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An Ad2 capsid component, the penton base, expressed as recombinant protein, was found to be capable of affecting the
entire entry pathway of adenovirion in HeLa cells, i.e., cell attachment, endocytosis, vesicular escape, intracytoplasmic
movement, and translocation through the nuclear pore complex. Data with pentamerization-defective mutants suggested that
none of these successive steps depended upon penton base pentamer status, indicating that the peptide domains
responsible for these functions were carried by the monomer. Observations performed with wild-type (WT) and an
integrin-binding-site double-mutant (K288E340) suggested that the penton base could enter the cell via an alternative, RGD-
and LDV-independent, pathway. Of three mutants that were found to be defective in nuclear addressing in insect cells, only
one, W165H, was also altered in nuclear transport in HeLa cells. The other two, W119H and RRR547EQQ, showed a WT
pattern of nuclear localization in HeLa cells, suggesting that the region including tryptophan-119 and the basic signal at
position 547 did not act as a nuclear localization signal in the human cell context. The integrity of cellular structures and the
cytoskeleton seemed to be required for the vectorial movement and nuclear import of WT penton base, as suggested by
experiments using permeabilized HeLa cells, isolated nuclear membranes, and cytoskeleton-targeted drugs. © 1999 Academic

Press
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complex; membrane translocation; protein trafficking.
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INTRODUCTION

Adenoviruses (Ad) are nonenveloped, double-
tranded DNA viruses that replicate and assemble their
irions within the nucleus of infected cells. The virion is
omposed of 252 capsomeres—240 hexons and 12 pen-

ons; the latter are located at the 12 vertices of the
cosahedral capsid (reviewed in Nermut, 1984, Stewart et
l., 1991). The penton is a heteromeric protein formed of

he penton base, a homopentameric protein, nonco-
alently linked to a homotrimeric protein, the fiber (Bou-
in and Boulanger, 1982; Ruigrok et al., 1990; Stouten et
l., 1992). The early phase of the Ad lytic cycle has been
ivided into the following steps: (i) attachment of the

nfectious virus particle to primary cell receptors via its
iber projections; (ii) binding of the penton base capso-

ere to plasma membrane integrins, acting as second-
ry receptors; (iii) endocytosis into clathrin-coated vesi-
les; (iv) conformational change and partial disruption of

he capsid within the endocytic vesicle; (v) endosomoly-
is and escape from the endosome; (vi) transit across the
ytoplasm to reach the nucleus; and (vii) entry into the

1 These authors contributed equally to this work.
2 To whom correspondence and reprint requests should be ad-
1ressed. Fax: 33 (0)4 78 77 87 51. E-mail: pboulang@infobiogen.fr.
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ucleoplasm through the nuclear pore (Greber et al.,
993; Greber and Kasamatsu, 1996; Seth et al., 1986;
arga et al., 1991; Whittaker and Helenius, 1998).

Although it is reasonable to assume that the complex
rocess of entry and intracellular transit involves several
irion structural proteins carrying specific signals, it ap-
ears that the penton capsomere (penton base and fiber)
arries most of the functions required for the early steps
f the cellular entry pathway. Thus, Ad–cell binding in
tep (i) is mediated by the terminal sphere of the fiber

the fiber knob) protruding from the penton base capso-
ere and fiber receptors present at the cell surface

Bergelson et al., 1997; Hong et al., 1997; Tomko et al.,
997). The knob serotype is therefore a major determi-
ant of the cell tropism (Defer et al., 1990; Krasnykh et al.,
996; Santis et al., 1999; Stevenson et al., 1995; Xia et al.,
995), even though it is probably not the only viral factor
Roelvink et al., 1998). At the second step (ii), the inter-
ction of RGD and LDV triplet motifs in the penton base
ith the cell plasma membrane integrins is required to

nduce or trigger endocytosis. Some cell specificity has
een attributed to this process, as the RGD motifs inter-
ct with avb3, avb5, and aMb2 integrins, and LDV motifs

nteract with a4b1 and a4b7 integrins (Belin and Bou-
anger, 1993; Hong and Boulanger, 1995; Mathias et al.,

