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We study the topic of the title 
four paragraphs of this paper. 

in some detail. The main l-WlltS are in the kst 

The di:nrension [4] of a partially ordered set (poset) is the minimum number of 
linear arders whose intersection is the ordering of the poset. For an integer d 2 2, 
a poset is d-irreducible [I31 if it has dimension d and removal of any element 
lowers its dimension; calling a poset irreducible means it is d-irreducible for some 
(1 a 2. (Irreducible posets a~% finite and the dimension of any tite poset is finite.) 

In Section 2, we show that planar psets have arbitrary finite dimension. In 
Section 3, we present two new familhes of irreducible posets and show that finite 
dismantlable lattices have arbitrary finite die&on. 

We introduce the dimension product construction in Section 4. In Section 6, we 
show that P@ 2, the dimension product of a 3-irreducible poset P and a 
2-element chain, is 4-irreducible. (The complete list of 3-irreducible posets is 
given in Kelly [6] or Trotter and Moore fly].) Using the dimension product, we 
construct, for any ci’ > 3 and 2 3 1, a d-irreducible poset of length I, answering 
Problem 3 of Trotter [14]. 

A d-irreducible poset P has the embedding propwty ifl for any integer n > 6, 
there is an n-irreducible poset contairJng P as a subposet. The unique 2- 
irreducible poset obviously has the embedding proper@ Theorem 4.9 shows that 
every 3-irreducible poset has the embedding property, as do the irreducible posets 
we introduce in Section 3. 

For a poset P, the pair (a, b) E P2 is cal1e.d a critical pair ifi Q 11 b, x c b implies 
x < a, and x > a implies x > b. (Such a pair is also called ‘“nonforcing”.) Al1 the 
results of this section are elementary or trivial extensions of known results. 

Eemnra 1.1. If a and b are incomparubk elments of a finite poset P, then there is a 
critical pair (a,, b,) for P with a s aI and bl s 6. 

* This research was supp orted by the N.S.E.R.C. cb Canada. 
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Pr&. First, choose a1 maximai such that a G al and a, 11 b ; then, choose b, 
minimal such that bl d b and a, I\ bl. 

Henceforth, we shall usually write a critical pair (a, b) as “a <b” and call it a 
c;rirical inequalitv. (Note, however, that a critical inequality for a poset P is not an 
inequality that holds in P.j The set of all critica? inequalities for a poset P is 
denoted by Crit(P). 

A linear extension of a suhposet of a poset P will be called a Qartial linear 
extension of P. The following lemma is a slight generalization of the well-known 
theorem of E. Szpilrajn [ll]. 

Lemma 1.2. For any partial linear extension C of u pwt P, there is a lineur 
extension C’ f~{ f’ that extends C. 

Prooh. It is easily shown that the transitive closure of C UP is an order relation 
which we denote by R. By Szpilrajn [ll], there is a linear extension C’ of R. 
Clearly, C’ satisfies the conditions of the lemma. * 

We shall say that the partial linear extegsions Ci (it Z) realize P when the 
ordering on P is n (C; 1 i E I) for any choice of linear extensions Cl extending Ci 
(i E I). The dimension of a poset P is denoted by dim P. The following result will 
reduce the “bookkeeping” involved in calculating dimension. 

Proposilion 1.3. Let C,, c,, . . . , C, be partial linear extensions of a finite poset P. 
Zf each critical inequality for P holds in some Ci (1s i < n), then C1, C,, . . . , C, 
reclize P. ln particular, dim P G n. 

Proof. Let Cl be a linear extension of P that extends Ci for 1 G i G n. Clearly, 
PGC;r\C$n* * . n CI, as order relations. Let a 11 b in P. It remains to show that 
a <b in some Cl. By Lemma 1.1, there is a critical pair (a,, b,) for P such that 
u da, and b, 6 b. If a1 < bl holds in Ci, then a <b holds in C{. 

Coro&uuy 1.4. The dimension of a finite poset P is the minimum (nonzero) number 
of partial linear extensions of P such fhut critical inequality for F holds in dne of the 
rmrtial linear extensicms. 

Let P be a finite paset. An element a of P is _ioin-reducible if a = V S for some 
S c P with a$ S; otherwise a is join-irreducible. In particular, takin? S = ld, a 
c;n-allest element (zero) is always join-reducible. l(P) denotes the set of all 
join-irreducible elem’ents of P; dually, M(P) is the set of meet-ineducible ele- 
ments of P. P(P) ==J(P)UM(P), the set of irreducible elements; k(P) = 

(P), the set of doubly irreducible elements. &r(P) is not necessarily the 
set of elements with a unique lower and upper cover.) 
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Proposition 1.5. For Q finite pet P, C&(P) G p&L(P) XI(P). 

Proof. Let (a, b) E C&(P) and suppose that u = /\ S with a$ S. For all x E S, 3. > a, 
and therefore, fc > b. Consequently, a = A S 2 b, a contradiction. 

Cor&uy 1.6. For a finite nontrivial poset P, dim P = dim P(P). 

Proof. By Lemma 1.1 and Proposition 1.5, Crit(P(P)) = C&(P). Now a&- 
Corollary 1.4. 

Consequently, for any irreducible poset P, P = P(P); in other words, P contains 
no doubly reducible element. 

The completion of a poset P, denoted by L(P), is also called the “‘completion by 
cuts” [3] or “MacNeille completion”. P is a subposet of L(P). Recall that 
J(P) = JCL(P)) and M(P) = M(L(P)); thus, P(P) = P(L(P)). Combining the last 
equality and Corollary 1.6, we obtain the following result for finite P. 

ProPosi@ion 1.7 (Baker [In. For any poset P, dim L(P) = dim P. 

Proof. Let % = (Ci 1 i E I) be a family of linear extensions realizing P. We show 
that %’ realizes L =L(P). Let a 11 b in L. Since there are subsets A and B of P 
such that u = AA and b= V B, we can choose XEA and DEB such that x+y. 
Therefore, x < y in Ci for some i E I. In any linear extension C[ of L that extends 
Ci, U <b holds. 

Henceforth, all posets will be Gnite. 
The next results follows from the characterization of the completion given by B. 

Banaschewski [2, p. 1231, and independently, by J. Schmidt [lo, p. 2461. 

Lemma 1.8. For any finite lattice L, L(P(L)) = L. 

2. Planar posets 

A poset is planar if it is finite and its diagram can be drawn in the plane without 
any crossing of lines. For each positive integer n, we shall construct a planar poset 
P,, of dimension II. If a planar poset P contains both a zero and one, then P is a 
.lattice and dim PS 2. (The first part appears in [3, p*, 32, ex. 7(a)] and is 
proved in [8, Corollary 2.4). The second part was proved by K.A. Baker [3] and is 
a combination of results of J. Zilber [3, p. 32, ex. 7(c)] and B, Dushnik and E.W. 
Miller 14, Theorem 3.611.) If a planar poset P contains a zero, W.T. Trotter, Jr., 
and J.T. Moore, Jr. [16] showed that dim P:z 3. 

