On the disc-structure of perfect graphs II. The co- C_{4}-structure

Chính T. Hoàng
Department of Physics and Computing, Wilfrid Laurier University, Waterloo, Ontario, Canada N2L-3C5

Received 23 December 1999; revised 2 March 2001; accepted 2 April 2001

Abstract

Let \mathscr{F} be any family of graphs. Two graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are said to have the same \mathscr{F}-structure if there is a bijection $f: V_{1} \rightarrow V_{2}$ such that a subset S induces a graph belonging to \mathscr{F} in G_{1} iff its image $f(S)$ induces a graph belonging to \mathscr{F} in G_{2}. We prove that if a C_{5}-free graph H has the $\left\{2 K_{2}, C_{4}\right\}$-structure of a perfect graph G then H is perfect. (C) 2002 Published by Elsevier Science B.V.

Keywords: Perfect graphs; Graph colouring

1. Introduction

A graph G is perfect if for each induced subgraph H of G, the chromatic number of H equals the number of vertices in a largest clique of H. A hole is a chordless cycle with at least four vertices. An anti-hole is the complement of a hole. Berge [1] proposed the conjecture that a graph is perfect iff it does not contain an odd hole or its complement as an induced subgraph. This conjecture is known as the Strong Perfect Graph Conjecture (SPGC for short) and is still open. A weaker conjecture, also proposed by Berge, states that a graph is perfect if and only if its complement is. This conjecture was proved by Lovász [10] and this result is known nowadays as the Perfect Graph Theorem (PGT for short). We shall call a graph Berge if it contains no odd hole and no odd anti-hole as induced subgraphs.

We would like to propose a generalization of the PGT. For this purpose, we need a few definitions. Let \mathscr{F} be a family of graphs. Two graphs $G_{1}=\left(V_{1}, E_{1}\right), G_{2}=\left(V_{2}, E_{2}\right)$ are said to have the same \mathscr{F}-structure if there is a bijection $f: V_{1} \rightarrow V_{2}$ such that a subset S induces a graph belonging to \mathscr{F} in G_{1} iff its image $f(S)$ induces a graph

[^0]belonging to \mathscr{F} in G_{2}. A graph is called a disc if it is isomorphic to a hole with at least five vertices or the complement of such a hole. Holes and discs play special roles in perfect graph theory. For example, it is well known that hole-free (triangulated) graphs are perfect, and a theorem of Hayward showed that disc-free graphs are perfect [4]. Define the disc-structure to be the \mathscr{F}-structure with \mathscr{F} being the set of discs of all lengths.

Chvátal [2] conjectured and Reed [13] proved that perfection of a graph depends only on its $\left\{P_{4}\right\}$-structure. In other words, Reed's theorem states that a graph H is perfect iff it has the $\left\{P_{4}\right\}$-structure of some perfect graph G. Since the P_{4} is an induced subgraph of a disc, the disc-structure, in some sense, generalizes the P_{4}-structure. And it is natural to conjecture that perfection of a graph depends only on its disc-structure.

Conjecture 1 (Disc Conjecture). If a graph H has the disc-structure of a perfect graph G then H is perfect.

Both Reed's theorem and the Disc Conjecture are semi-strong perfect graph statements, in the sense that they imply the PGT and are implied by the SPGC (however, the known proofs of all semi-strong perfect graph theorems rely on the PGT). Also, one can restate the SPGC as a statement on the odd disc-structure. At the moment, a proof of the Disc Conjecture seems hard to find. Even a seemingly much simpler statement, that in a minimal imperfect graph every P_{4} extends into a disc, has not been established. By observing that every disc contains a hole, we propose studying the hole- and co-hole-structure of a graph. Define the hole-structure (respectively, co-hole-structure) to be the \mathscr{F}-structure with \mathscr{F} being the set of holes of all lengths (respectively, set of holes and anti-holes of all lengths). The hole-structure is not invariant under complementation, but the co-hole-structure is (we shall discuss the hole-structure later). Thus the following theorem is also a semi-strong perfect graph theorem.

Theorem 1. If a graph H has the co-hole structure of a perfect graph G then H is perfect.

We find it more convenient to prove a stronger statement. It is customary to let $2 K_{2}$ denote the complement of C_{4}. Obviously, if two graphs have the same co-hole-structure then they have the same $\left\{C_{4}, 2 K_{2}\right\}$-structure; and, if H has the co-hole-structure of a perfect graph G, then H must be C_{5}-free. Thus, Theorem 1 is implied by the following theorem, to provide its proof is the purpose of this paper.

Theorem 2. If a C_{5}-free graph H has the $\left\{2 K_{2}, C_{4}\right\}$-structure of a perfect graph G then H is perfect.

Every disc, except for the C_{5}, contains a $2 K_{2}$ or C_{4} as an induced subgraph. In this sense, Theorem 2 is a weakening of the Disc Conjecture. Conceivably, one could prove that if two graphs H and G have the same disc-structure but not the same

Fig. 1.
$\left\{2 K_{2}, C_{4}\right\}$-structure then they must have a certain property P (like having a star-cutset or an even pair) that minimal imperfect graphs cannot have. Then, Theorem 2 could contribute to a proof of the Disc Conjecture in the following way. Let H and G be two graphs with the same disc-structure. Without loss of generality, we may assume that H is minimal imperfect and G is perfect. Since H cannot have property P (assuming we have a proof for P), H and G must have the same $\left\{2 K_{2}, C_{4}\right\}$-structure, contradicting Theorem 2. The same approach was used in [8] to prove a theorem on the sibling-structure of perfect graphs using Reed's theorem on the P_{4}-structure (see Fig. 1).
In Section 2, we shall give definitions and background results. We shall give a proof of the above theorem in Sections 3-8. In the last section (Section 9), we shall discuss a conjecture (The Hole Conjecture) related to the Disc Conjecture.

2. Background

In this section, we introduce definitions and background results needed to prove Theorem 2. Let G be a graph. Then \bar{G} denotes the complement of G. Let S be a set of vertices of G. $G[S]$ shall denote the subgraph of G induced by $S . S$ is homogeneous if $2 \leqslant|S|<|V(G)|$ and every vertex outside S is adjacent to all or to no vertices of $S . S$ is called a star-cutset if $G-S$ is not connected and in S there is a vertex adjacent to all other vertices of S. Let x be a vertex of G, then $N_{G}(x)$ denotes the set of vertices adjacent to x in G. A vertex x is said to dominate a vertex y in G in $N_{G}(y) \subseteq N_{G}(x) \cup\{x\}$. Vertices x and y are comparable if x dominates y or vice versa. By C_{k}, we denote the chordless cycle of length k. By $v_{1} v_{2} \ldots v_{k}$ we denote the chordless cycle with vertices $v_{1}, v_{2}, \ldots, v_{k}$ and edges $v_{i} v_{i+1}$ for $1 \leqslant i \leqslant k$ with $v_{k+1}=v_{1}$. An even-pair is a set of two vertices x, y such that every induced path joining x to y has an even number of edges. If $x y \in E(G)$ then we say that x sees y in G, else we say that x misses y in G.
A graph is minimal imperfect if it is not perfect but each of its proper induced subgraphs is. The PGT implies that a graph is minimal imperfect iff its complement is. We shall rely on a number of results on minimal imperfect graphs. In the remainder of this section, we let H be a minimal imperfect graph.

Chvátal [3] proved that
H cannot contain a star-cutset.

From (1), it is easy to see that
no vertex in H can dominate another vertex.
Using (1), Hoàng [7] showed that
in H, each P_{3} extends into a hole.
(1) also implies the following statement which was first established by Lovász [10]:
H cannot contain a homogeneous set.
Meyniel [11] proved that
H cannot contain an even-pair.
Let $\alpha(H)$ denote the number of vertices of a largest stable set in H. A theorem of Padberg [12] showed that
each vertex in H belongs to $\alpha(H)$ stable sets of size $\alpha(H)$.
Finally, Hayward [4] proved that
H must contain a disc.

3. Proof of Theorem 2

Let G be a perfect graph and suppose that a C_{5}-free graph H has the $\left\{2 K_{2}, C_{4}\right\}$ structure of G. We may assume that G and H are defined on the same set of vertices so that a subset S of $V(H)(=V(G))$ induces a C_{4} or a $2 K_{2}$ in H iff S induces a C_{4} or a $2 K_{2}$ in G. We may assume that H is imperfect and so it contains, as induced subgraph, a minimal imperfect graph. Thus we may assume that H is minimal imperfect. By (7), we may assume that H contains a disc D and by replacing H by its complement if necessary we may assume that $H[D]$ is a hole of length at least 6 .

By $Q_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$, we denote the graph with vertices $v_{1}, v_{2}, \ldots, v_{k}$ such that, for any i, j with $i<j$, the edge $v_{i} v_{j}$ is present iff $j-i \geqslant 3$ and $|j-i|$ is odd. By $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right](k \geqslant 6)$ for an even integer k, we denote the graph $Q_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]-$ $v_{1} v_{k}$ (Fig. 2 shows the graphs Q_{8} and Z_{8}). Note that $Z_{k}-x$ is isomorphic to Q_{k-1} for any vertex $x \in Z_{k}$. A domino is the graph obtained from a C_{6} by adding a chord that does not form a triangle with two edges of the C_{6}. A co-domino is the complement of a domino (see Fig. 3). The following lemma shows that H must be Berge.

