ON THE DIMENSION OF PARTIALLY ORDERED SETS*

David KELLY

Department of Mathematics and Astronomy, The University of Manitoba, Winnipeg, Manitoba, R3T 2N2 Canada

Received 6 October 1980

We study the topic of the title in some detail. The main results are summarized in the first four paragraphs of this paper.

The dimension [4] of a partially ordered set (poset) is the minimum number of linear orders whose intersection is the ordering of the poset. For an integer $d \ge 2$, a poset is *a*-irreducible [13] if it has dimension *d* and removal of any element lowers its dimension; calling a poset *irreducible* means it is *d*-irreducible for some $d \ge 2$. (Irreducible posets are finite and the dimension of any finite poset is finite.)

In Section 2, we show that planar posets have arbitrary finite dimension. In Section 3, we present two new families of irreducible posets and show that finite dismantlable lattices have arbitrary finite dimension.

We introduce the dimension product construction in Section 4. In Section 6, we show that $P \otimes 2$, the dimension product of a 3-irreducible poset P and a 2-element chain, is 4-irreducible. (The complete list of 3-irreducible posets is given in Kelly [6] or Trotter and Moore [17].) Using the dimension product, we construct, for any $d \ge 3$ and $l \ge 1$, a d-irreducible poset of length l, answering Problem 3 of Trotter [14].

A d-irreducible poset P has the embedding property iff for any integer n > d, there is an n-irreducible poset containing P as a subposet. The unique 2irreducible poset obviously has the embedding property. Theorem 4.9 shows that every 3-irreducible poset has the embedding property, as do the irreducible posets we introduce in Section 3.

1. Preliminaries

For a poset P, the pair $\langle a, b \rangle \in P^2$ is called a *critical pair* iff $a \parallel b, x < b$ implies x < a, and x > a implies x > b. (Such a pair is also called "nonforcing".) All the results of this section are elementary or trivial extensions of known results.

Lemma 1.1. If a and b are incomparable elements of a finite poset P, then there is a critical pair $\langle a_1, b_1 \rangle$ for P with $a \leq a_1$ and $b_1 \leq b$.

* This research was supported by the N.S.E.R.C. of Canada.

0012-365X/81/0000-0000/\$02.50 © North-Holland Publishing Company

Proof. First, choose a_1 maximal such that $a \le a_1$ and $a_1 \parallel b$; then, choose b_1 minimal such that $b_1 \le b$ and $a_1 \parallel b_1$.

Henceforth, we shall usually write a critical pair $\langle a, b \rangle$ as "a < b" and call it a *critical inequality*. (Note, however, that a critical inequality for a poset P is not an inequality that holds in P.) The set of all critical inequalities for a poset P is denoted by Crit(P).

A linear extension of a subposet of a poset P will be called a *partial linear* extension of P. The following lemma is a slight generalization of the well-known theorem of E. Szpilrajn [11].

Lemma 1.2. For any partial linear extension C of a poset P, there is a linear extension C' of P that extends C.

Proo. It is easily shown that the transitive closure of $C \cup P$ is an order relation which we denote by R. By Szpilrajn [11], there is a linear extension C' of R. Clearly, C' satisfies the conditions of the lemma.

We shall say that the partial linear extensions C_i $(i \in I)$ realize P when the ordering on P is $\bigcap (C'_i | i \in I)$ for any choice of linear extensions C'_i extending C_i $(i \in I)$. The dimension of a poset P is denoted by dim P. The following result will reduce the "bookkeeping" involved in calculating dimension.

Proposition 1.3. Let C_1, C_2, \ldots, C_n be partial linear extensions of a finite poset P. If each critical inequality for P holds in some C_i $(1 \le i \le n)$, then C_1, C_2, \ldots, C_n realize P. In particular, dim $P \le n$.

Proof. Let C'_i be a linear extension of P that extends C_i for $1 \le i \le n$. Clearly, $P \subseteq C'_1 \cap C'_2 \cap \cdots \cap C'_n$ as order relations. Let $a \parallel b$ in P. It remains to show that a < b in some C'_i . By Lemma 1.1, there is a critical pair $\langle a_1, b_1 \rangle$ for P such that $a \le a_1$ and $b_1 \le b$. If $a_1 < b_1$ holds in C_i , then a < b holds in C'_i .

Corollary 1.4. The dimension of a finite poset P is the minimum (nonzero) number of partial linear extensions of P such that critical inequality for P holds in one of the partial linear extensions.

Let P be a finite poset. An element a of P is join-reducible if $a = \bigvee S$ for some $S \subseteq P$ with $a \notin S$; otherwise a is join-irreducible. In particular, taking $S = \emptyset$, a smallest element (zero) is always join-reducible. J(P) denotes the set of all join-irreducible elements of P; dually, M(P) is the set of meet-irreducible elements of P. $P(P) = J(P) \cup M(P)$, the set of irreducible elements; $Irr(P) = J(P) \cap M(P)$, the set of doubly irreducible elements. (Irr(P) is not necessarily the set of elements with a unique lower and upper cover.)

Proposition 1.5. For a finite poset P, $Crit(P) \subseteq M(P) \times J(P)$.

Proof. Let $\langle a, b \rangle \in \operatorname{Crit}(P)$ and suppose that $a = \bigwedge S$ with $a \notin S$. For all $x \in S$, x > a, and therefore, x > b. Consequently, $a = \bigwedge S \ge b$, a contradiction.

Corollary 1.6. For a finite nontrivial poset P, dim $P = \dim P(P)$.

Proof. By Lemma 1.1 and Proposition 1.5, $Crit(\mathbf{P}(P)) = Crit(P)$. Now ap_{P}^{1} . Corollary 1.4.

Consequently, for any irreducible poset $P, P = \mathbf{P}(P)$; in other words, P contains no doubly reducible element.

The completion of a poset P, denoted by L(P), is also called the "completion by cuts" [3] or "MacNeille completion". P is a subposet of L(P). Recall that J(P) = J(L(P)) and M(P) = M(L(P)); thus, P(P) = P(L(P)). Combining the last equality and Corollary 1.6, we obtain the following result for finite P.

Proposition 1.7 (Baker [1]). For any poset P, dim $L(P) = \dim P$.

Proof. Let $\mathscr{C} = (C_i \mid i \in I)$ be a family of linear extensions realizing *P*. We show that \mathscr{C} realizes $L = \mathbf{L}(P)$. Let $a \parallel b$ in *L*. Since there are subsets *A* and *B* of *P* such that $a = \bigwedge A$ and $b = \bigvee B$, we can choose $x \in A$ and $y \in B$ such that $x \neq y$. Therefore, x < y in C_i for some $i \in I$. In any linear extension C'_i of *L* that extends C_i , a < b holds.

Henceforth, all posets will be inite.

The next results follows from the characterization of the completion given by B. Banaschewski [2, p. 123], and independently, by J. Schmidt [10, p. 246].

Lemma 1.8. For any finite lattice L, L(P(L)) = L.

2. Planar posets

A poset is *planar* if it is finite and its diagram can be drawn in the plane without any crossing of lines. For each positive integer *n*, we shall construct a planar poset P_n of dimension *n*. If a planar poset *P* contains both a zero and one, then *P* is a lattice and dim $P \le 2$. (The first part appears in [3, p. 32, ex. 7(a)] and is proved in [8, Corollary 2.4]. The second part was proved by K.A. Baker [1] and is a combination of results of J. Zilber [3, p. 32, ex. 7(c)] and B. Dushnik and E.W. Miller [4, Theorem 3.61].) If a planar poset *P* contains a zero, W.T. Trotter, Jr., and J.T. Moore, Jr. [16] showed that dim $P \le 3$.

We shall define the planar poset P_n as a subposet of the power set 2^n . Let

 $Q_n(R_n)$ be the set of atoms (coatoms) of 2^n . Then $Q_n = \{\{i\} \mid 1 \le i \le n\}$. We set

$$P_n = Q_n \cup R_n \cup \{\{1, 2, \dots, i\} \mid 2 \le i \le n-2\} \\ \cup \{\{i, i+1, \dots, n\} \mid 3 \le i \le n-1\}.$$

Since $\mathbb{P}(P_n) = Q_n \cup R_n = \mathbb{P}(2^n)$, dim $P_n = n$ by Corollary 1.6. Fig. 1 shows a planar diagram for P_6 , where *i* denotes $\{i\}$ and *i'* denotes $\{j \mid 1 \le j \le n, j \ne i\}$ for $1 \le i \le 6$.

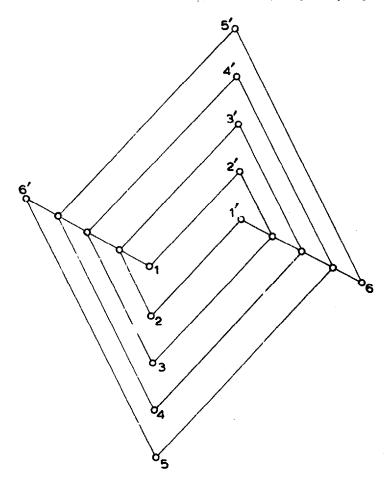


Fig. 1. A planar poset of dimension 6.

3. Two new families of irreducible posets

In this section, we shall define posets $P_{n,k}$ and $Q_{n,k}$, and show that $P_{n,k}(Q_{n,k})$ is irreducible of dimension 2k(2k-1) when *n* is suitably chosen. These posets will both be subposets of the lattices $L_{n,k}$ which we now define.

Let n and k be positive integers. The lattice

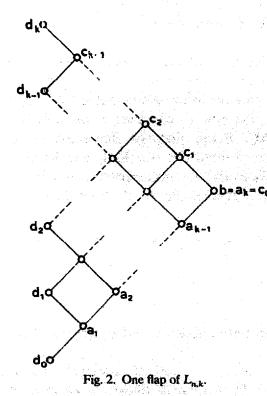
$$L_{n,k} = \{e_{i,j}^{\wedge} \mid 0 \leq i \leq j \leq k, 1 \leq \lambda \leq n\}$$

where $e_{i,i}^{\lambda} = d_i$ $(0 \le i \le k, 1 \le \lambda \le n)$ and all other elements with distinct indices are

distinct. Thus, $|L_{n,k}| = \frac{1}{2}nk(k+1) + k + 1$. The ordering is defined by:

$$e_{i,j}^{\lambda} \leq e_{r,s}^{\lambda}$$
 iff $i \leq r$ and $j \leq s$;
if $\lambda \neq \mu$, then $e_{i,j}^{\lambda} \leq e_{i,s}^{\mu}$ iff $j \leq r$.