We shall define the planar poset P,; as a subposet of the power set 
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Q,,(R,,) be the set r>f atoms (coatoms) of 2”. Then Q, ={(i) 1 1 c i =S n). We set 

P,,=Q,,UR,U{{1,2,...,i}~2~i~~~-2) 

U{{ii+l,.. .,n]l3Giia-11). 

Since lF(P,,) = Q,, U R, = P(2”), dim P,, = n by Corollary 1.6. Fig. 1 shows a planar 
diagram for P6, where i denotes (i) and i’, denotes (i i 1 aj < n, j# i} for 1 G id 6. 

Fig. 1. A planar poset of dimension 6. 

3. Two new familits Df irreducibfe pas&s 

IIn this section, we shall define posets P,,k and Qn,_ and show that P*k (C&J is 
irreducible of dimen+on 2k (2k - 1) when n is suitably chosen. These posets will 
both be subposets of the lattices L,,k which we now define. 

Let n and k be positive integers. The lattice 

kk ={e;,IO=SiijGk, l<AGn) 

where e$ = 4 (0 2; i S k, 1 s A G n) and ad other elements with distinct indices are 
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Fig.'2. 0119 flap of L,,,. 

We now definq the subposets of kk. 

P ,,={a:[ lsi<k-l,l<hsn]U{b”1 IShen) 

u{$\ lGi=Sk-1, ~GhQl). 

Note that P,, = A& For k a2, 

Q n,k =Pn,kU{&_r}-(~~_I 1 lSA<nf. 

Also, let 

L;,k=&,k--{& 1 l~h~,n). 

Clearly, (P&f = p(2k - 1) and j.Q,,kl = n(2k -2)+ 1. 
&.M us’ list the four main results of this section. 
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m-rem 3.L If k 3 2 and n = 1+ (2k - 1)22k-3, then Pn,k is a 2k-irreducible poset. 

Theorem 3.2. If k 3 2 and m = (2k -. t)22”-3, then 
(i) dim Lm.k = 2k - 1, and 

(ii) dim Lnk = 2k whenever n > m. 

T’beorem 3.3. If k 2 2 and n = 1 + (k - l)22rc-3, then Q,,k is a (2k - l)-irreducible 

poset. 

Theorem 3.4. If k 2 2 (2nd m = (k - l)22k-3, then 
(i) dim I_.&,k = 2k - 2, 

(ii) dim LL,k = 2k - 1 whenever n > m. 

A lattice is dimnntlakle [7] iff every sublattice with at least three elements’ 
ccntaius an element that is doubly irreducible in the sublattice. Since a single flap * 

is planar, L,, and L;,k ;Xe obviously dismantlable (Kelly and Rival [8, Corollary 
2.31). Theorem 3.2 shows how to construct a dismantlable lattice of arbitrary 
firtite dimension in lV&,>. Recall that the dimension of a finite dismantlable 
distributive lattice canno! exceed two (see Kelly and Rival [7, Corollary 3.61). 

We postpone the proofs 1 mtit the necessary preliminary results are established. 
For integers i and j, [i, j] denotes the set of all integers I such that i c 1 G j. It is 
obvious that 

U{cf_,<ar\h#p; l~A+%n; N&k-1). 

Lemma 3.5. For any positive integers k and n, dim PnVk G 2k. 

Proof. If C, = (a,?, c!+ a$ cf__,, . . . , a ‘, cy_,) and Di = (al, c:_~, . . . , a’, cf+ a!, 
c!- 1 ), then each Ci and Di is a partial linear extension of P,,k and each critical 
i&palii-y ior p,,k holds in some Ci or Di (1 s i s k). By Proposition 1.3, this 

let m be a positire integer and let the functions f., : [l, 2k -- 
1 s A G m. For A, F E [ 1, m], it is further assumed :hat A = 11, 
three conditions are satisfied for some i E [ 1, k] and some 

eomple tes the proof. 

Lem 3.6. For k 3 2, 
l]-+ [I, k] be given for 
whenever the following 
j E [l, 2k - l]. 

(a) f,‘(i) c G). 
(b) f,‘(i) c (i}. 
(c) If rE[1,2k-l]--(i), then fh(l)<i ifl f,(l)<i. 

’ Thk Gzt: restriction was not needed in [7] since the empty join and meet werr excluded there. 
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Then, m s (2k - l)22k-3. Moreover,. ,functions f’(1 c h s tn) can be wned with 
M = (2k - 1)22k-3 so that the above conditions are sati@d. 

Root. For iffl, k], jE[1,2k-l] and .As[l:2k-l]-(j) with IAI=2i-2, let 
F(i, j, A) denote the set of all functions f: [1,2k - l]+ [l, k] that satisfy one of 
the following conditions. 

_ (i) f-‘(i) = (i} and f-‘([l, i - 1]) = A. 
(ii) f-‘(i) = 6 and f-‘([l, i - 1J) = A. 

(iii) f-‘(i) = P, and f-‘([l, i - ln = A U(i). 
It is easily shown that every function from [l.. 2k - l] to [l, k] lies in some 
F(i, j, A) for i, j and A as above. The conditions of the lemma mean that 
fk, f, E F(i, j, A) is possible only if A = CL. Thus, if m’ is the number of such triples 
(i, j, A), then m d m’. Since 

m’ - (2k - 1) i$I (;; -;) = (2k - l)22k-3, 

the first statement of the lemma follows. Let f:[l, 2k - l] -+ [l, k] be a function 
such that f-‘(i) =(i}, f-‘(lx, i - 1-j) = A, and If-‘( Z)I = 2 whenever I # i ; then 
fc F(i’, j’, A’) exactly when i’ = i, j’ = j and A’ = A. The second statement now 
follows. 

we define ck = Pn,k u&, dl, . . . , 4). Note that dim P& = dii PKk. 

proposition 3.7. If k 3 2 and n > (2k - 1)22k-3, then dim P,,& = 2k. 

Proof. It is enough by Lemma 3.5 to show that dim cka22k. Suppose ci 
(1 d j G 2k - 1) are chains whose intersection is the ordering on I’$$. For 1 GA s 
n, we define the functions f*: Cl, T!!: - 1.1 + [l, k] by 

fh(j)=i iff 4_,<bh<G in CP 

Thus, by Lemma 3.6, there are distinct elements h and p in [l, n], together with 
i E [l, k] and jc [l, 2k -11 such that conditions (a), \b) and (c) of Lemma 3.6 are 
satisfied. The critical inequalities cF_* < ar and cr_I <a? cannot both hold i;l the 

same chain because c;._~ < a? would then follow using af<cE 1. Thus, we can 
assume that cF__, < af holds in C, with I # j. Note that f,(l) # i and f,(l) # i 

because If j. Since b” < 4 and &_, c b” hold in C,, it follows that fkil) < i <f,(l), 

contradicting condition (c). 