Lemma 1. Let H^{\prime} and G^{\prime} be two graphs defined on the same set of vertices such that a subset S of $V\left(H^{\prime}\right)=V\left(G^{\prime}\right)$ induces a $2 K_{2}$ or a C_{4} in H^{\prime} iff S induces a $2 K_{2}$ or a C_{4} in G^{\prime}. Suppose that H^{\prime} is a hole $v_{1} v_{2} \ldots v_{k}$. If k is odd and at least 7 then G^{\prime} or \bar{G}^{\prime} is the same hole $v_{1} v_{2} \ldots v_{k}$; if k is even and at least 8 then G^{\prime} or \bar{G}^{\prime} is the same hole $v_{1} v_{2} \ldots v_{k}$ or the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$; and if $k=6$ then G^{\prime} or \bar{G}^{\prime} is one

Fig. 2.

Fig. 3.
of the following graphs:
(i) $Z_{6}\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right]$,
(ii) the co-domino,
(iii) the $C_{6} ' s v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}, v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}, v_{1} v_{3} v_{2} v_{4} v_{6} v_{5}$,
(iv) the $C_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$.

The Theorem follows from the following four Lemmata.
Lemma 2. If there is a set D of vertices such that $H[D]$ is the hole $v_{1} v_{2} \ldots v_{k}$, and $G[D]$ or $\bar{G}[D]$ is the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ then H has a homogeneous set, or an even-pair.

Lemma 3. If $H[D]$ is a C_{6}, and $G[D]$ is a domino or co-domino then H contains an even-pair.

Lemma 4. If $H[D]$ is the $C_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$, and $G[D]$ or $\bar{G}[D]$ is one of the C_{6} 's $v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}, v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}, v_{1} v_{3} v_{2} v_{4} v_{6} v_{5}$ then some v_{i} belongs to precisely one stable set of size $\alpha(H)$ in H, or H has a star-cutset. In particular, H is not minimal imperfect.

Lemmata 2, 3, and 4 imply that whenever $H[D]$ is a hole of length at least six, $G[D]$ must be the same hole with the same cyclic order, or its complement. The following lemma shall complete the proof of the theorem.

Lemma 5. Suppose that, for any set D of vertices, whenever $H[D]$ is the hole $v_{1} v_{2} \ldots v_{k}$ $(k \geqslant 6), G[D]$ or $\bar{G}[D]$ is the hole $v_{1} v_{2} \ldots v_{k}$. Then G or \bar{G} is isomorphic to H.

We shall prove Lemmata $1-5$ in the remainder of this paper.

4. Proof of Lemma 1

Observation 1. Suppose a graph G^{\prime} has the $\left\{2 K_{2}, C_{4}\right\}$-structure of the induced path P_{k} with $k \geqslant 6$. Then, either (i) G^{\prime} contains a $2 K_{2}$ and no C_{4} and has the $\left\{2 K_{2}\right\}$-structure of P_{k}, or (ii) G^{\prime} contains a C_{4} and no $2 K_{2}$ and has the $\left\{C_{4}\right\}$-structure of $\overline{P_{k}}$.

Proof. Let S_{1}, S_{2}, \ldots be the four-vertex sets of the $P_{k}(k \geqslant 6)$ that induce a $2 K_{2}$. Let $f\left(S_{i}\right)$ denote the image of S_{i} in G^{\prime}. It is easy to prove (by induction on k) that for any two sets S_{i}, S_{j}, there is a sequence $S_{i}, S_{i_{1}}, S_{i_{2}}, \ldots, S_{j}$ such that any two consecutive sets in the sequence intersect at three vertices. Thus if $f\left(S_{i}\right)$ induces a $2 K_{2}$ (respectively, C_{4}) in G^{\prime}, then the image of every set in this sequence induces a $2 K_{2}$ (respectively, C_{4}) in G^{\prime}. So, if some $f\left(S_{i}\right)$ induces a $2 K_{2}$ (respectively, C_{4}) in G^{\prime}, then G^{\prime} contains no C_{4} (respectively, no $2 K_{2}$) and has the $\left\{2 K_{2}\right\}$-structure (respectively, $\left\{C_{4}\right\}$-structure) of a P_{k} (respectively, $\overline{P_{k}}$).

The following observation can be proved by a routine case analysis and so we omit the proof.

Observation 2. The only graph with the $\left\{2 K_{2}\right\}$-structure of the $P_{6} v_{1} v_{2} \ldots v_{6}$ is the $P_{6} v_{1} v_{2} \ldots v_{6}$ itself, or the $P_{6} v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}$, or the graph $Q_{6}\left[v_{1}, v_{2}, \ldots, v_{6}\right]$.

Observation 3. Let H^{\prime} be the $P_{k} v_{1} v_{2} \ldots v_{k}$ with $k \geqslant 6$ and G^{\prime} be a graph with the $\left\{2 K_{2}\right\}$-structure of H^{\prime}. If $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right]$ is the graph $Q_{k-1}\left[v_{1}, v_{2}, \ldots, v_{k-1}\right]$, then G^{\prime} is the graph $Q_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$. If $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right]$ is the $P_{k-1} v_{1} v_{2} \ldots v_{k-1}$, then G^{\prime} is the graph $P_{k} v_{1} v_{2} \ldots v_{k}$.

Proof. By induction on k. It is easy to see that the Observation is true for $k=6$. Assume that the Observation is true for k (we shall show that it is true for $k+1$).

Consider the graph $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}\right]$. Suppose that $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right]$ is the graph $Q_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$. For $i=1,2, \ldots, k-3$, the $2 K_{2}\left\{v_{i}, v_{i+1}, v_{k}, v_{k+1}\right\}$ implies that $v_{i} v_{k+1} \in E\left(G^{\prime}\right)$ if and only if $k-i$ is even and at least two. Thus, $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k+1}\right\}\right]$ is the graph $Q_{k+1}\left[v_{1}, v_{2}, \ldots, v_{k+1}\right]$. A similar argument shows that if $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k}\right\}\right]$ is the graph $P_{k} v_{1} \ldots v_{k}$ then $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k}, v_{k+1}\right\}\right]$ is the graph $P_{k+1} v_{1} \ldots v_{k} v_{k+1}$.

Observation 4. The only graphs with the $\left\{2 K_{2}\right\}$-structure of the $P_{k} v_{1} v_{2} \ldots v_{k}(k \geqslant 7)$ is the $P_{k} v_{1} v_{2} \ldots v_{k}$ itself and the $Q_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Proof. Using Observations 2 and 3, one can show (see Appendix, Fact 1) that the Observation is true for $k=7$. Now, using induction on k and Observation 3, we can see that the Observation must hold.

Observation 5. Let H^{\prime} be the hole $C_{k} v_{1} v_{2} \ldots v_{k}(k \geqslant 7)$, and G^{\prime} be a graph having the $\left\{2 K_{2}\right\}$-structure of H^{\prime}. Then
(i) if k is odd then G^{\prime} is the hole $C_{k} v_{1} v_{2} \ldots v_{k}$,
(ii) if k is even then G^{\prime} is the hole $C_{k} v_{1} v_{2} \ldots v_{k}$ or the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Proof. Using Observation 2 and a simple case analysis, one can show that the Observation is true for $k=7$. Suppose that $k>7$. Write $F=G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{k-1}\right\}\right]$. If F is the $P_{k-1} v_{1} \ldots v_{k-1}$ then it is easy to see that G^{\prime} is the hole $v_{1} \ldots v_{k}$. By Observation 4, we may now assume that F is the graph $Q_{k-1}\left[v_{1}, v_{2}, \ldots, v_{k-1}\right]$. Since $G^{\prime}\left[\left\{v_{k-2}, v_{k-3}, \ldots, v_{1}, v_{k}\right\}\right]$ is a Q_{k-1}, by Observation 3 , we know that $G^{\prime}\left[\left\{v_{k-2}, v_{k-3}, \ldots, v_{1}, v_{k}\right\}\right]$ is the graph $Q_{k}\left[v_{k-2}, v_{k-3}, \ldots, v_{1}, v_{k}\right]$. In particular, we have $v_{k} v_{1}, v_{k} v_{2} \notin E\left(G^{\prime}\right)$. If k is odd then by definition of F, we have $v_{2} v_{k-1}, v_{2} v_{3} \notin E\left(G^{\prime}\right)$ and so $\left\{v_{2}, v_{3}, v_{k}, v_{k-1}\right\}$ does not induce a $2 K_{2}$ or C_{4} in G^{\prime}, a contradiction. So we know that k is even. The $2 K_{2}\left\{v_{2}, v_{3}, v_{k}, v_{k-1}\right\}$ of H^{\prime} implies that $v_{k} v_{k-1} \notin E\left(G^{\prime}\right)$. Thus G^{\prime} is the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