One "flap" of $L_{n,k}$ is shown in Fig. 2. (The flaps are "pasted together" at the d_i 's to form $L_{n,k}$.) As indicated in Fig. 2, we set $a_i^{\lambda} = e_{0,k}^{\lambda}$, $b^{\lambda} = e_{0,k}^{\lambda}$ and $c_i^{\lambda} = e_{i,k}^{\lambda}$ for $1 \le i \le k, 0 \le j \le k-1$ and $1 \le \lambda \le n$. K.A. Baker has observed that $L_{n,k} = M_n^*$, an ordinal power, where M_n has the atoms x_1, x_2, \ldots, x_n and k is a k-element chain. For example, b^{λ} is the function that maps all cit to x_{λ} . Consequently, each $L_{n,k}$ is in the modular lattice variety M_{ω} generated by M_{ω} .



We now define the subposets of $L_{n,k}$.

$$P_{n,k} = \{a_i^{\lambda} \mid 1 \le i \le k-1, 1 \le \lambda \le n\} \cup \{b^{\lambda} \mid 1 \le \lambda \le n\}$$
$$\cup \{c_i^{\lambda} \mid 1 \le i \le k-1, 1 \le \lambda \le n\}$$

Note that $P_{n,1} = M_n$. For $k \ge 2$,

$$Q_{n,k} = P_{n,k} \cup \{d_{k-1}\} - \{c_{k-1}^{\lambda} \mid 1 \le \lambda \le n\}.$$

Also, let

$$L'_{n,k} = L_{n,k} - \{c_{k-1}^{\lambda} \mid 1 \leq \lambda \leq n\}.$$

Clearly, $|P_{n,k}| = n(2k-1)$ and $|Q_{n,k}| = n(2k-2)+1$.

Let us list the four main results of this section.

Theorem 3.1. If $k \ge 2$ and $n = 1 + (2k - 1)2^{2k-3}$, then $P_{n,k}$ is a 2k-irreducible poset.

Theorem 3.2. If $k \ge 2$ and $m = (2k-1)2^{2k-3}$, then

- (i) dim $L_{m,k} = 2k 1$, and
- (ii) dim $L_{n,k} = 2k$ whenever n > m.

Theorem 3.3. If $k \ge 2$ and $n = 1 + (k-1)2^{2k-3}$, then $Q_{n,k}$ is a (2k-1)-irreducible poset.

Theorem 3.4. If $k \ge 2$ and $m = (k-1)2^{2k-3}$, then

- (i) dim $L'_{m,k} = 2k 2$,
- (ii) dim $L'_{n,k} = 2k 1$ whenever n > m.

A lattice is dimantlable [7] iff every sublattice with at least three elements¹ contains an element that is doubly irreducible in the sublattice. Since a single flap is planar, $L_{n,k}$ and $L'_{n,k}$ are obviously dismantlable (Kelly and Rival [8, Corollary 2.3]). Theorem 3.2 shows how to construct a dismantlable lattice of arbitrary finite dimension in \mathbf{M}_{ω} . Recall that the dimension of a finite dismantlable distributive lattice cannot exceed two (see Kelly and Rival [7, Corollary 3.6]).

We postpone the proofs until the necessary preliminary results are established. For integers i and j, [i, j] denotes the set of all integers l such that $i \le l \le j$. It is obvious that

$$\operatorname{Crit}(P_{n,k}) = \{ c_{i-1}^{\lambda} < a_i^{\mu} \mid \lambda \neq \mu; \ 1 \leq \lambda, \mu \leq n; \ 1 \leq i \leq k \}$$

and

$$\operatorname{Crit}(Q_{n,k}) = \{ d_{k-1} < b^{\lambda} \mid 1 \leq \lambda \leq n \}$$
$$\cup \{ c_{i-1}^{\lambda} < a_i^{\mu} \mid \lambda \neq \mu; \ 1 \leq \lambda, \ \mu \leq n; \ 1 \leq i \leq k-1 \}.$$

Lemma 3.5. For any positive integers k and n, dim $P_{n,k} \leq 2k$.

Proof. If $C_i = (a_i^1, c_{i-1}^1, a_i^2, c_{i-1}^2, \dots, a^i, c_{i-1}^n)$ and $D_i = (a_i^n, c_{i-1}^n, \dots, a_i^2, c_{i-1}^2, a_i^1, c_{i-1}^1)$, then each C_i and D_i is a partial linear extension of $P_{n,k}$ and each critical inequality for $P_{n,k}$ holds in some C_i or D_i $(1 \le i \le k)$. By Proposition 1.3, this completes the proof.

Lemma 3.6. For $k \ge 2$, let m be a positive integer and let the functions $f_{\lambda}:[1, 2k-1] \rightarrow [1, k]$ be given for $1 \le \lambda \le m$. For λ , $\mu \in [1, m]$, it is further assumed that $\lambda = \mu$ whenever the following three conditions are satisfied for some $i \in [1, k]$ and some $j \in [1, 2k - 1]$.

- (a) $f_{\lambda}^{-1}(i) \subseteq \{j\}.$
- (b) $f_{\mu}^{-1}(i) \subseteq \{j\}.$
- (c) If $l \in [1, 2k-1] \{j\}$, then $f_{\lambda}(l) < i$ iff $f_{\mu}(l) < i$.

¹ This size restriction was not needed in [7] since the empty join and meet were excluded there.

Then, $m \leq (2k-1)2^{2k-3}$. Moreover, functions $f_{\lambda}(1 \leq \lambda \leq m)$ can be defined with $m = (2k-1)2^{2k-3}$ so that the above conditions are satisfied.

Proof. For $i \in [1, k]$, $j \in [1, 2k-1]$ and $A \subseteq [1, 2k-1] - \{j\}$ with |A| = 2i-2, let F(i, j, A) denote the set of all functions $f: [1, 2k-1] \rightarrow [1, k]$ that satisfy one of the following conditions.

- (i) $f^{-1}(i) = \{j\}$ and $f^{-1}([1, i-1]) = A$.
- (ii) $f^{-1}(i) = \emptyset$ and $f^{-1}([1, i-1]) = A$.
- (iii) $f^{-1}(i) = \emptyset$ and $f^{-1}([1, i-1]) = A \cup \{j\}$.

It is easily shown that every function from [1, 2k-1] to [1, k] lies in some F(i, j, A) for i, j and A as above. The conditions of the lemma mean that $f_{\lambda}, f_{\mu} \in F(i, j, A)$ is possible only if $\lambda = \mu$. Thus, if m' is the number of such triples (i, j, A), then $m \le m'$. Since

$$m' = (2k-1)\sum_{i=1}^{k} \binom{2k-2}{2i-2} = (2k-1)2^{2k-3},$$

the first statement of the lemma follows. Let $f:[1, 2k-1] \rightarrow [1, k]$ be a function such that $f^{-1}(i) = \{j\}$, $f^{-1}([1, i-1]) = A$, and $|f^{-1}(l)| = 2$ whenever $l \neq i$; then $f \in F(i', j', A')$ exactly when i' = i, j' = j and A' = A. The second statement now follows.

We define $P_{n,k}^{\#} = P_{n,k} \cup \{d_0, d_1, \ldots, d_k\}$. Note that dim $P_{n,k}^{\#} = \dim P_{n,k}$.

Proposition 3.7. If $k \ge 2$ and $n > (2k-1)2^{2k-3}$, then dim $P_{n,k} = 2k$.

Proof. It is enough by Lemma 3.5 to show that dim $P_{n,k}^{\#} \ge 2k$. Suppose C_i $(1 \le j \le 2k - 1)$ are chains whose intersection is the ordering on $P_{n,k}^{\#}$. For $1 \le \lambda \le n$, we define the functions $f_{\lambda}: [1, 2k - 1] \rightarrow [1, k]$ by

$$f_{\lambda}(j) = i$$
 iff $d_{i-1} < b^{\lambda} < d_i$ in C_{j}

Thus, by Lemma 3.6, there are distinct elements λ and μ in [1, n], together with $i \in [1, k]$ and $j \in [1, 2k - 1]$ such that conditions (a), (b) and (c) of Lemma 3.6 are satisfied. The critical inequalities $c_{i-1}^{\lambda} < a_i^{\mu}$ and $c_{i-1}^{\mu} < a_i^{\lambda}$ cannot both hold in the same chain because $c_{i-1}^{\lambda} < a_i^{\lambda}$ would then follow using $a_i^{\mu} < c_{i-1}^{\mu}$. Thus, we can assume that $c_{i-1}^{\lambda} < a_i^{\mu}$ holds in C_i with $l \neq j$. Note that $f_{\lambda}(l) \neq i$ and $f_{\mu}(l) \neq i$ because $l \neq j$. Since $b^{\lambda} < d_i$ and $d_{i-1} < b^{\mu}$ hold in C_i , it follows that $f_{\lambda}(l) < i < f_{\mu}(l)$, contradicting condition (c).

Proposition 3.8. If $k \ge 2$ and $m = (2k-1)2^{2k-3}$, then dim $P_{m,k} = 2k-1$.

Proof. We shall define partial linear extensions C_j $(1 \le j \le 2k - 1)$ that realize $P_{m,k}^{\#}$. Expressing C_i as

$$(d_0, C_j^1, d_1, C_j^2, d_2, \ldots, d_{k-1}, C_j^k, d_k)$$

it is enough to define C_i^i for any $i \in [1, k]$ and $j \in [1, 2k-1]$. For $1 \le \lambda \le m$, let $f_{\lambda}: [1, 2k-1] \rightarrow [1, k]$ be functions for which $|f_{\lambda}^{-1}(i)| = 2$ for every $i \in [1, k]$ except one, and that satisfy the condition of Lemma 3.6. We now fix $i \in [1, k]$ and $j \in [1, 2k-1]$. For $1 \le l \le 2k-1$, we define functions $\varphi_l: [1, m] \rightarrow \{0, 1, 2\}$ as follows:

$$\varphi_{l}(\lambda) = \begin{cases} 0, & \text{if } f_{\lambda}(l) < i; \\ 1, & \text{if } f_{\lambda}(l) = i; \\ 2, & \text{if } f_{\lambda}(l) > i. \end{cases}$$

Let $D = \varphi_j^{-1}(1) = \{\lambda \mid f_\lambda(j) = i\}$. We define a binary relation δ between distinct elements $\lambda, \mu \in D$ by the following two rules:

(a) Suppose $\varphi_l(\lambda) = \varphi_l(\mu)$ for all $l \in [1, 2k-1]$ and $f_{\lambda}^{-1}(i) = f_{\mu}^{-1}(i) = \{j, h\}$ for some $h \neq j$. Let $\lambda' = \min(\lambda, \mu)$ and $\mu' = \max(\lambda, \mu)$ in the usual order on [1, m]. If j < h, set $\lambda' \delta \mu'$; otherwise, set $\mu' \delta \lambda'$.