~pOSitiOn 3.8. If k 2 2 and m = (2k - 1)22k-3, then dim P”,,k = 2k -- 1. 

Proof. We shall define partial linear extensions Cj (1 XG j s 2k - 1) that realize p#,,k. 
Expressing q as 

@,, c;, 4 c;, 4,. . , , &c--l, c:, dd 
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it is enough to define Ci for any &El, k] and j~[l,2k-13. For 3 Ghan, let 
fh: [l, 2k - i] + [l, k] be functions for which Ifi’( = 2 for every i ~$1, k] except 
one, and that satisfy the condition of Lemma 3.6. We now frx i ~[l, k] and 
j~[1,2k-11. For 1<1~2k--1, we define functions 4p1:[1, m]+{O, 1,2} as fol- 
lows: 

0, if f*(E)< i; 

Q(A)- 1, if fk(l)= i; 

2, if fk(I)> i. 

Let D = (p;‘(T) - 1 A 1 f,&) = i}. We define a binary relation S between distinct 
elements A, I_L E ‘3 by the following two rules: 

(a) Suppose q&A) = <p&;c) for all I E [1,2k - l] and fil(i) -f;‘(i) = G, h} for 
some h f j. Let A’ = min(A, cc) and CL’ = max(A, CL) in the usual order on [ 1, ml. It’ 
j<h, set A’6 p’; otherwise, set p’6A’. 

(f3) Suppose q+(~)>q&) for all k[1,2k-l] but Q~(A)#Q&L) for some 
h E [l, 2k - 11. In this case, set A@. 

We claim there is a linear ordering A on D that extends 8. It is enough to show 
that the transitive closure of S is a strict partial ordering. Suppose 
A,,SA,S* l l 6 A, = A0 holds in D for some n 2 1. If A$A,+l by rule (at) for ail 
y < n, then for some h # j, &l(i) = Q, h} whenever A = A,, and y < n. If j < k, then 
A&A1 <:* . . c A,, = A0 in the usual order, which is impossible; the other case is 
similar. Thus, we can assume that A06A1 holds by rule (p). Let h E [l, 2k - l] be 
such that @,(A,) 3 (Ch(Al). It follo\Js that @,(AO) > @,(A,,), which is impossible since 

A,, = A,. With this contradiction, the proof of the claim is complete. 
D* denotes D endowed wrth linear ordering A. Let <A and I3 be linear 

orderings of the sets cp;‘(O) and <p;‘(2) respectively. We set 

Cj = ((c;__, 1 A E A), ((a:, c;--,) 1 A E II”), (a; 1 A E B)). 

We consider an arbitrary critical inequality c~__, < a: for P,,,k where i, A and ~1, 
are fixed ( 1 G i s k, A # p); j is no longer fixed. By Proposition 1.3, it suffices to 
shc;u that 
cases. 

Case 1. 
immediate 

Case 2. 
conditions 

this inequality holds in C: for some j E [l, 2k - 11. There are three 

cpl(A) :(p&) for some I E [1,2k - 11. For j = 2, A E A or p E B, and it is 
that clx_, < a: in Ci. 

PI(A) = <p&) for all 1 E [l, 2k - 11. Since If;‘(i)1 = 1 is impossible by the 
of Lemma 3.6, fii(i) =f,‘fi) = (h,, h2} for distinct ht, h+ [1,2k - 11. 

Then, for i = h, or h2, A@ by rule (cw); consequently, c;_~ <a? in Ci. 
Case 3. <p,(A) a (P,(P) for all E E[1,2k - l] and $+,(A) # Q&d fiw some h E 

[I, 2k - 11. By rule (p), it is enough to find j E [l, 2k -- l] so that A, p E D; in other 
words, vi (A I= <pi(p) = 1. Let us suppose, to the contrary, that there is no such j. 

Cj is obviously a partial linear extension of p#,,k and it follows easily that Cj is 
also one. (Observe that, in any linear extension of pm,k that extends Cj* (ii-i < 
b A < di iff fh (j) = i.) 
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This me:ans that 1^,(j)< i whenever f&(j) = i. Observe that f;;‘(El, i- l]) E 
f;‘([l, i - 11). If /f;-‘(i)\ -- 1, then \f;lal,:i- lJ)]~= 2i_‘2 and.: the above inclusion 
would imply that ]f;‘([l, j_ lnl=2i_,i, ;ut'i+&&&~~~&&~e~~ If<'(j)1 &2, 

and since If;r’([l, i --~ll)~-~ Zi - 3, the above~~incl~~~n”~~i~~s that@([Y; i - lni 3 
2i - 1. This contr&i&on completes the -#roof that dim P,,,k6;2k-1. Because 
adding one flap increases the dimension by at most one, it follows irom Broposi- 
tion 3.7 that dim P,,,R = 2k - 1. 

mf Ot ‘I%@rem 3.1. Let m = n - 1 = (2k- l)22k-3. By Proposition 3.7, 
dim p,,k = 2k. By duality, it is enough to show that dim QS 2k - 1 where Q = 
p:k -@ii and 1 S g Q k. We shall define partial iinear extensions C; (1 s j s 2k - 
1) by adding the elements af (1 G i 6 k, if .g) and c: (1 s i c k - 1) to the chains Ci 
constructed in the proof of Proposition 3.8; we shall use the notation of that 
proof. We can assume that f;‘(g) = (1). We first assume that g < k. Whenever 
either ai or c! appears alone in one of the original chains, add a.: (for if: g) or cl, 
respectively, immediately after. If ip g, then (a:, c,‘_*) appears in two chatis C, 
and Ci with h <j; add (a:, cbl) to both chains, immediately before at in Ch9 and 
immediately after ci_, in G. Finally, we add c!J_~ immediately before ai in C1. 

The set of critical inequalities for Q is 

(c~_,<~~]A#~,~#n when i=g,l<igk). 

On1 v the cases where A or j.~ is PZ need to be checked. If c f 1, then ct_, < ar 
holds in some chain Cj; in this case, ~~_~<a~ holds in C;. The case where 
A # 1. p = it and if g is similar. For i# g, c:-~ <a: and c,‘_~ < a: also hold in one 
of the new chains. Finally, cz_, < ai holds in Ci. 