Now we can complete the proof of Lemma 1.
Let H^{\prime} be the hole $v_{1} v_{2} \ldots v_{k}$. By replacing G^{\prime} by its complement if necessary, we may assume that some set S of G^{\prime} induces a $2 K_{2}$. Suppose that $k \geqslant 7$. It follows from Observation 1 that G^{\prime} has the $\left\{2 K_{2}\right\}$-structure of H^{\prime}, and the Lemma follows from Observation 5. Now, suppose $k=6$. If G^{\prime} has the $\left\{2 K_{2}\right\}$-structure of H^{\prime}, then a simple case analysis (see Appendix A, Fact 2) shows that G^{\prime} is the graph $Z_{6}\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right]$, or one of the C_{6} 's $v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}, v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}, v_{1} v_{3} v_{2} v_{4} v_{6} v_{5}, v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$. We may now suppose that some set X different from S induces a C_{4} in G^{\prime}. Let H^{\prime} induce the $C_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$. Write $S_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}, S_{3}=\left\{v_{1}, v_{6}, v_{3}, v_{4}\right\}$. Then each S_{j} induces a $2 K_{2}$ in H^{\prime}. By interchanging G^{\prime} with its complement if necessary, we may assume that one of these three sets induces a C_{4} in G^{\prime} and the remaining two sets induce a $2 K_{2}$ in G^{\prime}. A case analysis (see Appendix A, Fact 3) shows that G^{\prime} must be a co-domino. Actually, we can describe the labelling of the co-domino in more detail. Without loss of generality, we may assume that, in G^{\prime}, S_{1} induces a C_{4},
and S_{2}, S_{3} induce a $2 K_{2}$. It is a routine matter to verify that the co-domino must be one of the four (labelled) graphs shown in Fig. 3.

5. Proof of Lemma 2

Define $P_{H}(D)$ (respectively, $U_{H}(D), R_{H}(D)$) to be the set of vertices outside D that see some but not all (respectively, all, no) vertices of D in H. We shall say that a set S of vertices is bad if $G[S]$ is a $2 K_{2}$ or C_{4} and $H[S]$ is not, or vice versa.

Let D be the smallest set of vertices such that $H[D]$ is the hole $v_{1} v_{2} \ldots v_{k}$, and $G[D]$ or its complement is the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$. By replacing G by its complement if necessary, we may assume that $G[D]$ is the graph $Z_{k}\left[v_{1}, v_{2}, \ldots, v_{k}\right]$.

We may assume that $P_{H}(D)$ is not empty for otherwise D is a homogeneous set or $D=V(H)$ implying that H has an even-pair. We claim that

$$
\begin{equation*}
\text { no vertex } x \in P_{H}(D) \text { forms a } C_{r} \text { with a path } P_{r-1} \text { of } D, r \geqslant 4 \text {. } \tag{8}
\end{equation*}
$$

Suppose that, for some i, some $x \in P_{H}(D)$ forms in H a C_{r} with a path $P_{r-1} v_{i} v_{i+1} \ldots$ v_{i+r-2} of $D, r \geqslant 4$. We must have $r \neq 4$, for otherwise $\left\{x, v_{i}, v_{i+1}, v_{i+2}\right\}$ is a bad C_{4} in H. Since H contains no odd hole, we have that r is even and at least six. Lemma 1 implies that $X=G\left[\left\{x, v_{i}, v_{i+1}, \ldots, v_{i+r-2}\right\}\right]$ is a hole, or anti-hole, or Z_{r}, or \bar{Z}_{r}. But it is easy to see that X cannot be a hole, or anti-hole, or \bar{Z}_{r}. Thus X is the graph $Z_{r}\left[x, v_{i}, v_{i+1}, \ldots, v_{i+r-2}\right]$. In particular, we have $x v_{i}, x v_{i+1} \notin E(G)$ and $x v_{i+2} \in E(G)$. We must have $r=k$ for otherwise the hole $x v_{i} \ldots v_{i+r-2}$ contradicts the choice of D. Let y be the vertex in D that sees v_{i} and v_{i+r-2} in H. If $x y \notin E(H)$ then the $C_{4} x v_{i} y v_{i+r-2}$ is bad in H, if $x y \in E(H)$ then the $2 K_{2}\left\{x, y, v_{i+1}, v_{i+2}\right\}$ is bad in H (we have $y v_{i+1} \notin$ $E(G), y v_{i+2} \in E(G)$ by definition of Z_{k}). Thus (8) is justified.

We claim that
in H, each vertex $x \in P_{H}(D)$ has precisely one neighbour in D.
Suppose there is a vertex x in $P_{H}(D)$ that has at least two neighbours in D. By (8), it is easy to see that, in H, x has precisely two neigbours in D, and furthermore, these two neighbours are consecutive vertices v_{i}, v_{i+1} of D. We shall implicitly refer to Observations 1-4 many times. The induced path $v_{i+2} v_{i+3} \ldots v_{i-1} v_{i} x$ of H implies that its corresponding image in G is the graph $Q_{k}\left[v_{i+2}, v_{i+3}, \ldots, v_{i-1}, v_{i}, x\right]$. Since k is even, we have $x v_{i+2} \in E(G)$. Now the induced path $x v_{i+1} v_{i+2} \ldots v_{i-1}$ of H implies that its image in G is the graph $Q_{k}\left[x, v_{i+1}, v_{i+2}, \ldots, v_{i-1}\right]$; in particular, we have $x v_{i+2} \notin E(G)$, a contradiction. Thus, (9) is justified.

We shall show that
in H, each vertex in D has at most one neighbour in $P_{H}(D)$.
Suppose a vertex v_{i} has two neighbours x, y in $P_{H}(D)$. Write $S_{1}=\left\{x, v_{i}, v_{i+1}, \ldots, v_{i-2}\right\}$, $S_{2}=\left\{y, v_{i}, v_{i+1}, \ldots, v_{i-2}\right\}$. By (9), S_{j} is a chordless path for $j=1,2$. By Observations

1,2 and 4 , we know that $G\left[S_{j}\right]$ is the graph $Q_{k}\left[z, v_{i}, v_{i+1}, \ldots, v_{i-2}\right]$ with $z=x$ if $j=1$, and $z=y$ if $j=2$. In particular, in G, x and y see v_{i+2}, v_{i+4} and miss v_{i}, v_{i+1}, v_{i+3}. If $x y \in E(G)$ then $\left\{x, y, v_{i}, v_{i+3}\right\}$ is a bad $2 K_{2}$ in G, if $x y \notin E(G)$ then $\left\{x, y, v_{i+2}, v_{i+4}\right\}$ is a bad C_{4} in G. Thus (10) is justified.

Next, we shall show that

$$
\begin{equation*}
\text { in } H \text {, if } v_{i} \text { has a neighbour in } P_{H}(D) \text { then } v_{i+1} \text { has no neighbour in } P_{H}(D) \tag{11}
\end{equation*}
$$

Suppose that, in H, there is a vertex v_{i} such that v_{i} sees a vertex $x \in P_{H}(D)$ and v_{i+1} sees a vertex $y \in P_{H}(D)$. By Observations 2 and 4, the image in G of the induced path $x v_{i} v_{i-1} \ldots v_{i+2}$ of H is the graph $Q_{k}\left[x, v_{i}, v_{i-1}, \ldots, v_{i+2}\right]$. This implies $x v_{i}, x v_{i-1} \notin$ $E(G)$. Similarly, the image in G of the induced path $x v_{i} v_{i+1} \ldots v_{i-2}$ of H is the graph $Q_{k}\left[x, v_{i}, v_{i+1}, \ldots, v_{i-2}\right]$. This implies $x v_{i+1}, x v_{i+3} \notin E(G)$ and $x v_{i+2} \in E(G)$. The image in G of the induced path $y v_{i+1} v_{i+2} \ldots v_{i-1}$ is the graph $Q_{k}\left[y, v_{i+1}, v_{i+2}, \ldots, v_{i-1}\right]$. This implies $y v_{i+1}, y v_{i+2} \notin E(G)$ and $y v_{i+3} \in E(G)$. The image in G of the induced path $y v_{i+1} v_{i} v_{i-1} \ldots v_{i+3}$ is the graph $Q_{k}\left[y, v_{i+1}, v_{i}, v_{i-1}, \ldots, v_{i+3}\right]$. This implies $y v_{i} \notin E(G)$ and $y v_{i-1} \in E(G)$. We must have $x y \notin E(H)$ for otherwise $x y v_{i} v_{i+1}$ is a bad C_{4} in H, and $x y \in E(G)$ for otherwise $\left\{x, v_{i+2}, y, v_{i+3}\right\}$ is a bad $2 K_{2}$ in G. Now, $x y v_{i-1} v_{i+2}$ is a bad C_{4} in G. Thus (11) holds.
Let v_{i} be a vertex in D that has a neighbour in $P_{H}(D)$. To conclude the proof, we claim that

$$
\begin{equation*}
\left\{v_{i}, v_{i+2}\right\} \text { is an even pair of } H . \tag{12}
\end{equation*}
$$

Suppose there is in H an odd induced path P with endpoints v_{i} and v_{i+2}. The interior vertices of P must belong to $R_{H}(D) \cup P_{H}(D) \cup\left(D-\left\{v_{i}, v_{i+1}, v_{i+2}\right\}\right)$. By (11), v_{i+1} sees no interior vertex of P in H. But then P and v_{i+1} form an odd hole of H, a contradiction.