(β) Suppose $\varphi_l(\lambda) \ge \varphi_l(\mu)$ for all $l \in [1, 2k-1]$ but $\varphi_h(\lambda) \ne \varphi_h(\mu)$ for some $h \in [1, 2k-1]$. In this case, set $\lambda \delta \mu$.

We claim there is a linear ordering Δ on D that extends δ . It is enough to show that the transitive closure of δ is a strict partial ordering. Suppose $\lambda_0 \delta \lambda_1 \delta \cdots \delta \lambda_n = \lambda_0$ holds in D for some $n \ge 1$. If $\lambda_\gamma \delta \lambda_{\gamma+1}$ by rule (α) for all $\gamma < n$, then for some $h \ne j$, $f_{\lambda}^{-1}(i) = \{j, h\}$ whenever $\lambda = \lambda_{\gamma}$ and $\gamma \le n$. If j < h, then $\lambda_0 < \lambda_1 < \cdots < \lambda_n = \lambda_0$ in the usual order, which is impossible; the other case is similar. Thus, we can assume that $\lambda_0 \delta \lambda_1$ holds by rule (β). Let $h \in [1, 2k-1]$ be such that $\varphi_h(\lambda_0) > \varphi_h(\lambda_1)$. It follows that $\varphi_h(\lambda_0) > \varphi_h(\lambda_n)$, which is impossible since $\lambda_0 = \lambda_n$. With this contradiction, the proof of the claim is complete.

 D^* denotes D endowed with linear ordering Δ . Let A and B be linear orderings of the sets $\varphi_i^{-1}(0)$ and $\varphi_i^{-1}(2)$ respectively. We set

$$C_i^i = ((c_{i-1}^{\lambda} \mid \lambda \in A), ((a_i^{\lambda}, c_{i-1}^{\lambda}) \mid \lambda \in D^*), (a_i^{\lambda} \mid \lambda \in B)).$$

 C_i^i is obviously a partial linear extension of $P_{m,k}^{\#}$ and it follows easily that C_j is also one. (Observe that, in any linear extension of $P_{m,k}^{\#}$ that extends C_j , $d_{i-1} < b^{\lambda} < d_i$ iff $f_{\lambda}(j) = i$.)

We consider an arbitrary critical inequality $c_{i-1}^{\lambda} < a_i^{\mu}$ for $P_{m,k}$ where i, λ and μ are fixed $(1 \le i \le k, \lambda \ne \mu)$; j is no longer fixed. By Proposition 1.3, it suffices to show that this inequality holds in C_j^i for some $j \in [1, 2k-1]$. There are three cases.

Case 1. $\varphi_l(\lambda) \leq \varphi_l(\mu)$ for some $l \in [1, 2k-1]$. For $j = l, \lambda \in A$ or $\mu \in B$, and it is immediate that $c_{i-1}^{\lambda} \leq a_i^{\mu}$ in C_j^i .

Case 2. $\varphi_l(\lambda) = \varphi_l(\mu)$ for all $l \in [1, 2k-1]$. Since $|f_{\lambda}^{-1}(i)| = 1$ is impossible by the conditions of Lemma 3.6, $f_{\lambda}^{-1}(i) = f_{\mu}^{-1}(i) = \{h_1, h_2\}$ for distinct $h_1, h_2 \in [1, 2k-1]$. Then, for $j = h_1$ or h_2 , $\lambda \delta \mu$ by rule (α); consequently, $c_{i-1}^{\lambda} < a_i^{\mu}$ in C_j^i .

Case 3. $\varphi_l(\lambda) \ge \varphi_l(\mu)$ for all $l \in [1, 2k-1]$ and $\varphi_h(\lambda) \ne \varphi_h(\mu)$ for some $h \in [1, 2k-1]$. By rule (β) , it is enough to find $j \in [1, 2k-1]$ so that $\lambda, \mu \in D$; in other words, $\varphi_i(\lambda) = \varphi_i(\mu) = 1$. Let us suppose, to the contrary, that there is no such j.

This means that $\hat{j}_{\mu}(j) < i$ whenever $f_{\lambda}(j) = i$. Observe that $f_{\lambda}^{-1}([1, i-1]) \subseteq f_{\mu}^{-1}([1, i-1])$. If $|f_{\lambda}^{-1}(i)| = 1$, then $|f_{\lambda}^{-1}([1, i-1])| = 2i-2$ and the above inclusion would imply that $|f_{\mu}^{-1}([1, i-1])| = 2i-1$, an impossibility. Therefore, $|f_{\lambda}^{-1}(i)| = 2$, and since $|f_{\lambda}^{-1}([1, i-1])| \ge 2i-3$, the above inclusion implies that $|f_{\mu}^{-1}([1, i-1])| \ge 2i-1$. This contradiction completes the proof that dim $P_{m,k} \le 2k-1$. Because adding one flap increases the dimension by at most one, it follows from Proposition 3.7 that dim $P_{m,k} = 2k-1$.

Proof of Theorem 3.1. Let $m = n - 1 = (2k - 1)2^{2k-3}$. By Proposition 3.7, dim $P_{n,k} = 2k$. By duality, it is enough to show that dim $Q \le 2k - 1$ where $Q = P_{n,k}^{\#} - \{a_3^n\}$ and $1 \le g \le k$. We shall define partial linear extensions C'_i $(1 \le j \le 2k - 1)$ by adding the elements a_i^n $(1 \le i \le k, i \ne g)$ and c_i^n $(1 \le i \le k - 1)$ to the chains C_i constructed in the proof of Proposition 2.8; we shall use the notation of that proof. We can assume that $f_1^{-1}(g) = \{1\}$. We first assume that g < k. Whenever either a_i^1 or c_i^1 appears alone in one of the original chains, add a_i^n (for $i \ne g$) or c_i^n , respectively, immediately after. If $i \ne g$, then (a_i^1, c_{i-1}^1) appears in two chains C_h and C_i with h < j; add (a_i^n, c_{i-1}^n) to both chains, immediately before a_i^1 in C_h , and immediately after c_{i-1}^1 in C_j . Finally, we add c_{g-1}^n immediately before a_g^1 in C_1 .

The set of critical inequalities for Q is

$$\{c_{i-1}^{\lambda} < a_i^{\mu} \mid \lambda \neq \mu, \mu \neq n \text{ when } i = g, 1 \leq i \leq k\}.$$

Only the cases where λ or μ is *n* need to be checked. If $\mu \neq 1$, then $c_{i-1}^1 < a_i^{\mu}$ holds in some chain C_i ; in this case, $c_{i-1}^n < a_i^{\mu}$ holds in C_i . The case where $\lambda \neq 1$, $\mu = n$ and $i \neq g$ is similar. For $i \neq g$, $c_{i-1}^n < a_i^1$ and $c_{i-1}^1 < a_i^n$ also hold in one of the new chains. Finally, $c_{g-1}^n < a_g^1$ holds in C_i .

We can now assume that g = k; in other words, $Q = P_{n,k}^{\#} - \{b^n\}$. We shall only consider the case that k > 2. (These additional arguments are unnecessary if k = 2.) We specify the function f_1 completely by stipulating that $f_1^{-1}(i) = \{2i, 2i + 1\}$ whenever $1 \le i \le k - 1$. We require the remaining functions to be chosen so that, for $2 \le \lambda \le m$ and $2 \le i \le k - 1$,

$$f_{\lambda}(2i) \neq i$$
 or $f_{\lambda}(2i+1) \neq i$

This means that a suitable function f must be chosen from each set F(h, j, A) of functions defined in the proof of Lemma 3.6. Let $h \in [1, k]$, $j \in [1, 2k - 1]$ and $A \subseteq [1, 2k - 1] - \{j\}$ with |A| = 2h - 2 be fixed. We shall specify certain values of fthat still allow f to be a function lying only in F(h, j, A). We consider each $i \in [2, k - 1]$. If $i \le h$ and $j \ne 2i$, then set f(2i) = i - 1 whenever $2i \in A$. (If $2i \notin A$, then $f(2i) > h \ge i$.) If $i \le h$ and j = 2i, then set f(2i + 1) = i - 1 whenever $(2i + 1) \in$ A. If i > h and $j \ne 2i$, then set f(2i) = i whenever $2i \notin A$. If i > h and j = 2i, then set f(2i + 1) = i whenever $(2i + 1) \notin A$. Therefore, the above requirement can be met.

Let $i \in [2, k-1]$, $j \in \{2i, 2i+1\}$, $\{j, h\} = \{2i, 2i+1\}$, and $D = \{\lambda \mid f_{\lambda}(j) = i\}$. Observe that $f_1(j) = i = f_1(h)$. We show that the linear ordering Δ of Proposition 3.8

can be chosen so that:

(*) If
$$\lambda \in D$$
 satisfies $f_{\lambda}(h) < i$, then $1\Delta\lambda$.

Let $\lambda \in D$ satisfy $f_{\lambda}(h) < i$. If $\lambda \delta^* 1$, where δ^* is the transitive closure of δ , then $\varphi_l(\lambda) \ge \varphi_l(1)$ whenever $1 \le l \le 2k - 1$. Since $\varphi_h(\lambda) = 0$ and $\varphi_h(1) = 1$, $\lambda \delta^* 1$ cannot hold. The statement (*) now follows.