We can now assume that g = k; in other words, Q = cI,-{b”}. .We shall only 
cons&r the case that k >2. (These additional arguments are unnecessary -if 
k = 2.) We specify the function f1 completely by stipulating that f;‘(i) = (2i, 2i + 1) 
whenever 1 c i G k - 1. We require the remaining functions to be chosen so that, 
for 2Qh<m and 2<i<k-1, 

f,(2i) # i or fh(2i I- 1) # i. 

This means that a suitable function f must be chosen from each set F(h, j, A) of 
functions defined in the proof of Lemma 3.6. Let h ~11, k], j E [I, 2k - 13 and 
A E [l, 2k .- l]-u} with IAl := 2h -2 be fixed. We shall specify certain values 6f f 
that still allow f to be a func;ion lying only in F(h, j, A). We consider each 
i E 12, k - I]. If i c h and j# 2i, then set f(2i) = i - 1 whenever 2i E A. (If 2ip! A, 
then f(2i) > h 3 i.) If i 6 h and j - 2i, then set f(2i + 1) = i - 1 whenever (2i + 1) E 
A. If i > h and j # 2i, then set f(2i) = i whenever 2i$ A. If i > h and j = 2i, then 
set f(2i -I- 1) -- i whenever (2i + 1) $ A. Therefore, the above requirement can be 
met. 

Let i E [2, k - I], j E {2i, 2i -t- l), G, h) = {2i, 2i + 11, and D = {h 1 fh(j) - i). Ob- 
se;:2 that fi(j) = i = f,(h). We show that the linear ordering A of Proposition 3.8 
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can be chosen so that: 

(*I If A E D satisfies f,,(h) < i. then 1 Ah. 

Let A E D satisfy f*(h) < i. If A6” 1, where 8” is the transitive closure of 5, then 
cpl(A)>cpl(l) whenever 1<!~2k-1. Since v?~(A)=O and q,,(l)=l, AS*1 cannot 
hold. The statement (*) now follows. 

C; is formed from C1 by adding al immediately after a: (14 i 6 k - 1) and by 
adding (,c;, c;_~) immediatlely before b”. C: is obtained from C, by adding 

(a;, a;_,) immediately before ai and (c’;, c; _,) immediately ,after c:_,. C; is 
obtained from C, by adding (a;? a!_,) imrxdiately after b1 and adding cl 
immediately after c! (1 . i < s k - 1). The remaining chains C; (4 s:j =: 2k - 1) are 
constructed in the same way as when g < k. 

The set of critical inequalities for Q is 

{ch !<ayIA#p,A#n when i=l,p#n when i=k,lsiQk-} 

The inequality c&,<c; (A:f I, n) holds in Ci; a;_, <ai and c:_,c:c; hold in 
C~;a;l,_,<a~(~#1,n)holdsinC;wherej~{2,3)ischosensothatb~<a~hn!ds 
in C;. 

After applying the arguments used when g <k, it only remains to consider 
critical inequalities of the form cr-_, c a: with p # 1 or n, and 2 s i 9 k - l.* Let p 
and i be fixed. Since If;‘([l, i - 1])1<2i -2, there is j E [3,2i + l:] such that 
f,(j) z i. Note that flG) < i. If j can be chosen so that f,(j) > i, then c;- t < af holds 
in Ci; consequently, cl’, <al holds in C;. We can now assume that 11(j) = i and 
f,(l)<- i whenever I E [3,2i + I]. If j ~2i, then cy__, <af holds in Cl because 
c! , < af holds in Ci (since fl(j) < i). Thus, without loss of generality, Jo 
{2i. 2i +- 1) and f,(h) < i where {j, h} = {2i, 2i + I}. (Recall that f, was chosen so 
that f,,(h) Z i.) By the statement (*) above, c!._i(a~ holds in Ci. Therefore, 
c:-~ <a? holds in Cl, completing the proof of the theorem. 

For na2, Pnk =P(L,,,). Thus, by Lemma 1.8, L.,,, = L(P,,,) for n 3 2. 
Theorem 3.2 now follows from Proposition 1.7, Proposition 3.7 and Proposition 
3.8. 

We row give the preliminary resuits for Theorems 3.3 and 3.4. Let Of,= 

Q,,.k iJ&, d,, . . . , dk-2, dk}, a poset having the same dimension as Q,,k. 

Lemma 3.9. For integers k 32 and n b 1, dim Q,.k c 2k - 1. 

prouf. T;;a!=:e the chain (dk_-l, b’, b*, . . , , 6”) in addition to the chains Ci and Q 
(lsi5k-1) of Lemma 3.5. 

z riote that d, , cc; in C; whereas c: < d2 held in C2. 
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Lemnra 3.10. For k 23 2, let m be a positive integer and let the functions fA : [l, 2k - 
2]+ 111, k] be giuen SO that f;‘(k) # 0 for 1 G A s tn. For A, p E [1, m] it is further 
assumed that h = p whenever the following three conditions are satifled for some 
iE[l, k-l] and some jE[1,2k--21. 

(a) f;‘(i) G (i}. 
(b) f;‘(i)c:Q}. ,.- 
(c) If L[l, 2k-2j-(j}, then jh(Z)<i ifi f,(l)<i. 

Then, m S (Al- 1)22k-3. Moreover, functions fA (1 s A =S m) can be defined with 
m = (k - t)22k-3 so that the abotrt! conditions are satisfied. 

proposition 3.11. If k 2 2 atad n > (k - l)22k-3, then dim Q,,k = 2k - 1. 

Proof. Suppose Ci (1 G j S 2k - 2) :tre linear extensions of QEk that realize it. For 
1 s A s n, we define functions fA : [I, 2k - 2]-+ [ 1, k] similarly as in the proof of 
Proposition 3.7. Since dk _ 1 C 6” must hold in some Cj, fi’( k) # 0. Let A i p in 
[l, n], iE[l, k- l] and iE[1,2k-21 satisfy conditions (a), (b) and (c) of Lemma 
3.10. Now proceed as in the proof of Proposition 3.7. 

-Proposition 3.32. If k 2 2 and m == (k -- 1)22k-3, then dim Qnsk = 2k - 2. 

Proof. For A f:[l, m], let fA:[l, 2k -2]+ [l, k] be functions for which If;‘(i)\ = 2 

for every i E [ L, k - I] except one and \J,-l(k)1 = 1, and that satisfy the conditions 
of Lemma X10. For j E [1,2k -23, let q = (d,, Ct, dl, C$ d2, . . . , dk_l, CF, dk), 
where Ci (1~ i s k - 1) are defined a!s in the proof of Proposition 3.8 (when 
[ 1,2k - I] is‘ replaced by [I, 2k -21) ilnd C’r is (6’ 1 fA(i) = k} endowed with a 
linear ordering. Similarly as in tht: proof of Proposition 3.8, we can shlow that 

C*, C*, l * - , C2p_2 realize Qc.b. and a,nclude that dim Q,,.,k = 2k - 2. 