6. Proof of Lemma 3

Let $H[D]$ induce the $C_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$. The proof of Lemma 1 allows us to assume that $G[D]$ is one of the four (labelled) graphs shown in Fig. 3. In particular, in G, S_{1} must be the $C_{4} v_{1} v_{2} v_{4} v_{5}$.

First, we shall show that
in H, there is no vertex y outside D that sees v_{2} and misses v_{4}.
Suppose that such a vertex y exists. We shall show that

$$
\begin{equation*}
y \text { sees } v_{5} \text { in } H . \tag{14}
\end{equation*}
$$

Suppose that y misses v_{5} in H. The $2 K_{2}\left\{y, v_{2}, v_{4}, v_{5}\right\}$ of H implies that, in G, y sees v_{2}, v_{5} and misses v_{4}. Next, we have
$y v_{1} \in E(G)$, for otherwise G contains the bad $C_{4} v_{1} v_{5} y v_{2}$,
$y v_{6} \in E(H)$, for otherwise H contains the $\operatorname{bad} 2 K_{2}\left\{y, v_{2}, v_{5}, v_{6}\right\}$,
$y v_{1} \in E(H)$, for otherwise H contains the bad $C_{4} y v_{2} v_{1} v_{6}$.
Now, H contains the bad $2 K_{2}\left\{y, v_{1}, v_{4}, v_{5}\right\}$. Thus, (14) is justified.
We continue the proof of (13). We may suppose such a vertex y exists and that $y v_{5} \in E(H)$. We must have $y v_{3} \in E(H)$, for otherwise H contains the $C_{5} y v_{2} v_{3} v_{4} v_{5}$, a contradiction. We shall argue using the four graphs in Fig. 3.

First, suppose that $G[D]$ is the graph D_{1}. The $C_{4} y v_{3} v_{4} v_{5}$ of H implies that y sees v_{3} and misses v_{4}, v_{5} in G. We must have
$y v_{6} \in E(G)$, for otherwise G contains the bad $2 K_{2}\left\{v_{3}, y, v_{4}, v_{6}\right\}$,
$y v_{2} \notin E(G)$, for otherwise G contains the bad $C_{4} y v_{2} v_{4} v_{6}$.
But now, G contains the $C_{5} v_{3} v_{2} v_{4} v_{6} y$. So $G[D]$ cannot be the graph D_{1}.
Second, suppose that $G[D]$ is the graph D_{2}. Then, H contains the bad $C_{4} y v_{3} v_{4} v_{5}$. So $G[D]$ cannot be the graph D_{2}.

Third, suppose that $G[D]$ is the graph D_{3}. The $C_{4} y v_{3} v_{4} v_{5}$ of H implies that $y v_{3}, y v_{5} \in E(G), y v_{4} \notin E(G)$. We must have
$y v_{2} \notin E(G)$, for otherwise G contains the bad $C_{4} v_{2} v_{4} v_{5} y$,
$y v_{1} \notin E(G)$, for otherwise G contains the bad $C_{4} y v_{1} v_{2} v_{3}$.
But now, G contains the $C_{5} v_{5} v_{1} v_{2} v_{3} y$. So $G[D]$ cannot be the graph D_{3}.
Fourth and last, suppose that $G[D]$ is the graph D_{4}. The $C_{4} y v_{3} v_{4} v_{5}$ of H implies that $y v_{3}, y v_{4} \in E(G), y v_{5} \notin E(G)$. We must have
$y v_{1} \notin E(G)$, for otherwise G contains the bad $C_{4} v_{1} y v_{4} v_{5}$,
$y v_{2} \notin E(G)$, for otherwise G contains the bad $C_{4} y v_{2} v_{1} v_{3}$.
But now, G contains the $C_{5} v_{3} v_{1} v_{2} v_{4} y$. So $G[D]$ cannot be the graph D_{4}.
Since all the eventualities are covered, (13) is proved. We claim that
in H, there is no vertex z outside D that sees v_{4} and misses v_{2}.

To see this, write $v_{1}=v_{5^{\prime}}, v_{2}=v_{4^{\prime}}, v_{3}=v_{3^{\prime}}, v_{4}=v_{2^{\prime}}, v_{5}=v_{1^{\prime}}, v_{6}=v_{6^{\prime}}$. Then $H[D]$ is the hole $v_{1^{\prime}} v_{2^{\prime}} v_{3^{\prime}} v_{4^{\prime}} v_{5^{\prime}} v_{6^{\prime}}$ and $G[D]$ is one of the four graphs in Fig. 3 with subscript i replaced by i^{\prime} for $i=1, \ldots, 6$. Now, (15) follows from (13) with v_{2} (respectively, v_{4}) replaced by $v_{4^{\prime}}$ (respectively, $v_{2^{\prime}}$).

We may assume that $\left\{v_{2}, v_{4}\right\}$ is not an even-pair of H, for otherwise we are done. Thus there is an odd induced path $v_{2} x_{1} x_{2} \ldots x_{r} v_{4}$ in H. By (13) and (15), we have $x_{1}, x_{r} \in D$ (i.e. $x_{1}=v_{1}, x_{r}=v_{5}$). Since $H[D]$ is a C_{6}, we have $x_{2}, x_{r-1} \notin D$. Since the path is odd, we have $x_{2} \neq x_{r-1}$. The $2 K_{2}\left\{x_{2}, v_{1}, v_{4}, v_{5}\right\}$ of H implies that
$x_{2} v_{1}, x_{2} v_{4} \in E(G), x_{2} v_{5} \notin E(G)$. We must have
$v_{2} x_{2} \in E(G)$, for otherwise G contains the bad $C_{4} x_{2} v_{1} v_{2} v_{4}$, $v_{3} x_{2} \in E(H)$, for otherwise H contains the bad $2 K_{2}\left\{x_{2}, v_{1}, v_{3}, v_{4}\right\}$.

Now, H contains the bad $C_{4} x_{2} v_{1} v_{2} v_{3}$.

7. Proof of Lemma 4

By replacing G by its complement if necessary, we may assume that $G[D]$ is a C_{6}. A certain symmetry allows us to assume that $G[D]$ is $v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}$. We can justify this in the following way. If $G[D]$ is the $C_{6} v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}$ then consider the mapping $f\left(v_{1}\right)=v_{1^{\prime}}, f\left(v_{2}\right)=v_{6^{\prime}}, f\left(v_{3}\right)=v_{5^{\prime}}, f\left(v_{4}\right)=v_{4^{\prime}}, f\left(v_{5}\right)=v_{3^{\prime}}, f\left(v_{6}\right)=v_{2^{\prime}}$. Then $H[D]$ is of the form $v_{1^{\prime}}, v_{2^{\prime}}, v_{3^{\prime}} \cdot v_{4^{\prime}}, v_{5^{\prime}}, v_{6^{\prime}}$ and $G[D]$ is of the form $v_{1^{\prime}}, v_{2^{\prime}}, v_{6^{\prime}}, v_{4^{\prime}}, v_{5^{\prime}} v_{3^{\prime}}$. Similarly, if $G[D]$ is the $C_{6} v_{1} v_{3} v_{2} v_{4} v_{6} v_{5}$ then the mapping $f\left(v_{1}\right)=v_{3^{\prime}}, f\left(v_{2}\right)=v_{2^{\prime}}, f\left(v_{3}\right)=v_{1^{\prime}}$, $f\left(v_{4}\right)=v_{6^{\prime}}, f\left(v_{5}\right)=v_{5^{\prime}}, f\left(v_{6}\right)=v_{4^{\prime}}$ gives the desired conclusion.

We claim that for any two vertices $y, z \notin D$,
if $y z \in E(H)$ and $v_{6} y, v_{6} z \notin E(H)$ then $y v_{5} \in E(H)$ or $z v_{5} \in E(H)$, or both.

Suppose that (16) is false for some two vertices $y, z \notin D$. Write $S=\left\{y, z, v_{6}, v_{5}\right\}$. Since $H[S]$ is a $2 K_{2}, G[S]$ must be a $2 K_{2}$ or a C_{4}.

Suppose $G[S]$ is a C_{4}. We may assume that $G[S]$ is the $C_{4} v_{6} z v_{5} y$. We have $z v_{4} \in E(G)$ (for otherwise, G contains the bad $C_{4} z v_{6} v_{4} v_{5}$) and $y v_{4} \in E(G)$ (for otherwise, G contains the bad $\left.C_{4} y v_{6} v_{4} v_{5}\right)$. We must have $v_{4} y \in E(H)$ or $v_{4} z \in E(H)$, for otherwise H contains the bad $2 K_{2}\left\{v_{4}, v_{5}, y, z\right\}$. Without loss of generality, we may assume $v_{4} y \in E(H)$. If $y v_{1} \in E(H)$ then H contains the $C_{5} y v_{4} v_{5} v_{6} v_{1}$; if $y v_{1} \notin E(H)$ then H contains the bad $2 K_{2}\left\{y, v_{4}, v_{6}, v_{1}\right\}$.