 C'_1 is formed from C_1 by adding a_i^n immediately after a_i^1 $(1 \le i \le k-1)$ and by adding (c_1^n, c_{k-1}^n) immediately before b^1 . C'_2 is obtained from C_2 by adding (a_1^n, a_{k-1}^n) immediately before a_1^1 and (c_1^n, c_{k-1}^n) immediately after c_{k-1}^1 . C'_3 is obtained from C_3 by adding (a_1^n, a_{k-1}^n) immediately after b^1 and adding c_i^n immediately after c_i^1 $(1 \le i \le k-1)$. The remaining chains C'_i $(4 \le j \le 2k-1)$ are constructed in the same way as when $g \le k$.

The set of critical inequalities for Q is

$$\{c_{i-1}^{\lambda} < a_i^{\mu} \mid \lambda \neq \mu, \lambda \neq n \text{ when } i = 1, \mu \neq n \text{ when } i = k, 1 \le i \le k\}$$
$$\cup \{a_{k-1}^n < a_1^{\mu} \mid n \neq \mu\} \cup \{c_{k-1}^{\lambda} < c_1^n \mid \lambda \neq n\}.$$

The inequality $c_{k-1}^{\lambda} < c_1^n$ ($\lambda \neq 1, n$) holds in C'_1 ; $a_{k-1}^n < a_1^1$ and $c_{k-1}^1 < c_1^n$ hold in C'_2 ; $a_{k-1}^n < a_1^\mu$ ($\mu \neq 1, n$) holds in C'_j where $j \in \{2, 3\}$ is chosen so that $b^1 < a_1^\mu$ holds in C'_j .

After applying the arguments used when g < k, it only remains to consider critical inequalities of the form $c_{i-1}^n < a_i^{\mu}$ with $\mu \neq 1$ or n, and $2 \le i \le k-1$.² Let μ and i be fixed. Since $|f_{\mu}^{-1}([1, i-1])| \le 2i-2$, there is $j \in [3, 2i+1]$ such that $f_{\mu}(j) \ge i$. Note that $f_1(j) \le i$. If j can be chosen so that $f_{\mu}(j) > i$, then $c_{i-1}^1 < a_i^{\mu}$ holds in C_j ; consequently, $c_{i-1}^n < a_i^{\mu}$ holds in C'_j . We can now assume that $f_{\mu}(j) = i$ and $f_{\mu}(l) \le i$ whenever $l \in [3, 2i+1]$. If j < 2i, then $c_{i-1}^n < a_i^{\mu}$ holds in C'_j because $c_{i-1}^1 < a_i^{\mu}$ holds in C_j (since $f_1(j) < i$). Thus, without loss of generality, $j \in$ $\{2i, 2i+1\}$ and $f_{\mu}(h) < i$ where $\{j, h\} = \{2i, 2i+1\}$. (Recall that f_{μ} was chosen so that $f_{\mu}(h) \neq i$.) By the statement (*) above, $c_{i-1}^1 < a_i^{\mu}$ holds in C'_j . Therefore, $c_{i-1}^n < a_i^{\mu}$ holds in C'_j , completing the proof of the theorem.

For $n \ge 2$, $P_{n,k} = \mathbf{P}(L_{n,k})$. Thus, by Lemma 1.8, $L_{n,k} = \mathbf{L}(P_{n,k})$ for $n \ge 2$. Theorem 3.2 now follows from Proposition 1.7, Proposition 3.7 and Proposition 3.8.

We now give the preliminary results for Theorems 3.3 and 3.4. Let $Q_{n,k}^{\#} = Q_{n,k} \cup \{d_0, d_1, \ldots, d_{k-2}, d_k\}$, a poset having the same dimension as $Q_{n,k}$.

Lemma 3.9. For integers $k \ge 2$ and $n \ge 1$, dim $Q_{n,k} \le 2k-1$.

Proof. Take the chain $(d_{k-1}, b^1, b^2, \ldots, b^n)$ in addition to the chains C_i and D_i $(1 \le i \le k-1)$ of Lemma 3.5.

² Note that $d_{k-1} < c_1^n$ in C_2' whereas $c_1^1 < d_2$ held in C_2 .

Lemma 3.10. For $k \ge 2$, let m be a positive integer and let the functions $f_{\lambda}:[1, 2k-2] \rightarrow [1, k]$ be given so that $f_{\lambda}^{-1}(k) \neq \emptyset$ for $1 \le \lambda \le m$. For $\lambda, \mu \in [1, m]$ it is further assumed that $\lambda = \mu$ whenever the following three conditions are satisfied for some $i \in [1, k-1]$ and some $j \in [1, 2k-2]$.

(a) $f_{\lambda}^{-1}(i) \subseteq \{j\}$.

(b) $f_{\mu}^{-1}(i) \subseteq \{j\}.$

(c) If $l \in [1, 2k-2] - \{j\}$, then $f_{\lambda}(l) < i$ iff $f_{\mu}(l) < i$.

Then, $m \leq (k-1)2^{2k-3}$. Moreover, functions f_{λ} $(1 \leq \lambda \leq m)$ can be defined with $m = (k-1)2^{2k-3}$ so that the above conditions are satisfied.

Proposition 3.11. If $k \ge 2$ and $n > (k-1)2^{2k-3}$, then dim $Q_{n,k} = 2k-1$.

Proof. Suppose C_i $(1 \le j \le 2k - 2)$ are linear extensions of $Q_{n,k}^{\#}$ that realize it. For $1 \le \lambda \le n$, we define functions $f_{\lambda}:[1, 2k - 2] \rightarrow [1, k]$ similarly as in the proof of Proposition 3.7. Since $d_{k-1} \le b^{\lambda}$ must hold in some $C_i, f_{\lambda}^{-1}(k) \ne \emptyset$. Let $\lambda \ne \mu$ in $[1, n], i \in [1, k - 1]$ and $j \in [1, 2k - 2]$ satisfy conditions (a), (b) and (c) of Lemma 3.10. Now proceed as in the proof of Proposition 3.7.

Proposition 3.12. If $k \ge 2$ and $m = (k-1)2^{2k-3}$, then dim $Q_{m,k} = 2k-2$.

Proof. For $\lambda \in [1, m]$, let $f_{\lambda} : [1, 2k - 2] \rightarrow [1, k]$ be functions for which $|f_{\lambda}^{-1}(i)| = 2$ for every $i \in [1, k - 1]$ except one and $|f_{\lambda}^{-1}(k)| = 1$, and that satisfy the conditions of Lemma 3.10. For $j \in [1, 2k - 2]$, let $C_j = (d_0, C_j^1, d_1, C_j^2, d_2, \dots, d_{k-1}, C_j^k, d_k)$, where C_i^i $(1 \le i \le k - 1)$ are defined as in the proof of Proposition 3.8 (when [1, 2k - 1] is replaced by [1, 2k - 2]) and C_j^k is $\{b^{\lambda} \mid f_{\lambda}(j) = k\}$ endowed with a linear ordering. Similarly as in the proof of Proposition 3.8, we can show that $C_1, C_2, \dots, C_{2k-2}$ realize $Q_{m,k}^{\#}$, and conclude that dim $Q_{m,k} = 2k - 2$.

Proof of Theorem 3.3. Let $Q = Q_{n,k}^{\#} - \{x\}$, where x is a_g^{*} $(1 \le g \le k-1)$, b^{n} , c_g^{n} $(1 \le g \le k-2)$, or d_{k-1} . Let $m = n-1 = (k-1)2^{2k-3}$. We must show that dim $Q \le 2k-2$. We consider only the cases that $x = b^{n}$ or $x = d_{k-1}$ since the proof of Theorem 3.1 can be modified slightly to handle the other cases (when Proposition 3.8 is replaced by Proposition 3.12).

Let $x = b^n$ and assume k > 2.

Crit(Q) = {
$$d_{k-1} < c_1^n$$
} \cup { $d_{k-1} < b^{\lambda} \mid \lambda \neq n$ }
 \cup { $c_{i-1}^{\lambda} < a_i^{\mu} \mid \lambda \neq \mu, \lambda \neq n$ when $i = 1, 1 \le i \le k-1$ }
 \cup { $a_{k-1}^n < a_1^{\mu} \mid \mu \neq n$ }.

We adopt the notation of the proof of Proposition 3.12. We specify f_1 by requiring that $f_1(1) = k$, $f_1(2) = 1$, and $f_1^{-1}(i) = \{2i-1, 2i\}$ whenever $2 \le i \le k-1$. Similarly as in the proof of Theorem 3.1, the remaining functions can be chosen so that, for $2 \le \lambda \le m$ and $2 \le i \le k-1$,

$$f_{\lambda}(2i-1) \neq i$$
 or $f_{\lambda}(2i) \neq i$.

Let $i \in [2, k-1]$, $j \in \{2i-1, 2i\}$, $\{j, h\} = \{2i-1, 2i\}$, and $D = \{\lambda \mid f_{\lambda}(j) = i\}$. The linear ordering of Proposition 3.12 can be chosen so that:

(*) If $\lambda \in D$ satisfies $i < f_{\lambda}(h)$, then $\lambda \Delta 1$.

 C'_1 is formed from C_1 by adding (a_1^n, a_{k-1}^n) just before a_1^1 and c_1^n just after d_{k-1} . C'_2 is obtained from C_2 by adding (a_1^n, a_{k-1}^n) just after b^1 and c_i^n just after c_i^1 $(1 \le i \le k-2)$. C'_i $(3 \le j \le 2k-2)$ is formed from C_i by adding (a_i^n, c_{i-1}^n) for $i \in [2, k-1]$ immediately before (after) (a_i^1, c_{i-1}^1) when j = 2i-1 (2i). Also, whenever a_i^1 (c_g^1) appears alone in C_i $(1 \le i \le k-1, 1 \le g \le k-2, 3 \le j \le 2k-2)$, it is immediately followed by a_i^n (c_g^n) in C'_i . It can be verified that $C'_1, C'_2, \ldots, C'_{2k-2}$ realize Q. (The only nontrivial part is showing, for $i \in [2k-1]$ and $\lambda \in [2, m]$, the existence of $i \in [3, 2k-2]$ such that $c_{i-1}^{\lambda} < a_i^1$ holds in C_i .)

Let $x = d_{k-1}$. If a_{k-1}^{λ} and b^{λ} are identified in Q for $1 \le \lambda \le n$, we obtain $P_{n,k-1}$. Thus dim $Q = \dim P_{n,k-1}$, and therefore, dim $Q \le 2k-2$ by Lemma 3.5. This completes the proof of the theorem.