Proof of Theorem 3.3. Let Q = Qfk --{x}, where x is ai (1~ g < k - I), 9, ci 
(lsgs!c .2]b, or dk+ &et m = n - 1 = (k - l)22k-3. We must show that dim Q s 
2k - 2. We consider only the cases that x = 6” or x = dk__, since the proof of 

Theorem 3.1 can be modified slightly to handle the other cases (when Proposition 
3.8 is replaced by Proposition 3.12). 

Let x = 6” and assume k > 2. 

Crit(Q)={dk-l<c;}U(dk-l<bh lhfn} 

U{c~_,<a~IAf~,A$n when i=l,l<i<k--1) 

U{az_, <a7 I p+ n). 

We adopt the notation of the proof of Proposition 3.12. We specify fi by 
requiring that fi(l) = k, fi(2) = 1, and f;‘(i) = (2i - 1,2i) whenever 2 s i G k - 1. 
Similarly as in the proof of Theorem 3. I, the remaining functions can be chosen 
so ,rhat, for 2-GAGm and 2Gsk-1, 

f,(2i - 11; i or f,(2i) # i. 



Let i E [2, k - 11, j E (2i - 1,2i), (j, hj = (2i - 1,2i}, and =(A I&i)= it. The 

liilC;\r ordering of Proposition 3.12 can be ChOSelrn SO t 

(*t) If A ED satisfies i <&#I), then AA 1 

Cl, is formed from Cr by adding (a;, G;__~) just before a.: ar.9 c; just after cfk+ 
Cs is obtained from C2 by adding (~7, a~._,) just after b’ and cr just after c! 
(l=zi. -C k - 2). CJ (3 :~j s 2k - 2) is formed from C’j Fy adding (aft c:_ 1) fol 
i ~[2, k - lf ~~ediately before wafter) (at, c:_%) when I’= 2i- 1 (2i). P&o, 
whenever a: (c:) appears alone in Ci (1 s i s k - t, I d g 6 k - 2,3<j~ 2k -2), it 
is immediately .Follow~d by al (cz) in Cl. It can be verified that Cl, C$, . . . , C& 

zalize Q. (The only nontrivial part is sho-wing, fot i E [2k - l] and A E [2, nl], the 
existence of i E [3,2k - 2] such that cp._, < at ho’.ds in Ci.) 

Let x = dk_ ,. If uL_r and bX are identified in Q for 1 <A in, we obtain P&-r. 
Thus dim Q = dim Pn.k_l, and therefore, dim Q < 2k - 2 by Lemma 3.5. ‘This 
completes the proof of the theorem. 

Since Q3.2. is 3-irreducible by Theorem 3.3, it must occur in the list of all 
3-irreducible posets in [6]. It does, unde: the name Bd. 

Since Qnqk = P(&) for n 2 2, I& = a(Q,,J by Lemma 1.8. Theorem 3.4 now 
follows by Proposition 1.7, Proposition 3.11 and Prbposition 3.12, 

Whenever m < n and k < I, Pm,k is isomorphic to a subposet of both P, r and 
Qn.[, and QmVk is isomorphic to a subposet of both P,.[ and Q,,:. Consequently, any 
irreducible poset of the form P,,,k or Q,,, has the embedding property. (This 
statement is also a consequence cc Theoren 4.9.) For example, the 7-irreducible 
poset QQ7,4 is a subposet of the &irreducible poset I&,.+ Similar inclusions 
between the lattices L,,,k and L;,k allow us to conclude from Theorems 3.2 and 
3.4 that: 

dim Ln,k = 2k - 1 

whenever k ‘=z 2 and 1 + (k - l)22k-3 s II G (2k - 1)22k-3, and 

dim L;.k = 2k - 2 

whenever k 3 3 and 1 -t (21~ - 3)22” -’ s ?I G (It: - l)22k-3, 

Recall that we treat 2, the two-elernent chain, as a special case so that an 
irreducible poset is understood to have dimension at least two. Every known 
irreducible poset satisfies the conditions -we shall give to be called nomzal. We 
shall define the dimension prduct P@ G) of normal irreducible posets P and @: so 

is an irreducible poset of dimension dim I) -t-dim Q. Our cons::ruction 
rotter, Jr. [12]. %‘: P, 
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P2 are posets of length one, his construction yields a poset P of length one 
satisfying IPI = lPll + l&l. Our construction does not satisfy this 

Let P be a nontrivial (&rite) poset of dimension d and let L = 
the zero and ok of L. We define ents x E Irr(P) = h(L) 
such that dim( L - {x]) =r: d. Since denotes the set of all 

inimal elements of P- - (Oj- that I efined dually. Equivalently, 
(P) consists of those elements o in L is 0. We further 

(P). Observe that L* = "(P) is a sublattice ol L. 
P is normal if P = 2 or if P :;atisfies the following four conditions. 
(NO) If Q < 6 in L, then a $ 

(N3) dim L* = d. 
P is conlpletely normal if P = 2 or if P is normal and satisfies: 
(N4) Let X, y E P with x d y. If y E J(P), then x&J(P); if x E 
(P). 
Observe that P is normal if and only if P(P) is. Since adding a zero or one to a 

poset does not increase its dimension, evee irreducible poset P satisfies 0 $ 
and 1$ J(P). Note that these latter two conditions are consequences of (N2). 

Lemma 4.1. Every irreducible poset satisfies (30). 

Let P be a poset such that a 4 b in L = L(P) with a E (P> and 6 d(P). If 
x’ %z ‘in P, then x 3 b in L, and therefore, also in P. Similarly, x <a in P 
whenever x < b in P. If C1, C,, . . . , C,, are linear extensions realizing P - {b}, then 
c:, c;. . . . , Ck are linear extensions realizing P, where Cl is formed from Ci by 
adding b immediately after a (I- I -G ’ s TZ). Thus, P is not irreducible. For the second 
clause, let P be a d-irreducible poset and suppose that x E 
D(P) # fd, d 2 3. Since x is incomparable with every element of P- {x}, the last 

clause now follows. 

If P is an irreducible poset for which (P) = @, then P is obviously normsl. 

Observe that 3.J = g although P, 2 is not irreducible. All known irreducible 
posets are corn tely normal. Note that 2 fails (NO), (N2) and (9d4). 

For each of the following 3irreducible poset (in the notation of Kelly E 
fter eetermining t 

irreducible posets are normal, Thus, all 3-irreducible 



P), and alva2 is in 

(Pi) for 1SiSat. The 

dimension pl*ok~t of PI, P2, . . . , P,, Idenoted by PI @ Pz@ l l . @ P,,, is the sub- 
poset 0 = Q. a.E Q1 of L = L1 X &,X l * * X I,, (direct product), where 

o,,=Jp{O}x*~ l x{o}u(o}xJ~x{o}x* l l x{O}U* ’ l u{o}x* ’ l x{O}x~ 

and 

Q,=I@x{l)x* ’ l x{l}u{l}xMi”x{l}x~ l l x(l}U* ’ *u(1)= l *x(l)><*. 