We may now suppose that $G[S]$ is a $2 K_{2}$. Without loss of generality, we may assume that $y v_{6}, z v_{5} \in E(G)$ and $y v_{5}, z v_{6}, y z \notin E(G)$. We must have
$y v_{2} \notin E(H)$, for otherwise H contains the bad $2 K_{2}\left\{y, v_{2}, v_{5}, v_{6}\right\}$,
$z v_{3} \notin E(H)$, for otherwise H contains the bad $2 K_{2}\left\{z, v_{3}, v_{5}, v_{6}\right\}$,
$y v_{3} \notin E(G)$, for otherwise we have $y v_{4} \in E(G)$ (else G contains the
$C_{5} y v_{3} v_{5} v_{4} v_{6}$), and so G contains the bad $C_{4} y v_{3} v_{5} v_{4}$, $z v_{2} \notin E(G)$, for otherwise we have $z v_{4} \in E(G)$ (else G contains the $C_{5} z v_{2} v_{6} v_{4} v_{5}$),
and so G contains the bad $C_{4} z v_{2} v_{6} v_{4}$,
$z v_{2} \in E(H)$, for otherwise the $2 K_{2}\left\{z, v_{5}, v_{6}, v_{2}\right\}$ is bad in G, $y v_{3} \in E(H)$, for otherwise the $2 K_{2}\left\{y, v_{6}, v_{5}, v_{3}\right\}$ is bad in G, $y v_{2}, z v_{3} \in E(G)$, for otherwise the $C_{4} y z v_{2} v_{3}$ is bad in H.

But now the $2 K_{2}\left\{y, v_{2}, z, v_{5}\right\}$ is bad in G. Thus, (16) holds.

By symmetry, for any $y, z \notin D$, we have

$$
\begin{equation*}
\text { if } y z \in E(H) \text { and } v_{6} y, v_{6} z \notin E(H) \text { then } y v_{1} \in E(H) \text { or } z v_{1} \in E(H) \text {, or both. } \tag{17}
\end{equation*}
$$

Now, we claim that
there are no vertices y, z outside D with $y z \in E(H)$ and $v_{6} y, v_{6} z \notin E(H)$.
Suppose that there are vertices y, z outside D with $y z \in E(H)$ and $v_{6} y, v_{6} z \notin E(H)$. By (16), we may assume that $v_{5} y \in E(H)$. We have $v_{1} y \notin E(H)$, for otherwise H contains the bad $C_{4} v_{1} y v_{5} v_{6}$. By (17), we have $v_{1} z \in E(H)$. We have $v_{5} z \notin E(H)$, for otherwise H contains the bad $C_{4} v_{5} z v_{1} v_{6}$. But now, H contains the $C_{5} y z v_{1} v_{6} v_{5}$. Thus, (18) is proved.

We shall show that
there is no vertex x outside D with $x v_{2} \in E(H)$ and $x v_{6} \notin E(H)$.
Suppose there is a vertex x outside D with $x v_{2} \in E(H)$ and $x v_{6} \notin E(H)$. We have
$x v_{5} \notin E(H)$, for otherwise we have $x v_{1} \in E(H)$ (else H contains the $C_{5} x v_{5} v_{6} v_{1} v_{2}$)
and so $x v_{5} v_{6} v_{1}$ is a bad C_{4} in H,
$x v_{5} \in E(G)$ and $x v_{2}, x v_{6} \notin E(G)$, for otherwise the $2 K_{2}\left\{x, v_{2}, v_{5}, v_{6}\right\}$ is bad in H, $x v_{4} \in E(H)$, for otherwise H contains the bad $2 K_{2}\left\{x, v_{2}, v_{4}, v_{5}\right\}$, $x v_{3} \in E(H)$, for otherwise H contains the bad $C_{4} x v_{2} v_{3} v_{4}$.

Now, $\left\{x, v_{3}, v_{5}, v_{6}\right\}$ is a bad $2 K_{2}$ in H. (19) is proved.
By symmetry we know that
there is no vertex x outside D with $x v_{4} \in E(H)$ and $x v_{6} \notin E(H)$.
We are now ready to complete the proof of Lemma 4. Write $M=H-N_{H}\left(v_{6}\right)-\left\{v_{6}\right\}$. By (18), (19) and (20), we see that $M-\left\{v_{3}\right\}$ is a stable set. M is connected, for otherwise $\left\{v_{6}\right\} \cup N_{H}\left(v_{6}\right)$ is a star-cutset of H. So, every vertex in M is adjacent to v_{3}. Thus, there is a unique maximal stable set of size at least three that contains v_{6}. It is easy to see that if H is minimal imperfect and does not contain an odd disc, then $\alpha(H) \geqslant 3$. Thus, the fact, that v_{6} belongs to a unique maximal stable set of size at least three, is a contradiction to (6).

8. Proof of Lemma 5

Let $H[D]$ be the hole $v_{1} v_{2} \ldots v_{k}(k \geqslant 6)$. By replacing G by its complement if necessary, we may assume that $G[D]$ is the hole $v_{1} v_{2} \ldots v_{k}$. Define $P_{H}(D)$ (respectively, $\left.U_{H}(D), R_{H}(D)\right)$ to be the set of vertices outside D that see some but not all (respectively, all, no) vertices of D in H. Define the sets $P_{G}(D), U_{G}(D), R_{G}(D)$ of G in the same way. Two vertices x, y are called a variant pair if x sees y in H but misses it in G, or vice versa.

We shall need a number of Observations.
The hypothesis of Lemma 5 implies the following

Observation 6. If $u_{1} u_{2} \ldots u_{t}$ is a hole of H and for some i, u_{i+1} sees u_{i} and u_{i+2} in G then $u_{1} u_{2} \ldots u_{t}$ is a hole of G.

Observation 7. For every vertex $x, x \in P_{H}(D)$ iff $x \in P_{G}(D)$; furthermore for any vertex $y \in D$ we have $x y \in E(H)$ iff $x y \in E(G)$.

Proof. We shall show that

$$
\begin{equation*}
\text { if } x \in P_{H}(D), x v_{i} \in E(H), x v_{i-1} \notin E(H) \text { for some } i \text {, then } x v_{i} \in E(G) \tag{21}
\end{equation*}
$$

Suppose that $x \in P_{H}(D), x v_{i} \in E(H), x v_{i-1} \notin E(H)$ for some i. If $x v_{i-2} \in E(H)$ then the $C_{4} x v_{i} v_{i-1} v_{i-2}$ of H implies that $x v_{i} \in E(G)$. Suppose that $x v_{i-2} \notin E(H)$, then $x v_{i-3} \notin E(H)$ (for otherwise H contains the $C_{5} x v_{i} v_{i-1} v_{i-2} v_{i-3}$) and now the $2 K_{2}$ $\left\{x, v_{i}, v_{i-2}, v_{i-3}\right\}$ implies $x v_{i} \in E(G)$. Thus (21) holds. A similar argument shows that
if $x \in P_{G}(D), x v_{i} \in E(G), x v_{i-1} \notin E(G)$ for some i, then $x v_{i} \in E(H)$.
We remark that (21) and (22) also hold with v_{i-1} replaced by v_{i+1}.
Next, we claim that

$$
\begin{equation*}
\text { if } x \in P_{H}(D), x v_{i} \in E(H) \text { for some } i \text {, then } x v_{i} \in E(G) \tag{23}
\end{equation*}
$$

Suppose that $x v_{i} \in E(H)$ but $x v_{i} \notin E(G)$. By (21), we must have $x v_{i-1}, x v_{i+1} \in E(H)$. Since $x \in P_{H}(D)$, there are subscripts j, k with $j<k$ such that $x v_{r} \in E(H)$ for $r=j, j+$ $1, \ldots, i, \ldots, k-1, k$ and $x v_{j-1}, x v_{k+1} \notin E(H)$ (by shifting the vertices of D cyclically if necessary, we may assume that $j<k$). By (21), we have $x v_{j}, x v_{k} \in E(G)$. Let j^{\prime}, k^{\prime} be two subscripts with $j^{\prime}<k^{\prime}, j^{\prime} \geqslant j, k^{\prime} \leqslant k$ such that $x v_{j^{\prime}}, x v_{k^{\prime}} \in E(G)$ and $x v_{r} \notin E(G)$ for $r=j^{\prime}+1, \ldots, i, \ldots, k^{\prime}-1$. It is now easy to see that either x belongs to a C_{5} in G, or x forms a bad C_{4} or $2 K_{2}$ with some three vertices in $\left\{v_{j^{\prime}}, v_{j^{\prime}+1}, \ldots, v_{i}, \ldots, v_{k^{\prime}}\right\}$. Thus (23) is proved. A similar argument shows that

$$
\begin{equation*}
\text { if } x \in P_{G}(D), x v_{i} \in E(G) \text { for some } i \text {, then } x v_{i} \in E(H) \tag{24}
\end{equation*}
$$

Observation 7 implies the following

Observation 8. $U_{H}(D) \cup R_{H}(D)=U_{G}(D) \cup R_{G}(D)$.