Since $Q_{3,2}$ is 3-irreducible by Theorem 3.3, it must occur in the list of all 3-irreducible posets in [6]. It does, unde: the name B^d .

Since $Q_{n,k} = \mathbf{P}(L'_{n,k})$ for $n \ge 2$, $L'_{n,k} = \mathbf{L}(Q_{n,k})$ by Lemma 1.8. Theorem 3.4 now follows by Proposition 1.7, Proposition 3.11 and Proposition 3.12.

Whenever m < n and k < l, $P_{m,k}$ is isomorphic to a subposet of both $P_{n,l}$ and $Q_{n,l}$, and $Q_{m,k}$ is isomorphic to a subposet of both $P_{n,l}$ and $Q_{n,l}$. Consequently, any irreducible poset of the form $P_{n,k}$ or $Q_{n,k}$ has the embedding property. (This statement is also a consequence c^c Theorem 4.9.) For example, the 7-irreducible poset $Q_{97,4}$ is a subposet of the 8-irreducible poset $P_{225,4}$. Similar inclusions between the lattices $L_{n,k}$ and $L'_{n,k}$ allow us to conclude from Theorems 3.2 and 3.4 that:

 $\dim L_{n,k} = 2k - 1$

whenever $k \ge 2$ and $1 + (k-1)2^{2k-3} \le n \le (2k-1)2^{2k-3}$, and

 $\dim L_{n,k}' = 2k - 2$

whenever $k \ge 3$ and $1 + (2k - 3)2^{2k-5} \le n \le (k-1)2^{2k-3}$.

4. Dimension product of irreducible posets

Recall that we treat 2, the two-element chain, as a special case so that an irreducible poset is understood to have dimension at least two. Every known irreducible poset satisfies the conditions we shall give to be called *normal*. We shall define the *dimension product* $P \otimes Q$ of normal irreducible posets P and Q, so that $P \otimes Q$ is an irreducible poset of dimension dim P+dim Q. Our construction was motivated by—but differs from—the one given by W.T. Trotter, Jr. [12]. If P_1

and P_2 are posets of length one, his construction yields a poset P of length one satisfying $|P| = |P_1| + |P_2|$. Our construction does not satisfy this condition.

Let P be a nontrivial (finite) poset of dimension d and let L = L(P); 0 and 1 are the zero and one of L. We define D(P) to be the set of elements $x \in Irr(P) = Irr(L)$ such that dim $(L - \{x\}) = d$. Since $Irr(2) = \emptyset$, $D(2) = \emptyset$. A(P) denotes the set of all minimal elements of $P - \{0\}$ that lie in D(P); B(P) is defined dually. Equivalently, A(P) consists of those elements of D(P) whose lower cover in L is 0. We further define $L^*(P) = L - D(P)$. Observe that $L^* = L^*(P)$ is a sublattice of L.

P is normal if P = 2 or if P satisfies the following four conditions.

(N0) If a < b in L, then $a \notin \mathbf{M}(P)$ or $b \notin \mathbf{J}(P); \mathbf{A}(P) \cap \mathbf{B}(P) = \emptyset$.

- (N1) $\mathbf{D}(P) = \mathbf{A}(P) \cup \mathbf{B}(P)$.
- (N2) $0 \notin \mathbf{M}(L^*)$ and $1 \notin \mathbf{J}(L^*)$.
- (N3) dim $L^* = d$.

P is completely normal if P = 2 or if P is normal and satisfies:

(N4) Let $x, y \in P$ with $x \leq y$. If $y \in J(P)$, then $x \in J(P)$; if $x \in M(P)$, then $y \in M(P)$.

Observe that P is normal if and only if $\mathbf{P}(P)$ is. Since adding a zero or one to a poset does not increase its dimension, every irreducible poset P satisfies $0 \notin \mathbf{M}(P)$ and $1 \notin \mathbf{J}(P)$. Note that these latter two conditions are consequences of (N2).

Lemma 4.1. Every irreducible poset satisfies (N0).

Proof. Let P be a poset such that a < b in $L = \mathbf{L}(P)$ with $a \in \mathbf{M}(P)$ and $b \in \mathbf{J}(P)$. If x > a in P, then $x \ge b$ in L, and therefore, also in P. Similarly, $x \le a$ in P whenever x < b in P. If C_1, C_2, \ldots, C_n are linear extensions realizing $P - \{b\}$, then C'_1, C'_2, \ldots, C'_n are linear extensions realizing P, where C'_i is formed from C_i by adding b immediately after $a \ (1 \le i \le n)$. Thus, P is not irreducible. For the second clause, let P be a d-irreducible poset and suppose that $x \in \mathbf{A}(P) \cap \mathbf{B}(P)$. Because $\mathbf{D}(P) \ne \emptyset$, $d \ge 3$. Since x is incomparable with every element of $P - \{x\}$, the last clause now follows.

If P is an irreducible poset for which $\mathbf{D}(P) = \emptyset$, then P is obviously normal. Observe that $\mathbf{D}(P_{3,2}) = \emptyset$ although $P_{3,2}$ is not irreducible. All known irreducible posets are completely normal. Note that 2 fails (N0), (N2) and (N4).

For each of the following 3-irreducible posets P (in the notation of Kelly [6]), $\mathbf{D}(P) = \emptyset$: A_n , B, C, D, E_n , F_n , G_n , H_n , EX_2 and I_n ($n \ge 0$). After determining that $\mathbf{D}(CX_1) = \{b_1\}$, $\mathbf{D}(CX_2) = \{b_1, b_3\}$, $\mathbf{D}(CX_3) = \{a_1, b_1\}$, $\mathbf{D}(EX_1) = \{b_2\}$, $\mathbf{D}(FX_1) = \{a_1\}$, $\mathbf{D}(FX_2) = \{a_1, b_3\}$, $\mathbf{D}(J_n) = \{c, d\}$, it is easy to verify that the remaining 3irreducible posets are normal. Thus, all 3-irreducible posets are completely normal. Since $\mathbf{P}(L_{n,k} - \{b^1\}) = P_{n,k} - \{b^1\}$ for $n \ge 3$, it follows from Corollary 1.6 that $\mathbf{D}(P_{n,k}) = \emptyset$ whenever $P_{n,k}$ is irreducible. Hence, any irreducible poset of the form $P_{n,k}$ or $Q_{n,k}$ is completely normal. Let $\mathbf{J}^*(P) = \mathbf{J}(P) - \mathbf{B}(P)$ and $\mathbf{M}^*(P) = \mathbf{M}(P) - \mathbf{A}(P)$. Note that $\mathbf{M}^*(P)$ does not equal $\mathbf{M}(\mathbf{L}^*(P))$ in general, and dually. For example, if $P = CX_1$ (notation of [6]), then $b_1 \in \mathbf{M}^*(P)$ but $b_1 \notin \mathbf{L}^*(P)$, and $a_1 \lor a_2$ is in $\mathbf{M}(\mathbf{L}^*(P))$ but not in $\mathbf{P}(P)$.

Let P_1, P_2, \ldots, P_n $(n \ge 2)$ be normal posets. (In particular, each poset is finite and nontrivial.) Let $L_i = \mathbf{L}(P_i)$, $J_i^* = \mathbf{J}^*(P_i)$ and $M_i^* = \mathbf{M}^*(P_i)$ for $1 \le i \le n$. The dimension product of P_1, P_2, \ldots, P_n , denoted by $P_1 \otimes P_2 \otimes \cdots \otimes P_n$, is the subposet $Q = Q_0 \cup Q_1$ of $L = L_1 \times L_2 \times \cdots \times L_n$ (direct product), where

$$Q_0 = J_1^* \times \{0\} \times \cdots \times \{0\} \cup \{0\} \times J_2^* \times \{0\} \times \cdots \times \{0\} \cup \cdots \cup \{0\} \times \cdots \times \{0\} \times J_n^*$$

and

$$Q_1 = M_1^* \times \{1\} \times \cdots \times \{1\} \cup \{1\} \times M_2^* \times \{1\} \times \cdots \times \{1\} \cup \cdots \cup \{1\} \times \cdots \times \{1\} \times M_n^*.$$

We also define $A_i = \mathbf{A}(P_i)$, $B_i = \mathbf{B}(P_i)$, $L_i^* = \mathbf{L}^*(P_i)$, $J_i = \mathbf{J}(P_i)$ and $M_i = \mathbf{M}(P_i)$ for $1 \le i \le n$. Let $R = R_0 \cup R_1$, a subposet of l where

$$R_0 = A_1 \times \{0\} \times \cdots \times \{0\} \cup \{0\} \times A_2 \times \{0\} \times \cdots \times \{0\} \cup \cdots \cup \{0\} \times \cdots \times \{0\} \times A_n$$

and

$$R_1 = B_1 \times \{1\} \times \cdots \times \{1\} \cup \{1\} \times B_2 \times \{1\} \times \cdots \times \{1\} \cup \cdots \cup \{1\} \times \cdots \times \{1\} \times B_n.$$

Let $K^{\#} = L_1^* \times L_2^* \times \cdots \times L_n^*$ and set

$$K = K^{\#} \cup R,$$

a subposet of L. Note that $K^{\#}$ and R are disjoin. Each element of R has a unique lower cover and a unique upper cover in K, both of which lie in $K^{\#}$. For example, if $x \in A_1$, let y be the unique upper cover of x in L_1 . By (N0), $y \notin J_1$. Consequently, $y \in L_1^*$. The unique lower (upper) cover of $\langle x, 0, \ldots, 0 \rangle$ in K is $\langle 0, 0, \ldots, 0 \rangle$ ($\langle y, 0, \ldots, 0 \rangle$). Thus, the next lemma shows $K^{\#}$ to be a sublattice of K.

Lemma 4.2. Let $K = K^{\#} \cup R$ be a finite poset, where $K^{\#}$ is a lattice. If each element of R has a unique lower cover and a unique upper cover in K, then K is a lattice and $K^{\#}$ is a sublattice of K.

Proof. (Cf. [8, Proposition 2.1].) By induction on $|\mathbf{R}|$, it suffices to assume $R = \{a\}$. We can assume that $a \notin K^{\#}$. Let $b \in K^{\#}$ be the unique upper cover of a. If $x \in K^{\#}$ and $x \notin a$, it is easily verified that $a \lor x = b \lor x$, where the left-hand join is calculated in K and the right-hand one in $K^{\#}$. Therefore, K is a lattice and $K^{\#}$ is a sublattice of K.