Wc also define Ai z A(Pi), Bi = (Pi), L$ =L*(Pi)y Ji =J(Pi) and Mi = 
I s i s H. Let R = R0 U RI, a subposet of 1 where 

R,,-A,x{O}x~ l ~x{O}U(O}xA,x{o]~x* l l X{O}U 

and 

R,=B,x{l}x**~ x(l}C~(l}xB,x(l}x~ l l x(l}u 

Let K#=L~xLTx.*+3_$ and set 

K=K#UR, 

U{O}x* * ’ x (0) x A, 

U{l}x* l WWB,. 

a subposet cf L. Note that K# and R are disjoini. Each element of I? has a 

unique lower cover and a unique upper co\#‘er in K, both of which lie in kc? FOT 
example. if x E A,, let y be the unique upper cover of x in I_+ By (:VO). y $ Jr. 
Consequently, y E LT. The unique Ilower (iupper) cover of (x, 0,. . . , 0) in K it< 
(0, 0, . . . 3 0) ((y, 0, . - . , 0)). Thus, the next lemma shows K” to be a sublattice of 
K. 

2. Let K = Kk U R be a finite posee, where K# is a lattice. If each 
element of R has R unique lower COWS and a unique upper cover in K, then K is a 
lattice and K# is a sublattice of K. 

(Cf. [I),, Proposition 
R = {i}. 

2.11.) By induction on IR\, it suffices to assume 
We can assume that a& K? Let b E K# be *he unique upper covtsr of a. 

If x E K# and x$ a, it is easily verified that a v x = I? L/’ X, where the left-hand join 
is calculated in IY and the right-hand one in K#. Therefore, K i;$ a lattice: and K# 
ic a sublattice of K. 

is not a sublatti fine x# E K# by: x# is the 
pa? able x, J; E x I, 
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X"Y =x#vy#, where the left-hand join is calcula ed in K and the tight-hand one 

in K#. In particul ery element of R is doubly irreducible in K. 
We now show t (K) = Q. U R = Q0 U RI. We already know that R c_ 

By (Xl), QO- R c, LetqEQO-R;wecanassumethatq=(x,O,...,O)with 
XEJ,. If y<x in L,, then (y,O,. . . , 0) E K# is the unique lower cover of q in K. 

(K). Suppose there exists q E (K)-(Q,UR). We cm as- 

sume that q =(x, 0, . . . , 0) with x E LT. If x = 1, the P1 # 2, and by <?J2), there 

are distinct lower covers y and t of 1 in LT. Let S = {y, z} in this case. Otherwise, 
there is S C_ J1 such that x = v S and x $ S. Since x < 1, S n RI = $9. In both cases, 
TcK where T=((s,O,. . . ,O)~SES}. Then q$T but q= V T in K. This con- 
tradiction corn 

By duality, (K)=QUR=Q=P,~P,~..*~P,. 
Therefore, by Lem 80 l -BP,). Since 

~~xC+* +L;~KEL,~L~x’+L,,, 

it now follows using (N3, and Proposition 1.7 that 

P!mpoSitioIi 4.3. If P,, P*, . . . , P, (n 3 2) are normal posets, then 

dim(P,@P,@ l l @P,)=dim P,+dim P2+* l l +dim P,. 

Unless II = 2 and PI = P2 = 2, b-r(K) = R. Hence, in all cases, 
(P,@P@ l *@P,,)=R. Sinct:E*(P,@P,@+ l BP,) = K#, it is easy to verify 

that 

Lemma 4.4. If P,, Pz, . . . , P,, (n 3 2) are (completely) normal posets, then so is 
P*@P,@ l -BP,,. 

Since J*(P1 @ P2 8. 9 9 (8 P,) = QO and (P@P&% l *BP,)= Q1, it follows 
that 

Lemma 4.5. If P,, &, . . . , P, (t-2 23 3) are normal posets, then 

?3y virtue of Lemma 4.5, most statements about the dimension product neeri 
only be proved for two factors. 

Let Q = PI G3 P2, where P, and p2 are normal posets and 

If (a, 0) E 0, then dim(Q -{(a, 0))) = dim Q - I. 

f. By Propositi ?n 4.3, dim Q = d = d, + d2, where di = dim Pi (i = 1,2~. Since 
from a por;et lowers 



((P,-{~l))il(O. l})x(P,U(cI, l}), whose dimension is (d,--l)+d,=d-1. We tan 
assume that a E Mf, Consequently, by (Nl), a&D(f’J although Q E frt(P1). This 
means that dim(k, -{a)) = (1, - 1, Let b be the (unique) lower cover of in in I_.,. 
Let ci=(X’;rX:,....Xf), Il~icd,- 1, be chains realizing L, -{a, 0, I)., where 
I = tL,[ - 3. Also, let Ei = (;I\, y$, . . . , y”;,l, 1 S~=Z d2, be chains realizing 
PZ--{O, 11, where m = IP2-f07 1}1- Sinally, let (z,, z2, . . , , 2,) be a linear exfension 
of the subposet ix E PI 1 x3 a) and (z,, z2, . . . , z,) be a hnear extension of 
P, -{a). We now define Some partial linear extensions of L1 x(PU(0.1)) where 
26i<:d,-- 1 and 2GjSdZ, 

G=((O,y:J,.* * 7 o-4 YiA Nh I), cx:, Oh M, 113 * ) = ,a or, 0% t:., 

(a tj,. . - t Cd, a>, cx:, 1). (1, w, 0, vi>, *. *, (I, Y&)li 

c; = ccx;, c)), (x;, I), . . . _ (b, O), {h, l>, (a, 2). * . . . {xl, 0),(x;, 1)): 

EI = fb,, o>, . ’ * 1 k,, 01. (t,oi, (0, v:,, (1, v:>t ’ . * I@3 YaJ, K Yk>* 

(0, 0, (2 , 1). , . - I k. t>, 67, t>, (Zr+l, t>. * * * . k,, 1)): 

E: = tm p’l,>, (1, yt;>* . , . t (0, Y’,J, cl, y’;,,N 

Al! of the above chains are obviously partial Iinear extensions of L, Y I_._,. (Note 
that (6~. t> immediately follows (0, 1) in Ci if b = 0.) We shall show that these 
(d - 1 b chains realize d = Q --((a, 0)) when restricted to r) Let t \I s in a. It is 
enough to show that r ~l=s holds in one of the above chains. The letters x and 4’ 
indicate arbitrary etemen’r of P, -(a) and P2 -{O, 1) respectively. 14 r = (0, l), 
then r<(x, O?, r<{l, 8) and rc{l, y> in C:. If r=--(I, 01, then r<fO, y), r<(O, l), 
r<!s. 1) and r<(a. 1) in E;. Tk cases where s is (0, l} or (1, 0} are similar. If 
I( <.x in P,, then !/n, I)<{x, O} in C; and (x, O?<(a, 1) in E;. If a 11 x in PI, then 
!x. 1) <(a, 1) in E: and {CI, 1) <{x, 1) in Cl where b <x holds in Ci (i is arbitrary if 
h = (ft. The remaining cases are easily checked. 