Observation 9. Let x, y be two vertices of H. Then we have
(i) $x, y \in U_{H}(D)$ and $x y \notin E(H)$ iff $x, y \in U_{G}(D)$ and $x y \notin E(G)$, and
(ii) $x, y \in R_{H}(D)$ and $x y \in E(H)$ iff $x, y \in R_{G}(D)$ and $x y \in E(G)$.

Proof. Suppose $x, y \in U_{H}(D)$ and $x y \notin E(H)$. Let S be any C_{4} (in H) containing x, y and some two vertices of D. By Observation 8, we have $x, y \in U_{G}(D) \cup R_{G}(D)$. If
$x, y \in U_{G}(D)$ then $x y \notin E(G)$, for otherwise S is a bad C_{4} of H. Thus, without loss of generality, we may assume that $x \in R_{G}(D)$. But now S is a bad C_{4} of H. The 'only if" part of (i) is proved, the "if" part follows by interchanging H and G. A similar argument establishes (ii).

As we shall see, the Lemma follows from the following three Claims.
Claim 1. Let $z \in U_{H}(D) \cup P_{H}(D), y \in R_{H}(D), z y \in E(H)$. Then we have $y \in R_{G}(D)$, $z y \in E(G)$. Furthermore, if $z \in U_{H}(D)$ then $z \in U_{G}(D)$ and if $z \in P_{H}(D)$ then $z \in P_{G}(D)$.

Claim 2. $P_{H}(D)=P_{G}(D), U_{H}(D)=U_{G}(D)$ and $R_{H}(D)=R_{G}(D)$.
Claim 3. For any two vertices $x, y \in P_{H}(D) \cup U_{H}(D)$, we have $x y \in E(H)$ iff $x y \in E(G)$.
We are going to show that Lemma 5 follows from the above three claims. Suppose that there is a variant pair z, y. By Claim 2, we must have

$$
z, y \in V(H)-D(=V(G)-D) \text { for any variant pair } z, y .
$$

By Observation 9(ii) and Claim 3, we may assume $y \in R_{H}(G)$ and $z \in P_{H}(D) \cup U_{H}(D)$. By Claim 1, z misses y in H and sees it in G.

In H, there must be a path joining y to a vertex in D lying entirely in $V(H)-$ $\left(\{z\} \cup\left(N_{H}(z)-D\right)\right.$); for otherwise $\{z\} \cup\left(N_{H}(z)-D\right)$ is a star cutset separating y and D. Consider such a shortest path P and let v be the vertex in P that sees y in H. We must have $v \in P_{H}(D) \cup U_{H}(D)$ for otherwise, by Observation $9,\{y, v, z, d\}$ is a bad $2 K_{2}$ in H for some vertex $d \in D$. By Claim 1, y sees v in G. Let d be a neighbour of z in D (in both H and G). Then d misses v (in both H and G), for otherwise G contains the bad $C_{4} y v d z$. Now, $\{y, v, z, d\}$ is a bad $2 K_{2}$ of H.

In the remainder of this section, we shall prove the above three claims. First, we shall need the following

Claim 4. Suppose in H there are vertices u, z such that $u z \notin E(H), u, z \in P_{H}(D) \cup$ $U_{H}(D)$, and there is a chordless path $x_{1} x_{2} \ldots x_{t}$ between u and z (with $u=x_{t}, z=x_{1}$) whose interior vertices belong to $R_{H}(D)$, then $G\left[\left\{x_{1}, x_{2}, \ldots, x_{t}\right\}\right]$ is the chordless path $x_{1} x_{2} \ldots x_{t}$ and, with $v \in\{u, z\}$,

$$
\begin{array}{ll}
v \in P_{G}(D) & \text { if } v \in P_{H}(D), \\
v \in U_{G}(D) & \text { if } v \in U_{H}(D), \\
x_{i} \in R_{G}(D) & \text { for } i=2, \ldots, t-1 .
\end{array}
$$

Proof. Let $u, z, x_{1}, x_{2}, \ldots, x_{t}$ be as in the Claim.
Suppose we have $u, z \in U_{H}(D)$. Then by Observation 9 we have $u, z \in U_{G}(D)$, $u z \notin E(G)$. Consider any vertex $d \in D$. The hole $d x_{1} x_{2} \ldots x_{t}$ of H implies that $G\left[\left\{d, x_{1}, x_{2}, \ldots, x_{t}\right\}\right]$ is the same hole $d x_{1} x_{2} \ldots x_{t}$ by Observation 6 (since $d u, d z \in E(G)$).

In particular, we have $x_{i} d \notin E(G)$ for $i=2, \ldots, t-1$; and so $x_{i} \notin U_{G}(D)$. By Observation 8 , we have $x_{i} \in R_{G}(D)$ and the Claim is proved.

Suppose we have $u, z \in P_{H}(D)$. In H, there is a chordless path $a_{1} a_{2} \ldots a_{r}$ such that $a_{1}=u, a_{r}=z, a_{i} \in D$ for $i=2, \ldots, r-1(r \geqslant 3)$. By Observation 7, we have $u, z \in P_{G}(D)$ and $G\left[\left\{a_{1}, a_{2}, \ldots, a_{r}\right\}\right]-a_{1} a_{r}$ is the same chordless path $a_{1} a_{2} \ldots a_{r}$. Now, H has the hole $a_{1} a_{2} \ldots a_{r} x_{2} \ldots x_{t-1}$ and by Observation $6, G\left[\left\{a_{1}, a_{2}, \ldots, a_{r}, x_{2}, \ldots, x_{t-1}\right\}\right]$ is the same hole $a_{1} a_{2} \ldots a_{r} x_{2} \ldots x_{t-1}$. In particular, we have $x_{i} a_{2} \notin E(G)$ for $i=2, \ldots, t-1$; and so $x_{i} \notin U_{G}(D)$. The claim now follows from Observation 8.

We may assume that one of the two vertices u, z belong to $P_{H}(D)$ and the other vertex belongs to $U_{H}(D)$. Without loss of generality, we may assume $u \in P_{H}(D), z \in$ $U_{H}(D)$. By Observation 7, we have $u \in P_{G}(D)$.

Let us first suppose that $t=3$. In H, consider a neighbour $v_{i} \in D$ of u. Then H contains the $C_{4} x_{2} u v_{i} z$. If $z v_{i} \in E(G)$ then we have $u x_{2}, z x_{2} \in E(G)$ (for otherwise the $C_{4} x_{2} u v_{i} z$ of H is bad; note that we have $u v_{i} \in E(G)$ by Observation 7), and we are done by Observation 8 . So we know that $z v_{i} \notin E(G)$ and it follows from Observation 8 that $z \in R_{G}(D)$. Now we have $u x_{2} \notin E(G)$ for otherwise the $C_{4} x_{2} u v_{i} z$ of H is bad. In H, if u misses both v_{i+2} and v_{i+3} then $H\left[\left\{x_{2}, u, v_{i+2}, v_{i+3}\right\}\right]$ is a bad $2 K_{2}$ by Observation 7. Thus, we have $u v_{j} \in E(H)$ for $j=i+2$ or $i+3$. Now, $H\left[\left\{u, v_{i}, z, v_{j}\right\}\right]$ is a bad C_{4}.

Now, we may assume that $t \geqslant 4$. In H, let $v_{i} \in D$ be a neighbour of u and let F denote the graph $H\left[\left\{x_{1}, x_{2}, \ldots, x_{t}, v_{i}\right\}\right]$. Note that F is the hole of the form $x_{1} x_{2} \ldots x_{t} v_{i}$. If $t=4$ then F is a C_{5}, a contradiction. So we have $t \geqslant 5$. By Observation 9, we have that $G\left[\left\{x_{2}, x_{3}, \ldots x_{t-1}\right\}\right]$ is the chordless path of the form $x_{2} x_{3} \ldots x_{t-1}$ and $\left\{x_{2}, x_{3}, \ldots x_{t-1}\right\} \subseteq$ $R_{G}(D)$. By Observation 6, the graph $G\left[\left\{x_{1}, x_{2}, \ldots, x_{t}, v_{i}\right\}\right]$ is a hole in the same cyclic order as F, i.e. $x_{1} x_{2} \ldots x_{t} v_{i}$. Now, the Claim follows from Observation 8.

Proof of Claim 1. There must be a nonempty set $S(d)$ of paths $P(d)$ joining y to a vertex $d \in D$ in the graph $H-\left(\{z\} \cup N_{H}(z)-D\right)$ for otherwise $\{z\} \cup N_{H}(z)-D$ is a star-cutset separating y and D. Consider such a shortest path $P(d)$ (over all choices of d and all lengths in $S(d)$). This path can be written as $p_{1} p_{2} \ldots p_{t}$ with $p_{1}=y, p_{t}=d$. Clearly, the choice of the path implies that $p_{t-1} \in P_{H}(D) \cup U_{H}(D)$ and $p_{i} \in R_{H}(D)$ for $i=2, \ldots, t-2$. Now, Claim 1 follows from Claim 4 (with $u=p_{t-1}$).