In general, K is not a sublattice of L. For $x \in K$, we define $x^{\#} \in K^{\#}$ by: $x^{\#}$ is the unique upper cover of x if $x \in R$; otherwise, $x^{\#} = x$. For incomparable x, $y \in K$,

 $x \lor y = x^{\#} \lor y^{\#}$, where the left-hand join is calculated in K and the right-hand one in $K^{\#}$. In particular, every element of R is doubly irreducible in K.

We now show that $\mathbf{J}(K) = Q_0 \cup R = Q_0 \cup R_1$. We already know that $R \subseteq \mathbf{J}(K)$. By (N1), $Q_0 - R \subseteq K^{\#}$. Let $q \in Q_0 - R$; we can assume that $q = \langle x, 0, \ldots, 0 \rangle$ with $x \in J_1$. If y < x in L_1 , then $\langle y, 0, \ldots, 0 \rangle \in K^{\#}$ is the unique lower cover of q in K. Therefore, $Q_0 \cup R \subseteq \mathbf{J}(K)$. Suppose there exists $q \in \mathbf{J}(K) - (Q_0 \cup R)$. We can assume that $q = \langle x, 0, \ldots, 0 \rangle$ with $x \in L_1^*$. If x = 1, then $P_1 \neq 2$, and by (N2), there are distinct lower covers y and z of 1 in L_1^* . Let $S = \{y, z\}$ in this case. Otherwise, there is $S \subseteq J_1$ such that $x = \bigvee S$ and $x \notin S$. Since x < 1, $S \cap B_1 = \emptyset$. In both cases, $T \subseteq K$ where $T = \{\langle s, 0, \ldots, 0 \rangle | s \in S\}$. Then $q \notin T$ but $q = \bigvee T$ in K. This contradiction completes the proof that $\mathbf{J}(K) = Q_0 \cup R$.

By duality, $\mathbf{M}(K) = Q_1 \cup R$. Hence, $\mathbf{P}(K) = Q \cup R = Q = P_1 \otimes P_2 \otimes \cdots \otimes P_n$. Therefore, by Lemma 1.8, $K = \mathbb{L}(P_1 \otimes P_2 \otimes \cdots \otimes P_n)$. Since

$$L_1^* \times L_2^* \times \cdots \times L_n^* \subseteq K \subseteq L_1 \times L_2 \times \cdots \times L_n,$$

it now follows using (N3) and Proposition 1.7 that

Proposition 4.3. If P_1, P_2, \ldots, P_n $(n \ge 2)$ are normal posets, then

 $\dim(P_1 \otimes P_2 \otimes \cdots \otimes P_n) = \dim P_1 + \dim P_2 + \cdots + \dim P_n.$

Unless n = 2 and $P_1 = P_2 = 2$, Irr(K) = R. Hence, in all cases, $\mathbf{D}(P_1 \otimes P_2 \otimes \cdots \otimes P_n) = R$. Since $\mathbf{L}^*(P_1 \otimes P_2 \otimes \cdots \otimes P_n) = K^{\#}$, it is easy to verify that

Lemma 4.4. If P_1, P_2, \ldots, P_n $(n \ge 2)$ are (completely) normal posets, then so is $P_1 \otimes P_2 \otimes \cdots \otimes P_n$.

Since $\mathbf{J}^*(P_1 \otimes P_2 \otimes \cdots \otimes P_n) = Q_0$ and $\mathbf{M}^*(P_1 \otimes P_2 \otimes \cdots \otimes P_n) = Q_1$, it follows that

Lemma 4.5. If P_1, F_2, \ldots, P_n $(n \ge 3)$ are normal posets, then

 $P_1 \otimes P_2 \otimes \cdots \otimes P_n = (\cdots (P_1 \otimes P_2) \otimes \cdots) \otimes P_n.$

By virtue of Lemma 4.5, most statements about the dimension product need only be proved for two factors.

Proposition 4.6. Let $Q = P_1 \otimes P_2$, where P_1 and P_2 are normal posets and $P_1 \neq 2$. If $(a, 0) \in Q$, then dim $(Q - \{(a, 0)\}) = \dim Q - 1$.

Proof. By Proposition 4.3, dim $Q = d = d_1 + d_2$, where $d_i = \dim P_i$ (i = 1, 2). Since removing any element from a poset lowers the dimension by at most one (Hiraguchi [5]), we only need to show that dim $(Q - \{\langle a, 0 \rangle\}) \le d - 1$ whenever $a \in J_1^*$. If $a \notin M_1^*$ then $\langle a, 1 \rangle \notin Q$. Thus, $Q - \{\langle a, 0 \rangle\}$ is a subposet of

 $((P_1 - \{a\}) \cup \{0, 1\}) \times (P_2 \cup \{0, 1\})$, whose dimension is $(d_1 - 1) + d_2 = d - 1$. We can assume that $a \in M_1^*$. Consequently, by (N1), $a \notin \mathbf{D}(P_1)$ although $a \in \operatorname{Irr}(P_1)$. This means that $\dim(L_1 - \{a\}) = d_1 - 1$. Let b be the (unique) lower cover of a in L_1 . Let $C_i = (x_1^i, x_2^i, \ldots, x_i^i)$, $1 \le i \le d_1 - 1$, be chains realizing $L_1 - \{a, 0, 1\}$, where $l = |L_1| - 3$. Also, let $E_i = (y_1^i, y_2^i, \ldots, y_m^i)$, $1 \le j \le d_2$, be chains realizing $P_2 - \{0, 1\}$, where $m = |P_2 - \{0, 1\}|$. Finally, let (z_1, z_2, \ldots, z_r) be a linear extension of the subposet $\{x \in P_1 \mid x \ne a\}$ and (z_1, z_2, \ldots, z_n) be a linear extension of $P_1 - \{a\}$. We now define some partial linear extensions of $L_1 \times (P \cup \{0, 1\})$ where $2 \le i \le d_1 - 1$ and $2 \le j \le d_2$.

$$C'_{1} = (\langle 0, y_{1}^{1} \rangle, \dots, \langle 0, y_{m}^{1} \rangle, \langle 0, 1 \rangle, \langle x_{1}^{1}, 0 \rangle, \langle x_{1}^{1}, 1 \rangle, \dots, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle a, 1 \rangle, \dots, \langle x_{l}^{1}, 0 \rangle, \langle x_{l}^{1}, 1 \rangle, \langle 1, 0 \rangle, \langle 1, y_{1}^{1} \rangle, \dots, \langle 1, y_{m}^{1} \rangle);$$

$$C'_{i} = (\langle x_{1}^{i}, 0 \rangle, \langle x_{1}^{i}, 1 \rangle, \dots, \langle b, 0 \rangle, \langle b, 1 \rangle, \langle a, 1 \rangle, \dots, \langle x_{l}^{i}, 0 \rangle, \langle x_{l}^{i}, 1 \rangle);$$

$$E'_{1} = (\langle z_{1}, 0 \rangle, \dots, \langle z_{n}, 0 \rangle, \langle 1, 0 \rangle, \langle 0, y_{1}^{1} \rangle, \langle 1, y_{1}^{1} \rangle, \dots, \langle 0, y_{m}^{1} \rangle, \langle 1, y_{m}^{1} \rangle, \langle 0, 1 \rangle, \langle z, 1 \rangle, \dots, \langle z_{r}, 1 \rangle, \langle a, 1 \rangle, \langle z_{r+1}, 1 \rangle, \dots, \langle z_{n}, 1 \rangle);$$

$$E'_{i} = (\langle 0, y_{1}^{i} \rangle, \langle 1, y_{1}^{i} \rangle, \dots, \langle 0, y_{m}^{i} \rangle, \langle 1, y_{m}^{i} \rangle).$$

All of the above chains are obviously partial linear extensions of $L_1 \times L_2$. (Note that $\langle a, 1 \rangle$ immediately follows $\langle 0, 1 \rangle$ in C'_1 if b = 0.) We shall show that these (d-1) chains realize $\overline{Q} = Q - \{\langle a, 0 \rangle\}$ when restricted to \overline{Q} . Let $r \parallel s$ in \overline{Q} . It is enough to show that r < s holds in one of the above chains. The letters x and y indicate arbitrary elements of $P_1 - \{a\}$ and $P_2 - \{0, 1\}$ respectively. If $r = \langle 0, 1 \rangle$, then $r < \langle x, 0 \rangle$, $r < \langle 1, 0 \rangle$ and $r < \langle 1, y \rangle$ in C'_1 . If $r = \langle 1, 0 \rangle$, then $r < \langle 0, y \rangle$, $r < \langle 0, 1 \rangle$, $r < \langle x, 1 \rangle$ and $r < \langle a, 1 \rangle$ in E'_1 . The cases where s is $\langle 0, 1 \rangle$ or $\langle 1, 0 \rangle$ are similar. If a < x in P_1 , then $\langle a, 1 \rangle < \langle x, 0 \rangle$ in C'_1 and $\langle x, 0 \rangle < \langle a, 1 \rangle$ in E'_1 . If $a \parallel x$ in P_1 , then $\langle x, 1 \rangle < \langle a, 1 \rangle$ in E'_1 and $\langle a, 1 \rangle < \langle x, 1 \rangle$ in C'_i where b < x holds in C_i (i is arbitrary if b = 0). The remaining cases are easily checked.

Corollary 4.7. If $Q = P \otimes 2$ where P is a normal d-irreducible poset, then one of the following four posets is (d + 1)-irreducible:

$$Q, Q = \{(0, 1)\}, Q = \{(1, 0)\}, Q = \{(0, 1), (1, 0)\}.$$

We call a normal irreducible poset *P* regular if $P \otimes 2$ is irreducible, and irregular otherwise. For $k \ge 2$, the k-irreducible poset

$$\mathbf{P}(\mathbf{2}^k) = \mathbf{2} \otimes \mathbf{2} \otimes \cdots \otimes \mathbf{2} \quad (k \text{ times})$$

is clearly regular. In Section 6, we show that all 3-irreducible posets are regular. There is no known example of an irregular irreducible poset.

