva for 2 h and continued, when appropriate, by a

16 h flow with a filter-sterilized 10% saliva solution as a growth

medium at 0.5 mL/min, corresponding to a wall shear rate of
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5 s�1, to limit the volume of saliva required. After overnight

growth, the antimicrobial exposure procedure described

above, was performed. Three flow chambers were simulta-

neously operated, to allow biofilm evaluation before and after

exposure, as well as after re-deposition of bacteria from saliva

in one and the same experiment.

After growth, antimicrobial exposure and/or bacterial re-

deposition, one of the three flow chambers was disconnected

and biofilms were stained for 30 min in situwith live/dead stain

(BacLightTM, Invitrogen, Breda, The Netherlands). Eight image

stacks along the length of the flow chamber were taken using a

Leica TCS-SP2 Confocal Laser Scanning Microscope (Leica

Microsystems Heidelberg GmbH, Heidelberg, Germany), whilst

scanning from bottom to top of the biofilm. Images were

analysed with COMSTAT,20 a Matlab1 (The Mathworks, Inc.)

based analysis program. COMSTAT enables measurement of

the biofilm volume (mm3/mm2) occupied by live and dead

bacteria, from which the %live bacteria in a biofilm volume

and the %removal after flowing with toothpaste supernatant

or chlorhexidine (positive control) or buffer (negative control)

is obtained according to

%removal ¼ biofilmvolumebefore � biofilmvolumeafter

biofilmvolumebefore

� �

� 100% (1)

in which biofilmvolumebefore and biofilmvolumeafter represent

the total biofilm volumes before and after exposure to a

toothpaste supernatant or control solutions.
[()TD$FIG]
Fig. 2 – The total biofilm volume (mm3/mm2) of oral biofilms on

numbers) and %dead bacteria before and after exposure, as we

biofilms, (B) 16 h old dual-species biofilms, and (C) 16 h old mu

biofilm volume over three experiments with separately culture

before treatment. *Significantly ( p < 0.05) difference in biofilm v
2.4. Statistical analysis

Statistical analysis and comparison of the different groups

were performed with Student’s paired samples t-test for

comparison before and after exposure to buffer or antimicro-

bial agent and Student’s independent samples t-test for

comparisons between the different biofilm models. A signifi-

cance level of p < 0.05 was used.

3. Results

3.1. Initial biofilms

Total biofilm volume of the initial dual-species biofilm after

2 h adhesion amounted on average 2.4 � 1.0 mm3/mm2 and

these biofilms possessed a high (95%) viability (see Fig. 2A).

Biofilm volumes after 2 h initial adhesion of bacteria

from whole saliva (multi-species biofilms) were only

around 0.2 mm3/mm2 and therewith too small for further

analyses.

Chlorhexidine and herbal- and chitosan-based toothpaste

supernatants removed significantly (p < 0.05) more bacteria

than buffer (see Fig. 3), with no significant differences in

removal between chlorhexidine and both toothpaste super-

natants. The viabilities of 2 h old, initial biofilms were

significantly reduced after exposure to toothpaste super-

natants and chlorhexidine, but most pronounced for chlor-

hexidine (see also Fig. 2A).
saliva-coated glass, including the %live (also indicated in

ll as after 2 h re-deposition: (A) 2 h old, initial dual-species

lti-species biofilms. Error bars represent the SD in total

d bacteria. #Significantly ( p < 0.05) lower viability than

olume.
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Fig. 3 – %Removal of 2 h old, initial biofilms, 16 h old dual-species biofilms and 16 h old multi-species biofilms by exposure

to buffer, chlorhexidine and supernatants of a herbal- or chitosan-based toothpaste formulations. Error bars represent the

SD over three experiments with separately cultured bacteria.

[()TD$FIG]

Fig. 4 – Confocal laser scanning microscopic overlay images of 16 h old dual-species biofilms before and after exposure to

herbal-based toothpaste supernatant (A) or chlorhexidine (B), as well as after 2 h re-deposition of bacteria. Staining was done

with live/dead stain: green represents live bacteria whilst dead bacteria appear as red fluorescent dots. Bar denotes 75 mm. (For

interpretation of the references to colour in this figure legend, the reader is referred to the web version of the article.)
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Re-deposition of S. oralis to treated 2 h old, initial biofilms

was evident from an increased biofilm volume after exposure

to chlorhexidine, although not statistically significant. No

adhesion of S. oralis during the re-deposition phase was

observed on biofilms exposed to herbal- and chitosan-based

toothpaste supernatants, but moreover ongoing removal was

seen in the case of the herbal-based toothpaste (Fig. 2A).

3.2. Mature biofilms

Total biofilm volume of the dual-species biofilm after 16 h

formation amounted 10.9 � 3.4 mm3/mm2, which is about four-

fold thicker than after 2 h growth. Multi-species biofilms

grown from saliva had a significantly smaller (p < 0.05) biofilm

volume (2.1 � 0.8 mm3/mm2) than dual-species biofilms.

All biofilms after 16 h growth (see Fig. 2B and C) were highly

viable before exposure to the natural antimicrobials and

chlorhexidine, although the 16 h old dual-species biofilm was

slightly more viable (93%) than the multi-species one (84%).