Claim 5. $U_{H}(D) \subseteq U_{G}(D)$.
Proof. Let z be a vertex in $U_{H}(D)$. We shall prove that $z \in U_{G}(D)$. By Observation 9 , we may assume that

$$
\begin{equation*}
\text { in } H, z \text { sees all vertices of } U_{H}(D)-\{z\}, \tag{25}
\end{equation*}
$$

for otherwise $z \in U_{G}(D)$ and we are done.
Consider a $P_{3} v_{i} z v_{i+2}$ for any i. By (3), this P_{3} extends into a hole $x_{1} x_{2} \ldots x_{r}$ where $x_{1}=z, x_{2}=v_{i+2}, x_{r}=v_{i}$. Clearly we have $x_{3}, x_{r-1} \in P_{H}(D)\left(\right.$ by (25)) and $x_{j} \in P_{H}(D) \cup$ $R_{H}(D)$ for $j=4, \ldots, r-2$.

If $r=4$, then $x_{1} x_{2} x_{3} x_{4}$ is a C_{4} of H. By Observation 7, we have $x_{3} v_{i}, x_{3} v_{i+2} \in E(G)$. This implies that in G, z sees v_{i}, v_{i+2} and misses x_{3} (for otherwise $x_{1} x_{2} x_{3} x_{4}$ is a bad C_{4} of H). This implies $z \in U_{G}(D)$ by Observation 8.

Now, we may assume that $r \geqslant 6$. Suppose that $r>6$. The $2 K_{2}\left\{x_{3}, x_{4}, x_{r}, x_{r-1}\right\}$ in H implies that $x_{3} x_{4} \in E(G)$ (note that $x_{r} x_{r-1} \in E(G)$ by Observation 7). The $2 K_{2}$ $\left\{x_{3}, x_{4}, z, x_{r}\right\}$ in H implies $z x_{r} \in E(G)$. Thus we have $z \in U_{G}(D)$ by Observation 8.

Now we may assume that $r=6$. Furthermore, we may assume $z \in R_{G}(D)$ for otherwise we are done. If $x_{4} x_{2} \notin E(G)$ then $\left\{x_{4}, x_{5}, z, x_{2}\right\}$ is a bad $2 K_{2}$ in H (note that $x_{2} x_{5} \notin E(G)$ because $x_{5} \in P_{H}(D)$). So we have $x_{4} x_{2} \in E(G)$, and by Observations 7 and 8 , we have $x_{4} \in U_{G}(D)$. By Observation 8 , we have $x_{4} \in R_{H}(D)$. But now, by Claim 1 (with $y=x_{4}, z=x_{5}$), we have $x_{4} \in R_{G}(D)$, a contradiction.

Proof of Claim 2. By Observation 7, we have $P_{H}(D)=P_{G}(D)$. If $R_{H}(D)=\emptyset$ then the Claim follows from Claim 5.

Now, suppose that $R_{H}(D) \neq \emptyset$. Since H must be connected, each vertex $y \in R_{H}(D)$ must see another vertex, say z, in H. Clearly, z belongs to $R_{H}(D) \cup P_{H}(D) \cup U_{H}(D)$. By Observation 9(ii) and Claim 1, we have $y \in R_{G}(D)$; and so it follows that $R_{H}(D) \subseteq$ $R_{G}(D)$. Since $U_{H}(D) \cup R_{H}(D)=U_{G}(D) \cup R_{G}(D)$, the desired conclusion follows from Claim 5.

Proof of Claim 3. By contradiction. We shall often refer to Claim 2 implicitly. Consider a variant pair x, y with $x, y \in P_{H}(D) \cup U_{H}(D)$. In D, x and y must be comparable for otherwise there are vertices x^{\prime}, y^{\prime} in D such that x (respectively, y) sees x^{\prime} (respectively, y^{\prime}) and misses y^{\prime} (respectively, x^{\prime}) in both G and H (recall Claim 2); if $x^{\prime} y^{\prime} \notin E(H)$ then $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ induces a bad $2 K_{2}$ in H or in G, if $x^{\prime} y^{\prime} \in E(H)$ then $\left\{x, y, x^{\prime}, y^{\prime}\right\}$ induces a bad C_{4} in H or in G. Now, by interchanging x and y if necessary we may assume that x dominates y in D, i.e. $N_{H}(y) \cap D \subseteq N_{H}(x) \cap D$.

We see that
there are no nonadjacent vertices a, b in D that see both x and y.
If (26) is false then $\{a, x, b, y\}$ would be a bad C_{4} in H or in G.
Let v_{i} be a neighbour of y in D. If x misses v_{i+2} and v_{i+3} then $\left\{y, x, v_{i+2}, v_{i+3}\right\}$ would be a bad $2 K_{2}$ in H or in G. So we can let v_{j} be a vertex in $\left\{v_{i+2}, v_{i+3}\right\}$ that sees x. By (26), y must miss v_{j}.

We shall show that
if x, y is a variant pair with $x, y \in P_{H}(D) \cup U_{H}(D)$, then $x y \notin E(H)$.
Suppose that $x y \in E(H)$ (and therefore $x y \notin E(G)$). By (3), the $P_{3} y x v_{j}$ of H extends into a hole $H[C]$. This hole cannot have length at least six, for otherwise $G[C]$ and $\bar{G}[C]$ cannot be the same hole (with the same cyclic order), a contradiction to the hypothesis of Lemma 5. Let the hole be $v_{j} x y u$ for some vertex u. Since $u \in V(H)-$ $R_{H}(D)$, we have $v_{j} u \in E(G)$. But now $G\left[\left\{v_{j}, x, y, u\right\}\right]$ cannot be a $2 K_{2}$ or C_{4} in G, a contradiction. (27) is proved.

We may suppose now that x misses y in H but sees it in G. If x dominates y in H then we would have a contradiction to (2). So we may assume that there is a vertex z that sees y and misses x in H. The choice of x, y implies that $z \notin D$. If $z v_{j} \notin E(H)$ then $z v_{j} \notin E(G)$ by Claim 2 and so $\left\{z, y, x, v_{j}\right\}$ would be a bad $2 K_{2}$ in H. We may suppose that $z v_{j} \in E(H)$. Suppose now that $x z \notin E(G)$. Then we must have $y z \notin E(G)$ for otherwise G contains the bad $C_{4} v_{j} x y z$; but the variant pair y, z contradicts (27). So we have $x z \in E(G)$. By (3), the $P_{3} x v_{j} z$ of H extends into a hole $H[C]$. If $H[C]$ has length four then it is a bad C_{4} of H, if it has length at least six then $G[C]$ and $\bar{G}[C]$ cannot be the same hole (with the same cyclic order), a contradiction to the hypothesis of Lemma 5 .

9. The hole-structure

Recall that two graphs G_{1}, G_{2}, defined on the same vertex set, are said to have the same hole-structure if a set C induces a hole in G_{1} iff C induces a hole in G_{2}. In [6], the following conjecture was proposed.

Conjecture 2 (Hole Conjecture). If a graph H has the hole-structure of a perfect graph G, then H is perfect.

We shall prove
Theorem 3. The Strong Perfect Graph Conjecture implies the Hole Conjecture.
Proof. We only need show that if H has the hole-structure of a Berge graph G then H is Berge. Let H and G have the same hole-structure and let G be Berge. Suppose that H contains an odd disc $H[D]$. If $H[D]$ is an odd hole then by definition of hole-structure, $G[D]$ is an odd hole, a contradiction. Thus $H[D]$ is an odd anti-hole of length at least seven (note that the C_{5} is self-complementary). This means that $H[D]$ has the $\left\{C_{4}\right\}$-structure of $G[D]$. By Observation 5, $G[D]$ is an odd anti-hole, a contradiction.

The SPGC can be restated in the following way.
Conjecture 3 (The F-Conjecture). Let \mathscr{F} be any family of graphs. Then a Berge graph H is perfect iff it has the \mathscr{F}-structure of a perfect graph G.

It is not difficult to show that the \mathscr{F}-Conjecture is equivalent to the SPGC [6]. Note that the \mathscr{F}-Conjecture generalizes the PGT whenever \mathscr{F} has the property that a graph G belongs to \mathscr{F} iff its complement \bar{G} does. Reed's theorem and Theorem 2 fit into this frame work.

Besides Theorem 2 and Reed's theorem, it is known that the \mathscr{F}-Conjecture holds for $\mathscr{F}=\{$ paw, copaw $\}$ [6]. We note that the $P_{4}, 2 K_{2}$, and co-paw (See Fig. 1) are
induced subgraphs of the P_{5} and we think that it would be interesting to prove the \mathscr{F}-Conjecture for $\mathscr{F}=\left\{P_{5}, \bar{P}_{5}\right\}$. It had also been established that the \mathscr{F}-Conjecture holds for $\mathscr{F}=\left\{P_{3}\right\}$ (Hougardy [9]), $\mathscr{F}=\left\{P_{3}, \bar{P}_{3}\right\}$, and $\mathscr{F}=\left\{K_{3}, \bar{K}_{3}\right\}$ ([5], the last two results are actually equivalent). We note that the results described here are independent of each other.

Appendix A.

Fact 1. Let H^{\prime} be the $P_{7} v_{1} v_{2} \ldots v_{7}$ and let G^{\prime} be the graph defined on the same vertex-set with the same $\left\{2 K_{2}\right\}$-structure as G^{\prime}. Then G^{\prime} is the $P_{7} v_{1} v_{2} \ldots v_{7}$ or the graph $Q_{7}\left[v_{1}, v_{2}, \ldots, v_{7}\right]$.