Theorem 4.8. Let P_1, P_2, \ldots, P_n $(n \ge 2)$ be normal posets, where each P_i equals 2 or is irreducible $(1 \le i \le n)$, and let $d = \dim P_1 + \dim P_2 + \cdots + \dim P_n$. The dimension product $P_1 \otimes P_2 \otimes \cdots \otimes P_n$ is d-irreducible except possibly when both the

following conditions are satisfied:

- (a) $P_i = 2$ holds for exactly one *i*, say $i = i_0$;
- (b) each P_i for $i \neq i_0$ is irregular.

Proof. If $P_i = 2$ holds for k values of i with $k \ge 2$, then by Lemma 4.5, we can drop these posets and substitute $2 \otimes 2 \cdots \otimes 2$ (k times), an irreducible poset. Therefore, if (a) fails, we can assume that each P_i is irreducible. In this case, the result follows by Proposition 4.6 and Lemma 4.5. We can now assume that (a) holds. If $P_i \otimes 2$ is irreducible for some $i \ne i_0$, then we again apply Proposition 4.6 and Lemma 4.5 in order to complete the proof.

Theorem 4.9 (The Embedding Theorem). If P is a completely normal d-irreducible poset and $k \ge 1$, there is a (d+k)-irreducible poset Q that contains P as a subposet. In fact, if $k \ge 2$, $Q = P \otimes \mathbf{P}(\mathbf{2}^k)$ will serve.

Proof. If k = 1, let Q be a (d+1)-irreducible poset of $P \otimes 2$ given by Corollary 4.7. Otherwise, let $Q = P \otimes P(2^k)$ which is (d+k)-irreducible by Theorem 4.8. For $x \in J^* = J^*(P)$, let $\varphi(x) = \langle x, 0 \rangle$, and for $x \in M^* = M^*(P)$ but $x \notin J^*$, let $\varphi(x) = \langle x, 1 \rangle$. Since $J^* \cup M^* = P(P) = P$, φ is a one-to-one map from P to Q. Let x < y in P. If $\varphi(y) = \langle y, 0 \rangle$, then $x \in J(P)$ by (N4). Since x is not a lower cover of 1 in L, $x \notin B(P)$. Therefore, $\varphi(x) = \langle x, 0 \rangle$. Hence, x < y in P implies $\varphi(x) < \varphi(y)$ in Q, and since the converse is obvious, P is isomorphic to a subposet of Q.

Remarks. (1) Note that the above proof requires only one-half of condition (N4).

(2) For any regular normal irreducible poset $P, P \otimes 2$ is regular by Theorem 4.8.

(3) If P_1, P_2, \ldots, P_n $(n \ge 2)$ are irreducible and normal and P_1 is regular, then $P_1 \otimes P_2 \otimes \cdots \otimes P_n$ is regular by Theorem 4.8.

(4) Any irreducible poset of length one satisfies (N4).

5. Regularity of $P_{n,k}$ and $Q_{n,k}$

If $C = (c_1, c_1, \dots, c_n)$ is a partial linear extension of a poset Q, then C(0) denotes $(\langle c_1, 0 \rangle, \langle c_2, 0 \rangle, \dots, \langle c_n, 0 \rangle)$, a partial linear extension of $Q \times 2$. C(1) is defined analogously. C(0, 1) denotes the following partial linear extension of $Q \times 2$:

$$(\langle c_1, 0 \rangle, \langle c_1, 1 \rangle, \langle c_2, 0 \rangle, \langle c_2, 1 \rangle, \dots, \langle c_n, 0 \rangle, \langle c_n, 1 \rangle).$$

Theorem 5.1. For k and n as in Theorem 3.1, $P_{n,k}$ is completely normal and regular.

Proof. We have already shown that $P_{n,k}$ is completely normal. Let $\bar{Q} = P_{n,k} \otimes 2 - \{\langle 1, 0 \rangle\}$. Clearly,

$$\operatorname{Crit}(\bar{Q}) = \{ \langle b^{\lambda}, 0 \rangle < \langle 0, 1 \rangle \mid 1 \leq \lambda \leq n \} \cup \{ \langle \downarrow_{i=1}^{\lambda}, 1 \rangle \\ < \langle a_{i}^{\mu}, 0 \rangle \mid \lambda \neq \mu; 1 \leq \lambda, \mu \leq n; 1 \leq i \leq k \}.$$

For g = 1 and $j \in [1, 2k - 1]$, let C_j and C'_j be as in the proof of Theorem 3.1, and let E_j and F_j be obtained by deleting d_0, d_1, \ldots, d_k from C_j and C'_j respectively. Note that $F_1, F_2, \ldots, F_{2k-1}$ realize $P_{n,k} - \{a_1^n\}$. Since a_1^1 is the first element of E_1, b^n is the first element of F_1 . Let $F_1^{\#}$ be F_1 with b^n deleted and let $B = (b^1, b^2, \ldots, b^{n-1})$. We define

$$F'_{1} = (\langle b^{n}, 0 \rangle, \langle 0, 1 \rangle, \langle b^{n}, 1 \rangle, F_{1}^{\#}(0, 1)),$$

$$F'_{j} = F_{j}(0, 1)$$

for $2 \leq j \leq 2k - 1$, and

 $F'_{2k} = (B(0), \langle 0, 1 \rangle, B(1), \langle a_1^n, 0 \rangle).$

We leave to the reader the verification that these 2k chains (when restricted to the underlying set of \overline{Q}) realize \overline{Q} . By duality, $P_{n,k}$ is regular.

Theorem 5.2. For k and n as in Theorem 3.3, $Q_{n,k}$ is completely normal and regular.

Proof. We know that $Q_{n,k}$ is completely normal. Let $Q = Q_{n,k} \otimes 2$ and $\overline{Q} = Q - \{(1, 0)\}$. Clearly,

$$\operatorname{Crit}(\bar{Q}) = \{ \langle b^{\lambda}, 0 \rangle < \langle 0, 1 \rangle \mid 1 \leq \lambda \leq n \} \cup \{ \langle d_{k-1}, 1 \rangle < \langle b^{\lambda}, 0 \rangle \mid 1 \leq \lambda \leq n \} \\ \cup \{ \langle c_{i+1}^{\lambda}, 1 \rangle < \langle a_{i}^{\mu}, 0 \rangle \mid \lambda \neq \mu; 1 \leq \lambda, \mu \leq n; 1 \leq i \leq k-1 \}.$$

By the proof of Theorem 3.3, there are chains $F_1, F_2, \ldots, F_{2k-2}$ that realize $Q_{n,k} - \{a_1^n\}$ such that b^n is the first element of F_1 . Let $F_1^{\#}, B, F_1'$ and F_i' $(2 \le j \le 2k-2)$ be defined as in the proof of Theorem 5.1. Also, let $F'_{2k-1} = (B(0), \langle 0, 1 \rangle, B(1), \langle a_1^n, 0 \rangle)$. $F'_1, F'_2, \ldots, F'_{2k-1}$ realize \overline{Q} .

Let $R = Q - \{(0, 1)\}$. Clearly,

$$\operatorname{Crit}(R) = \{ \langle 1, 0 \rangle < \langle b^{\lambda}, 1 \rangle \mid 1 \leq \lambda \leq n \} \cup \{ \langle d_{k-1}, 1 \rangle < \langle b^{\lambda}, 0 \rangle \mid 1 \leq \lambda \leq n \} \\ \cup \{ \langle c_{i-1}^{\lambda}, 1 \rangle < \langle a_{i}^{\mu}, 0 \rangle \mid \lambda \neq \mu; 1 \leq \lambda, \mu \leq n; 1 \leq i \leq k-1 \}.$$

If $C_1, C_2, \ldots, C_{2k-2}$ are linear extensions realizing $Q_{n,k} - \{d_{k-1}\}$, then R is realized by the restrictions to R of the following chains:

 $C_i(0, 1), \quad 1 \le i \le 2k - 2,$

and

$$= \langle \langle d_{k-2}, 1 \rangle, \langle b^1, 0 \rangle, \dots, \langle b^n, 0 \rangle, \langle 1, 0 \rangle, \langle b^1, 1 \rangle, \dots, \langle b^n, 1 \rangle \rangle$$

Therefore, $Q_{n,k}$ is regular.

6. All 3-irreducible posets are regular

Lemma 6.1. Let P be a 3-irreducible poset. Dropping (1, 0) from $P \otimes 2$ lowers the dimension if there are elements $a, b \in P$ with $a \parallel b$ such that:

- (i) If x < a in P, then $x \notin \mathbf{M}^*(\mathbf{P})$.
- (ii) If x > a in P, then $x \notin J^*(P)$.

(iii) In P, x < a implies x < b, and x > b implies x > a.

(iv) As binary relations, let $P^{\#} = P \cup \{\langle a, b \rangle\}$. (By (iii), $P^{\#}$ is a poset with the same underlying set as P.) $P^{\#}$ is a subposet of a planar lattice K, and there is a planar embedding of K in which a is on the right boundary.

Proof. Let λ be the left-to-right ordering for the planar embedding of K mentioned in (iv). (See [8] for more details.) There are two linear extensions $C_1^{\#}$ and $C_2^{\#}$ of K such that $x\lambda y$ implies x < y in $C_1^{\#}$ and y < x in $C_2^{\#}$. In particular, $C_1^{\#}$ and $C_2^{\#}$ realize K. Let C_1 and $C_2 = (D, a, E)$ be the restrictions of $C_1^{\#}$ and $C_2^{\#}$ to the underlying set of P. Also, let C_3 be a linear extension of $\{x \in P \mid a \neq x\}$. We define

$$C'_{1} = (\langle 0, 1 \rangle, C_{1}(0, 1)),$$

$$C'_{2} = (D(0), \langle a, 0 \rangle, \langle 0, 1 \rangle, \langle a, 1 \rangle, E(0, 1)),$$

$$C'_{3} = (C_{3}(0), \langle 0, 1 \rangle, \langle b, 1 \rangle, \langle a, 0 \rangle).$$

Clearly, each of these chains is a partial linear extension of $(P \cup \{0\}) \times 2$. If $x \neq b$ and $x \parallel a$ in P, then by condition (iv), $x \lambda a$, and consequently, a < x in C_2 . Therefore as sets $D = \{x \in P \mid x < a\}$ and $E = \{x \in P \mid x \leq a\}$. Let $Q = P \otimes 2$ and $\overline{Q} = Q - \{(1, 0)\}$. We shall show that the restrictions of C'_1, C'_2, C'_3 to the underlying set of \overline{Q} realize \overline{Q} .