@c)roIIary 4.7. if’ Q = P@I 2 where P is a normal d-irreducible poser, then one of the 
following four posea is (d -+ ll-irreducible: 

0. Q-MA I!), Q-{(l,O)}. Q-((0, l).WO% 

WC c:Jl a normal irreducible poset P regular if P@2 is irreducible, and irregular 
otherwise For k 32, t’he k-irreducible poset 

B(Zk)=2@2@~**@2 (k times) 

ii clearly regular. Iln Section 6, we show that all 3-irr4ucible posets are regular. 
There is no .known example of an irregular irreducible poset. 
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llowilpzg coditions are satisfied: 

(a) 1: = 2 Ilokds for exactly one i, say i = iO; 
(b) each P, for i # iO is irregular. 

f. Pf Pi = 2 holds for k values of i with k 3 2, then by Lemma 4.5, we can 
rop these posets and substitute @ 20 0 9 @ 2 (k times), an irreducible poset. 

Therefore, if (a) fails, we can assume that each Pi is irreducible. In this case, the 
result follows by Proposition 4.6 and Lemma 4.5. We can now assume that (a) 
holds. If pi @ 2 is irreducible for some i # iO? then we again apply Proposition 4.6 
and Lemma 4.5 in order to complete the proof. 

eontm 4.9 (The Embedding Theorem). If P is a completely normal d-irreducible 
poset and k 2 1, there is a (d + k)-irreducible poset Q that contains P as a subposet. 
In fact, if k 2 2, Q = P@ 

Proof. if k =’ 1, let Q be a (d + l)-irreducible poset ‘of PQD 2 given by Corollary 
4.7. Otherwise, let Q = P@P(2k) which is (d + k)+reducible by Theorem 4.8. 
r”o;- x c‘_ J” - - J*(P), let Q(X) = (x, O), and for x E M* = 
(x, ij. Since J* UM* 

“(P) but x$ _?“, let Q(X) = 

= P(P) = P, Q is a one-to-one rip from P to Q. Let x < y in 
P. If <F‘( y ) = ( y, 0). then x E J(P) by (N4). Since x is sot a lower cover of I in L, 
x$ B(P). Therefore, Q(X) =(x, 0). Hence, x < y in P ;;nplia q(x) < Q(Y) in Q, and 
since the converse is obvious, P is isomorphic to a subposet of 0. 

emarks. (I) Note that the above proof requires only one-half of condition (N4j. 
(2) For any regular normal irreducible po;et P, P @ 2 is regular by Theorem 4.8. 
(3) zi P,, Pz,. . . ) P, (n 2 2; are irreducible and normal and P, is regular, then 

P,Op’,@* l l @P,, is regular by Theorem 4.8. 
(4) Any irreducible poset of length one satisfies (N4). 

If C.‘= (I.~, c,, . . . , c,;) is 
denotc,:s ((cI, O), (C 2, O>, . . 
defined analogou:.iv. C(0, 

Q n.k 

a partial linear extension of a poset Q, then C(O) 
, (c,,, Cl)), a partial linear extension of Q ;: 
I) deilctes the followmg partial linear extension of 

((Cl, Oh (c 1. 0, cc,, O), (Cl, I), . . . , (c,, O), (c,,, 1)). 

shown that P,.,._ is completely mrnmal. Let 
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For g = 1 and j E [l, 2k - 11, let Ci and C/ be as in the proof of Theorem 3.1, and 
let Ei and 5 be obtained i;y delpfiq, do, dl, . . . , dk from Cj and Cy respectively. 
Note that F1, F2, . . . , FZk__, realize Pn,k -{a;}. Since a: is the first: element of 
E,, b” is the first element of F,. Let Fr be F1 wit b” deleted and let 

I3 = (b’, b2, . . . , bn-*). We Jefine 

F: = ((b”, O>, (0, I), (b”, I>, Fy (0, N, 

FJ = 4 (0, 1) 

for 2~+2k--1, and 

F;k = (B(O), (0, I), B(l), (a;, 0)). 

We leave to the reader the verification that these 2h chains (when restricted io 
the underlying set of 0, realize 0. IBy duality, P,I,k is regular. 

Theorem 52. For k awi! !I as izl ,Tlzeorem 3.3, QL,~ is completely normal and 
reghlar. 

oaf. We know that Qn,k is completely normal. Let 0 = Q,k @ 2 and 0 = 
- { ( 1.0)). Clearly, 

C’rit(~)={(b”,O)<(O, l)i l~A~rz}U{(d,_,, l)<(b’,O)( l~h~n} 

U#$‘..,, l)~(a~,O)~A#~; lSA,pSn; l~i~k-1). 

By +he proof of Theorem 3.3, there are chains F1, F2,. . . , Fzk_? that realize 
Q,,,k -{a;) such that b” is the first element of F1. Let Ff, B, F’, and -v;i’ (2 <j s 
2k - 2) be defined as in the proof of Theorem 5. I. MO, let F& = (B(O), 
(0, I>, B(l), (a;, 0)). F’,, F$, . . . , F&+! realize 0. 

1 .et R = Q - ((0. I)). Clearly, 

Crit(R)={(l,O)~(b”, I)\ lG+~rz}U{(d,_,, l)<(b”,O)I l~h~n} 

U{(ch.,. l)<(a~,O)~A#~; l~A,k~n; l~i~k.--1). 

If c,, C:r, . . . , C2k. 2 are linear extensions realizing Qk - {d,J, then R is 
realized by the restrictiorls to R of the following chains: 

Ci(O, I), 1 <iS22k-29 
and 

((4 ‘, f),@‘,O), . . . . (b”, O), (1, 0), (b’, I), . . . , {b”, 1)). 