Proof. By Observation 2, the graph $G^{\prime}\left[\left\{v_{1}, v_{2}, \ldots, v_{6}\right\}\right]$ is (i) the $P_{6} v_{1} v_{2} \ldots v_{6}$ itself, or (ii) the $P_{6} v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}$, or the graph (iii) $Q_{6}\left[v_{1}, v_{2}, \ldots, v_{6}\right]$. Note that in G^{\prime}, the sets $\left\{v_{1}, v_{2}, v_{6}, v_{7}\right\},\left\{v_{2}, v_{3}, v_{6}, v_{7}\right\},\left\{v_{3}, v_{4}, v_{6}, v_{7}\right\}$ must induce a C_{4} or $2 K_{2}$. A simple case analysis shows that in case (i), v_{7} must see v_{6} and miss $v_{1}, v_{2}, \ldots, v_{5}$ in G^{\prime}; and so G^{\prime} is the $P_{7} v_{1} v_{2} \ldots v_{7}$. Similarly, one can show that case (ii) cannot occur, and in case (iii) G^{\prime} is the graph $Q_{7}\left[v_{1}, v_{2}, \ldots, v_{7}\right]$.

Fact 2. Let H^{\prime} be the $C_{6} v_{1} v_{2} \ldots v_{6}$. Let G^{\prime} be a graph defined on the same vertex-set as H^{\prime} and suppose that G^{\prime} has the $\left\{2 K_{2}\right\}$-structure of H^{\prime}. Then G^{\prime} is the graph $Z_{6}\left[v_{1}, v_{2}, v_{3}, v_{4}, v_{5}, v_{6}\right]$, or one of the $C_{6} ' s v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}, v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}, v_{1} v_{3} v_{2} v_{4} v_{6} v_{5}$, $v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$.

Proof. Write $S_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}, S_{3}=\left\{v_{1}, v_{6}, v_{3}, v_{4}\right\}$. Then each S_{j} must induce a $2 K_{2}$ in G^{\prime}. There are three different ways the set S_{1} induces a $2 K_{2}$ in G^{\prime}.

Case 1: $v_{1} v_{2}, v_{4} v_{5} \in E\left(G^{\prime}\right)$. By considering the set S_{2}, we know that $v_{2} v_{3} \in E\left(G^{\prime}\right)$ or $v_{2} v_{6} \in E\left(G^{\prime}\right)$ but not both. In the former case, a routine case analysis shows that G^{\prime} is the $C_{6} v_{1} v_{2} v_{3} v_{4} v_{5} v_{6}$; in the latter case G^{\prime} is the $C_{6} v_{1} v_{2} v_{6} v_{4} v_{5} v_{3}$.

Case 2: $v_{1} v_{4}, v_{2} v_{5} \in E\left(G^{\prime}\right)$. Clearly, G^{\prime} must be the graph $Z_{6}\left[v_{1}, v_{2}, \ldots, v_{6}\right]$.
Case 3: $v_{1} v_{5}, v_{2} v_{4} \in E\left(G^{\prime}\right)$. Similar to Case 1, one can show that G^{\prime} is the C_{6} $v_{1} v_{5} v_{3} v_{4} v_{2} v_{6}$ or the $C_{6} v_{1} v_{5} v_{6} v_{4} v_{2} v_{3}$.

Fact 3. Let H^{\prime} be the $C_{6} v_{1} v_{2} \ldots v_{6}$. Let G^{\prime} be a graph defined on the same vertex-set as H^{\prime} and suppose that G^{\prime} has the $\left\{2 K_{2}, C_{4}\right\}$-structure of H^{\prime} and that G^{\prime} contains a $2 K_{2}$ and a C_{4}. Then G^{\prime} or its complement is the domino.

Proof. Write $S_{1}=\left\{v_{1}, v_{2}, v_{4}, v_{5}\right\}, S_{2}=\left\{v_{2}, v_{3}, v_{5}, v_{6}\right\}, S_{3}=\left\{v_{1}, v_{6}, v_{3}, v_{4}\right\}$. Without loss of generality, we may assume that in G^{\prime}, S_{1} induces a C_{4} and S_{2}, S_{3} induces a $2 K_{2}$. We are going to show that G^{\prime} is a co-domino that must be one of the four labelled
graphs shown in Fig. 3. There are six ways we can label the vertices of the C_{4} induced by S_{1} in G^{\prime}.

Case 1: S_{1} is the $C_{4} v_{1} v_{2} v_{4} v_{5}$. Consider the $2 K_{2}$ induced by S_{2}. We must have $v_{3} v_{2} \in E\left(G^{\prime}\right)$ or $v_{3} v_{5} \in E\left(G^{\prime}\right)$ but not both. If $v_{3} v_{2} \in E\left(G^{\prime}\right)$ then G^{\prime} is the graph D_{1} or D_{3} depending on how S_{3} induces a $2 K_{2}$; if $v_{3} v_{5} \in E\left(G^{\prime}\right)$ then G^{\prime} is the graph D_{2} or D_{4} depending on how S_{3} induces a $2 K_{2}$.

Case 2: S_{1} is the $C_{4} v_{1} v_{2} v_{5} v_{4}$. Since S_{2} induces a $2 K_{2}$ we must have $v_{3} v_{6} \in E\left(G^{\prime}\right)$ and $v_{2} v_{3}, v_{2} v_{6}, v_{5} v_{3}, v_{5} v_{6} \notin E\left(G^{\prime}\right)$. The $2 K_{2}$ induced by S_{3} implies that $v_{3} v_{1} \notin E\left(G^{\prime}\right)$ but now $\left\{v_{1}, v_{2}, v_{3}, v_{6}\right\}$ induces a bad $2 K_{2}$ in G^{\prime}, a contradiction. This case cannot occur.

Case 3: S_{1} is the $C_{4} v_{1} v_{4} v_{2} v_{5}$. Since S_{2} induces a $2 K_{2}$ we must have $v_{3} v_{6} \in E\left(G^{\prime}\right)$ and $v_{2} v_{3}, v_{2} v_{6}, v_{5} v_{3}, v_{5} v_{6} \notin E\left(G^{\prime}\right)$. The $2 K_{2}$ induced by S_{3} implies that $v_{3} v_{1} \notin E\left(G^{\prime}\right)$ but now $\left\{v_{1}, v_{5}, v_{3}, v_{6}\right\}$ induces a bad $2 K_{2}$ in G^{\prime}, a contradiction. This case cannot occur.

Case 4: S_{1} is the $C_{4} v_{1} v_{4} v_{5} v_{2}$. We can relabel the cycle as $v_{1} v_{2} v_{5} v_{4}$ and use the argument of Case 2.

Case 5: S_{1} is the $C_{4} v_{1} v_{5} v_{2} v_{4}$. We can relabel the cycle as $v_{1} v_{4} v_{2} v_{5}$ and use the argument of Case 3.

Case 6: S_{1} is the $C_{4} v_{1} v_{5} v_{4} v_{2}$. We can relabel the cycle as $v_{1} v_{2} v_{4} v_{5}$ and use the argument of Case 1.

References

[1] C. Berge, Les problèmes de coloration en théorie des graphes, Publ. Inst. Stat. Univ. Paris 9 (1960) 123-160.
[2] V. Chvátal, A semi-strong perfect graph conjecture, in: C. Berge, V. Chvátal (Eds.), Topics on Perfect Graphs, North-Holland, Amsterdam, 1984.
[3] V. Chvátal, Star-cutsets and perfect graphs, J. Combin. Theory B 39 (1985) 189-199.
[4] R. Hayward, Weakly triangulated graphs, J. Combin. Theory B 39 (1985) 200-209.
[5] C.T. Hoàng, On the co- P_{3}-structure of perfect graphs, SIAM J. Discrete Math., to appear.
[6] C.T. Hoàng, On the disc-structure of perfect graphs I. The paw-structure, Discrete Appl. Math. 94 (1999) 247-262.
[7] C.T. Hoàng, Alternating orientation and alternating colouration of perfect graphs, J. Combin. Theory B 42 (3) (1987) 264-273.
[8] C.T. Hoàng, On the sibling-structure of perfect graphs, J. Combin. Theory B 49 (2) (1990) 282-286.
[9] S. Hougardy, On the P_{4}-structure of Perfect Graphs, Shaker Verlag, Aachen, 1995, ISBN 3-8265-1140-9.
[10] L. Lovász, Normal hypergraphs and the perfect graph conjecture, Discrete Math. 2 (1972) 253-267.
[11] H. Meyniel, A new property of critical imperfect graphs and some consequences, European Journal of Combinatorics 8 (1987) 313-316.
[12] M.W. Padberg, Perfect zero-one matrices, Math. Programming 6 (1974) 180-196.
[13] B. Reed, A semi-strong perfect graph theorem, J. Combin. Theory B 43 (2) (1987) 223-240.

[^0]: ${ }^{2}$ This research is supported by NSERC.
 E-mail address: choang@wlu.ca (C.T. Hoàng).