Condition (i) implies that $\langle x, 1 \rangle$ occurs in C'_2 whenever $\langle x, 1 \rangle \in Q$ with $x \in P$. Let $s = \langle x, i \rangle || \langle y, j \rangle = t$ in Q, where $x, y \in P$ and $i, j \in 2$. By (N4), x || y in P. If $x \neq b$ or $y \neq a$, then s < t in C'_1 or C'_2 . Otherwise, s < t in C'_3 . Clearly, $\langle a, 0 \rangle < \langle 0, 1 \rangle$ in C'_2 . Let $\langle x, 0 \rangle \in Q$ with $x \neq a$. By condition (ii), $a \not\leq x$, and therefore, $\langle x, 0 \rangle < \langle 0, 1 \rangle$ in C'_3 . Since $\langle 0, 1 \rangle < \langle x, i \rangle$ in C'_1 for any $x \in P$ and $i \in 2$, the proof is complete.

In applying Lemma 6.1, we take advantage of the fact that L = L(P) is "nearly planar" for most 3-irreducible posets P. In each case, we add one element c to L to form K. We have a < c < b in K. The planar embedding of K is obtained by placing c at the unique crossing in the diagram of L given in [8] or [6], and then removing the (at most one) line that no longer represents a cover. (For the duals, the diagram is reflected top to bottom.)

Immediately following each poset to which Lemma 6.1 applies, we have listed the corresponding a and b (in the notation of [6]).

$$C: b_{3}, c_{3}; \qquad C^{d}: z_{3}, b_{3}; \qquad D: b_{2}, b_{3}; \qquad D^{d}: b_{3}, b_{2}; \qquad E_{n}: c, b_{n+3}; \\ E^{d}_{n}: b_{n+3}, c; \qquad F_{n}: a_{n+2}, d; \qquad G^{d}_{n}: c, b_{1}; \qquad H_{n}: c, d; \qquad CX_{1}: a_{3}, b_{3}; \\ CX_{1}^{d}: b_{3}, a_{3}; \qquad CX_{2}: a_{3}, c; \qquad CX_{2}^{d}: c, a_{3}; \qquad CX_{3}: a_{3} \ b_{3}; \\ CX_{3}^{d}: b_{3}, a_{3}; \qquad EX_{1}: a_{3}, b_{4}; \qquad EX_{1}^{d}: b_{4}, a_{3}; \qquad EX_{2}: a_{3}, b_{3}; \\ FX_{1}: a_{3}, b_{1}; \qquad FX_{1}^{d}: b_{1}, a_{3}; \qquad FX_{2}: a_{3}, b_{1}; \qquad I_{n}: c, b_{n+3}; \\ I^{d}_{n}: b_{n+3}, c; \qquad J^{d}_{n}: d, b_{1}.$$

We have shown (using duality) that all 3-irreducible posets, except possibly A_n ($n \ge 0$) and B, are regular. In Section 5, we showed that $B = Q_{3,2}^d$ is regular. By the following result, any poset of the form A_n is regular. Thus, all 3-irreducible posets are regular.

Lemma 6.2. Let P be a normal ineducible poset. Dropping (1, 0) from P \otimes 2 lowers the dimension if there is $a \in P$ such that:

- (i) a is minimal in P.
- (ii) $a \notin \mathbf{M}^*(\mathbf{P})$.
- (iii) In P, x > a implies $x \notin \mathbf{J}^*(P)$.

Proof. Let $J^* = J^*(P)$, $Q = P \otimes \mathbb{C}$, and $\overline{Q} = Q - \{(1, 0)\}$. Assume that dim P = d. Let $C_1, C_2, \ldots, C_{d-1}$ be linear extensions of $P^{\#} = P - \{a\}$ that realize $P^{\#}$. Let

 $C'_{1} = (\langle a, 0 \rangle, \langle 0, 1 \rangle, C_{1}(0, 1)),$

and $C'_i = C_i(0, 1)$ for $2 \le i \le d - 1$. Let A be a linear extension of $\{x \in P \mid a < x\}$, B be a linear extension of $\{x \in P \mid a \le x\}$ and

 $C'_d = (B(0), \langle 0, 1 \rangle, B(1), \langle a, 0 \rangle, A(1)).$

Each of the chains C'_1, C'_2, \ldots, C'_d is clearly a partial linear extension of $(P \cup \{0\}) \times 2$. We shall show that \overline{Q} is realized by the restrictions of these chains to the underlying set of \overline{Q} .

Condition (ii) implies that $\langle a, 1 \rangle \notin Q$. The letters x and y denote elements of $P^{\#}$. If $x \parallel y$ in P and x < y in C_i with $1 \le i \le d-1$, then $\langle x, j \rangle < \langle y, k \rangle$ in C'_i whenever $j, k \in \mathbf{2}$. If x < y in P and $y \in J^*$, then $\langle x, 1 \rangle < \langle y, 0 \rangle$ in C'_1 and $\langle y, 0 \rangle < \langle x, 1 \rangle$ in C'_d . (Note that (N4) would imply that $\langle x, 1 \rangle \notin Q$.) If $x \in J^*$, $\langle a, 0 \rangle < \langle 0, 1 \rangle < \langle x, 0 \rangle$ in C'_1 and $\langle x, 0 \rangle < \langle 0, 1 \rangle < \langle a, 0 \rangle$ in C'_d . If $a \not \leqslant x$, then $\langle a, 0 \rangle < \langle x, 1 \rangle$ in C'_1 and $\langle x, 1 \rangle < \langle a, 0 \rangle$ in C'_d . This completes the proof of the lemma.

Remarks. (1) The dual of Lemma 6.2 could have been applied in the last part of the proof of Theorem 5.2.

(2) Let P be an irreducible poset of length one with $|Irr(P)| = \emptyset$. Clearly, P is completely normal. It follows from Lemma 6.2 that P is also regular.

7. Irreducible posets

Table 1 gives data for the (k+3)-irreducible posets of the form $Q = P \otimes \mathbb{P}(2^k)$, where P is a 3-irreducible poset and $k \ge 1$. Note that the length of Q is independent of k, and can be given any positive value by suitably choosing P.

Let $d \ge 4$. There are no *d*-irreducible posets with less than 2*d* elements (Hiraguchi [5]) or with exactly 2d + 1 elements (Kimb e [9]). Table 1 contains

Ta	b	e	1

Р	Size	$P \otimes \mathbf{P}(2^k)$		
	of P	Size	Length	Width
An	2n+6	2n+6+2k	1	n+3+k
B	7	10 + 2k	2	4+k
С	7	10 + 2k	3	3+k
D	6	9 + 2k	3	3+k
E_n	2n + 7	2n + 10 + 2k	2	n+4+k
F,	2n + 7	2n + 10 + 2k	3	n+3+k
G _n	2n + 7	4n + 12 + 2k	n+3	3+k
H _n	2n + 7	4n + 12 + 2k	n + 3	4 + k
CX_1	7	10 + 2k	3	3+k
cx;	7	10 + 2k	2	4+k
CX_3	7	9 + 2k	3	3+k
$\mathbf{E}\mathbf{X}_{1}^{'}$	7	10 + 2k	2	4 + k
EX,	7	10 + 2k	3	3+k
FX_1	7	10 + 2k	3	3+k
FX,	7	10 + 2k	3	3+k
Ĩ,	2n + 8	2n + 11 + 2k	3	n+4+k
J_n	2n + 8	4n + 12 + 2k	n+3	3+k

d-irreducible posets of any cardinality $\ge 2d + 2$. In fact, W.T. Trotter, Jr. [15] can construct such posets that are of length one.

 $A_n \otimes G_n$ is a 6-irreducible poset whose length = width =: n+3. By the Embedding Theorem, the following statement holds if $d \ge 6$: For any n, there is a d-irreducible poset whose length and width both exceed n.

This statement is false if d = 3. What happens if d = 4 or d = 5?

References

- [1] K.A. Baker, Dimension, join-independence, and breadth in partially ordered sets, 1961 (unpublished).
- [2] B. Banaschewski, Hüllensysteme und Erweiterungen von Quasi-Ordnungen, Z. Math. Logik Grundlagen Math. 2 (1956) 117-130.
- [3] G. Birkhoff, Lattice Theory, 3rd. ed. (American Mathematical Society, Providence, RI, 1967).
- [4] B. Dushnik and E.W. Miller, Partially ordered sets, Amer. J. Math. 63 (1941) 600-610.
- [5] T. Hiraguchi, On the dimension of orders, Sci. Rep. Kanazawa Univ. 4 (1955) 1-20.
- [6] D. Kelly, The 3-irreducible partially ordered sets, Canad. J. Math. 29 (1977) 367-383.
- [7] D. Kelly and I. Rival, Crowns, fences and dismantable lattices, Canad. J. Math. 26 (1974) 1257-1271.
- [8] D. Kelly and I. Rival, Planar lattices, Canad. J. Math. 27 (1975) 636-665.
- [9] R. Kimble, Extremal problems in dimension theory for partially ordered sets, Ph.D. thesis, M.I.T. (1973).
- [10] J. Schmidt, Zur Kennzeichnung der Dedekind-MacNeilleschen Hülle einer geordneten Menge, Arch. Math. 7 (1956) 241-249.
- [11] E. Szpilrajn, Sur l'extension de l'ordre partiel, Fund. Math. 16 (1930) 386-389.
- [12] W.T. Trotter, Jr., Dimension of the crcwn S_n^k , Discrete Math. 8 (1974) 85-103.

- [13] W.T. Trotter, Jr., Irreducible posets with large height exist, J. Combinatorial Theory (Ser. A) 17 (1974) 337-344.
- [14] W.T. Trotter, Jr., Combinatorial problems in dimension theory for partially ordered sets, Proceedings of Combinatorics and Graph Theory, Conference held at University of Paris (Orsay), 1976.
- [15] W.T. Trotter, Jr., Private communication.
- [16] W.T. Trotter, Jr., and J.I. Moore, Jr., The dimension of planar posets, J. Combinatorial Theory (Ser. B) 22 (1977) 54-67.
- [17] W.T. Trotter, Jr., and J.I. Moore, Jr., Characterization problems for graphs, partially ordered sets, lattices and families of sets, Discrete Math. 4 (1976) 361-381.