Chlorhexidine was significantly more effective in removing

dual-species biofilm compared with buffer (65%, see Fig. 3)

than the two toothpaste supernatants. Exposure to the herbal-

or chitosan-based toothpaste supernatant removed 21–34% of

the biofilm volumes, respectively (see Fig. 3), concurrent with a

significant decrease in viability for both formulations to less

than 60% (see Fig. 2). Chlorhexidine detached more bacteria on

a percentage basis from the 16 h old biofilm than from the 2 h

old biofilm. The decrease in viability achieved by chlorhexi-

dine was comparable or less than to the ones of the herbal- or

chitosan-based toothpaste supernatants. Buffer exposure

neither caused biofilm removal nor a decrease in viability

(see Figs. 2 and 3).

Adhesion of bacteria during the re-deposition phase was

only observed after exposure to chlorhexidine and the

chitosan-based toothpaste supernatant of a multi-species

biofilm (Fig. 2C), indicated by an increase in biofilm volume,

whereas the herbal-based toothpaste supernatant showed a

slight ongoing removal. For dual-species biofilms (Fig. 2B), all

antimicrobial agents caused ongoing removal even during the

re-deposition phase of the experiment, which was statistically

significant for chlorhexidine. Moreover, during the re-deposi-

tion phase, bacterial viabilities continued to decrease to below

the levels observed prior to the bacterial re-deposition phase.

This is also illustrated in the CLSM micrographs of 16 h old

dual-species biofilms before and after exposure to herbal-

based toothpaste supernatant and chlorhexidine (see Fig. 4).

Note that bacteria appear yellowish immediately after expo-

sure due to the superposition of red and green-fluorescent

bacteria present over the thickness of the biofilm. After re-

deposition, however, bacteria appear more convincingly as

red, indicative of ongoing killing during the re-deposition

phase.

4. Discussion

In this paper, we studied antibacterial efficacies of two

toothpastes containing natural antimicrobial components in

comparison with the efficacy of chlorhexidine, being the gold

standard for chemical oral biofilm (or ‘‘plaque’’) control.
Antibacterial efficacy was assessed against biofilms of differ-

ent maturational status, grown for 2 or 16 h and comprised of

A. naeslundii and S. oralis, two initial colonizers of enamel

surfaces in vivo, including multi-species biofilms grown for

16 h from saliva.

Exposure of biofilms to both the herbal- or the chitosan-

based toothpaste derived supernatants yielded comparable or

better immediate and ongoing killing than chlorhexidine

exposure and even prevention of bacterial adhesion during the

re-deposition phase to the biofilm was seen. This could only be

demonstrated in mature biofilms, formed by growth during

16 h, therewith suggesting a larger absorptive capacity of

thicker biofilms, that may be involved in the substantive

action of the antimicrobials. Clinical studies have also shown

the potential of both Parodontax and chitosan in reducing

plaque re-growth as well as antibacterial substantivity.21,22

Chlorhexidine is known to possess good substantivity that

may enhance its clinical efficacy when long-term killing is

needed.23 Interestingly, the present study also showed that

chlorhexidine, due to its surfactive properties,24 detached,

more bacteria on a percentage basis from a mature biofilm

than from an initial biofilm, which might indicate that the

adhesion strength between a bacterium and the salivary

conditioning film is stronger than between bacteria in the

biofilm. It is known that chlorhexidine influences the

composition of the oral biofilms, and especially the prevalence

of actinomyces decreased after use of chlorhexidine.25 Our

results show that the percentage live bacteria in our dual-

species biofilms is lower than in multi-species biofilms, which

might be explained by a greater killing efficacy of chlorhexi-

dine with respect to actinomyces. Chlorhexidine and chitosan

have the same mechanism of antimicrobial activity, as both

disrupt the bacterial cell membrane, leading to cell death.26,27

The mechanisms of antimicrobial activities of the compo-

nents in Parodontax are unclear.

Adhesion of bacteria during the re-deposition phase to the

biofilms was only seen after exposure to chlorhexidine and

chitosan-based toothpaste supernatants in a multi-species

biofilm. Likely, the variety of different bacterial strains and

species in saliva offers the possibility for different bacterial

strains to adhere to an exposed biofilm, whereas the two

strains constituting the dual-species biofilm are not attracted

to these biofilms. This highlights the major advantage, and at

the same time the disadvantage of using multi-species

biofilms grown from saliva. Due to the large variety of strains

and species, the experiment becomes less defined than when

working with a dual-species biofilm, but on the other hand,

multi-species biofilm are a better representation of biofilms as

clinically occurring. In addition, increased re-deposition of

bacteria after exposure to these two cationic antimicrobials

may be stimulated by their adsorption to the salivary

conditioning film, which is known to be accompanied by less

negative zeta potentials and thus less electrostatic repulsion

between negatively charged bacteria and the conditioning

film.14

It can be of clinical relevance that bacterial detachment and

killing in mature oral biofilms may continue after exposure to

antibacterial compounds from toothpastes and chlorhexidine.

This suggests that matured biofilms may act as a reservoir for

oral antimicrobials enabling prolonged killing, whereas initial
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biofilms are evidently too thin to act as an effective reservoir.

These observations confirm recent clinical findings by Otten

et al.,28 demonstrating that clinically collected plaques from

patients after rinsing with an antibacterial mouthrinse indeed

contained sufficient antibacterial activity to kill new plaque.

We here demonstrated in vitro that natural antimicrobials

in herbal- and chitosan-based toothpastes can be equally

effective as chlorhexidine, not only with respect to immediate

but also delayed bacterial killing as a result of substantivity of

antimicrobials in oral biofilms.
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