Th(:refore, Q,:,r, is regular. 

e ]pose9s e regular 

p0.W. DOppiiflg (1,O) fronr P@ 2 lowers the 
P with a 11 b such that: 

. Let P be a 3-heducible 
dimension if there are elements a, b E 

(i) Ij’x<a in P, then x$ 
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(iii) dn P, x < a implies x < b, and x > 6 implies x > a. 
(iv) As binary relations, let P# = P U{(a, b)}. (By (iii), P# is l~ poset with the 

same underlying set as I?) P# is a subposet of a planar lattice K, and there is a. 
planar embedding of K in which a is on the right boundary. 

oaf. Let A be the left-to-right ordering for the planar embedding of K 
rrenl;dned in (iv). (See [8] for more details.) There are two linear extensions Cf 
and C ,# of K such that xh y implies x C y in CT and y C x in C,#. In partic&r, 
CT sod C,# realize K. Let C1 and C, = (D, a, E) be the restrictitins of CT and C$’ 
to ttc? underlying set of P. Also, let C, be a linear extension of {x E P 1 a$ x). We 
define 

Cl, = ((09 l), CAO, l)?, 

C; T= (D(O), (a, O>, (0, l), (a, 11, E(0, l)), 

C; = (C,(O), (0, l-j, @, 0, (a, ON. 

Clearly, each of these chains is a partial linear extension of (P U (0)) x 2. If x # b 
and x \I a in P, then by condition (iv), XXU, and consequently, a cx in C2. 
Therefore as sets D={xEP\x<a} and E={xEPIx+a}. Let Q=P@2 and 
d = Q - {( LO)}. We shall show that the restrictions of C{, C$, C$ to the underly- 
ing set of Q realize 0. 

Condition (i) implies that (x, 1) occurs in C; whenever (x, 1) E Q with x E P. Let 
s = (x, i) 11 (y, j) = t in 0, where x, y E P and i, j E 2. By (N4), x 11 y in P. If x # b or 
y # Q: then ,c: < t in Ci or C$. Otherwise, s < t in C;. Clearly, (a, 0) ~(0, 1) in C$. 
Let (x, 0) E Q with xf a. By condition (ii), a$ x, and therefore, (x, 0) ~(0, 1) in 
C$. Since (0, 1) C(X, i) in Ci for any x E P and i E 2, the proof is complete. 

In applying Lemma 6.1, we take advantage of the fact that L = Z(P) is “nearly 
planar” for most 3-irreducible posets P. In each case, we add one element c to L 
to form K. We have a -C ~4 b in ;I;;_‘. The planar embedding of K is obtained by 
placing c at the unique crossing in the diagram of L given in [S] or [6], and then 
removing the (at most one) line that no longer represents a cover. (For the duals, 
the diagram is reflected top to bottom.) 

Immedi:~t.ely following each poset to which Lemma 6.1 applies, we have listed 
the corresponding a and b (in the notation of [SD. 

C: b3, c,; Cd : -‘:], 6,; D: b2, b,; ‘1 b, 6,; En: c, b,,+s: 

r;,: b,,+J, c; 6l: %+2, & Gf:c, b,; H,:c,d, CX, : a33 6,; 

c_ :: b3, as 2:a3,c; ,d:c, a,; 

CX,d : b3, a3; EX, : a3, 6,; EX;’ : b4, a3; 

7: b,, ha3: 2: 683, 131; 
1T 

I’ b,,,; 151 * ‘7 

1-f : b,,_t3, c ; -a; : d. 19,. 
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We have shown (using duality) that all 3-in-educible posets,, except pokbly 
A, (n 2 0) and B, are regular. In Section 5, we showed that 3 = Q$,, is regular. 
By the following result, _any poset of the form A, is regular. Thus, ;;11 3- 
irreducible posets are reg &r. 

3 6.2. Let P be 1;1 nsmzal l,:ed’ucible poset. Dropping (1,O) from P @ 2- lowers 
the dimension if there is a E P such that: 

(iii) In P, x > a implies q! 

roof. Let J* = “(P‘,, Q == P@ ?v, and a = Q - {( 1, 0)). Assume that dim P = d. 
Let C1,Cz,...,Cd 1 be linear extensions of P” = P-(a) that realize P#. Let 

c; = ((a o>, (0, 0, C,(O, l)), 

and C! = Ci(O, 1) for 2 s i s d - 1. Let A be a linear extension of (x E P 1 a < x}, I3 
be a linear extension of {x E B ! a+ x} and 

C; = (63(O), (0, l), B(1), (a, 0), A(1)). 

Each of the chains C{, C;, . . . , CA is clearly a partial linear extension of (PU 

{O}) x 2. We shall show that Q is realized by the restrictions of these chains to the 
underlying set of a. 

Condition (ii.11 implies that (a, 1) Ef Q. The letters x and y denote &merJts of P#. 
If x 11 y in P and x < y in Ci with 1 s i s d - 1, then (x, j)<(y, k) in C,! whenever 
j. k E 2. If x < y in P and y E J*, then (x, l)<(y, 0) in C; and (y, 0) <(x, 1) in CA. 
(iVote that (N4) would imply that (x., 1) q! Q.) If x E J*, (a, O)<(O, l)<(x, 0) in C: 
and (x, 0) < (0, 1) < (q0) in CA. If a$ x, then (a, 0) <:(x, 1) in Cl and (x, 1) <(a, 0) 
in C& This completes the proof of *the lemma. 

(I) The dual of Lemma (5.2 could have been applied in the last part 
of the prtiof of Theorem 5.2. 

(2) Let P be an irreducible poset of length axe with IIrr(P)( = 8. Clearly, P is 
completely normal. It follows from Lemma 6.2 ,that P is also regular. 

rl 

Table 1 gives data for the (k + 3)Grreducible posets of the form Q = P’8 
where P is a 3-irreducible poset and k 2 1. Note that the length of Q is 

ositive value by sui 
osets with less 

eE 
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Table 1 

Size Pc3JP(2k) 
of 

P P Size Length Width 

I 

‘n 

Jn 

2n+6 
7 
7 
6 

2n+7 
2n +7 
2n47 
al+7 

7 
7 

7 
7 

7 
2n+8 
2n+8 

2n+6+2k 1 n+3+k 
10+2k 2 4+k 
10+2k 3 3+k 

9+2k 3 3+k 
2ni-10+2k 2 n+4+k 
2n + lot- 2k 3 n+3+k 
In+12+2k n+3 3+k 
4n+12+2k n+3 4+k 

10+2k 3 3+k 
10+2k 2 4+k 
9+2k 3 3+k 

10+2k 2 4+k 
10+2k 3 3+k 
10+2k 3 3+k 
10+2k 3 3+k 

2n+ll+2k 3 n+4+k 
4n+12+2k n+3 3+k 

d-irreducible posets of any cardinal]; y 32d + 2. In fact, WT. Trotter, Jr. [l5] cat 
construct such posets that are of lelTgth one. 

A,, 8 G,, is a 6-irreducible poset whose length = width == n + 3. By the Embed- 
ding Theorem, the following statement holds if d 2 6: For my n, there is a 
d-irreducible poset whose length and width both exceed n. 

This statement is false if d = 3. What happens if d = 4 or d = S? 
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