994; Hynes, 1992; Wickham et al., 1993, 1995). The

0042-6822/99 $30.00
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164 HONG ET AL.
echanisms of endosomal escape (v), transcytoplasmic
ovement (vi), and traverse of the nuclear pore channel

vii) still remain elusive. However, involvement of the
enton base in endosomal escape has been assessed

Seth, 1994a; Seth et al., 1984; Yoshimura, 1985; Yo-
himura et al., 1993), as has the participation of cytoskel-
tal elements in step vi (Belin and Boulanger, 1985, 1987;
ales and Chardonnet, 1973; Defer et al., 1990; Weath-
rbee et al., 1977; Zhai et al., 1988; Zhang and Schneider,
994). Furthermore, a functional nuclear localization sig-
al has been identified in hexon, the major Ad capsid
rotein (Saphire et al., 1995), which could account for the
inding of partially uncoated adenoviral DNA, still asso-
iated with hexons and core proteins (Greber et al.,
993), to the nuclear pore complex (NPC). Additional
eptide sequences containing instructions for other dis-
rete steps of the intracellular migration and compart-
entalization of the virions are yet to be determined.
We have expressed the Ad2 penton base protein in

aculovirus-infected insect cells and found that the re-
ombinant wild-type (WT) penton base protein (571 res-

dues; PbFL571; Karayan et al., 1994, 1997) apparently
etained all the biological properties of the penton base
ynthesized in Ad2-infected human KB or HeLa cells. It
as indistinguishable from HeLa cell-extracted penton
ase under the electron microscope (EM), and it assem-
led with coexpressed fiber in vivo in Sf9 cells, to form
enton capsomere (Karayan et al., 1994, 1997). Similar to

he penton base isolated from Ad-infected HeLa cells, it
lso interacted with recombinant fiber in vitro and
howed the same cell-detaching effect (Bai et al., 1993;
oudin et al., 1979; Karayan et al., 1994, 1997), a conse-
uence of the competition of its RGD triplets with cell
dhesion molecules for the conserved SMKDDLW se-
uence of the integrin b-chains (D’Souza et al., 1994;
ong and Boulanger, 1995).
In the present study, we investigated the interaction of

enton base with HeLa cells in culture and its occur-
ence in the different cellular compartments. Our study
as performed using the WT penton base from Ad se-

otype 2 (Ad2), which has 98% sequence identity with
erotype 5 penton base (Neuman et al., 1988), expressed
s recombinant proteins isolated from baculovirus-in-

ected insect cells, and several of its mutants (Karayan et
l., 1997). We found that the WT penton base protein
arried enough information to enter the cell after endo-
ytosis and achieve its self-delivery to the nucleus of
eLa cells in culture, by translocation through the nu-

lear pore complex, similar to infectious adenovirions.
xperiments using permeabilized HeLa cells, cytoskele-

on-targeted drugs, and isolated nuclear membranes in
itro suggested that the integrity of the cell structure and
f the cytoskeleton microfilaments and microtubules was

equired for the vectorial movement of the penton base

cross the cell and for its nuclear delivery. a
RESULTS

ellular uptake of Ad2 penton base by HeLa cells

Penton base capsomeres in Ad capsids interact with
ell plasma membrane integrins, considered as second-
ry receptors for the virus, but isolated penton base,
sed as soluble recombinant protein, has also been

ound to possess HeLa cell binding capacity at 0°C
Karayan et al., 1997). However, the fate of cell surface-
dsorbed penton base molecules at 37°C had not been

nvestigated. Recombinant WT penton base protein was
hus incubated with HeLa cell monolayers for 30 min at
7°C, at a total penton base protein input of 12 3 1012

igand molecules per 106 cell sample, corresponding to
bout a 100-fold excess over the theoretical number of
ell receptors reported for penton base protein (9 3 104

er cell; Wickham et al., 1993). Cell-associated penton
ase, as assayed by sodium dodecyl sulfate–polyacryl-
mide gel electrophoresis (SDS–PAGE) and immunoblot
nalysis of whole-cell lysates, was found to range from 1

o 1.5% of the penton base protein input, i.e., 1.2 3 105 to
.8 3 105 molecules of penton base protein per cell. Most
f the cell-associated penton base resisted several cy-
les of rinsing with PBS with or without mild detergent

0.2% NP-40) or trypsin (10 mg/ml), suggesting that the
raction of protease-resistant penton base sedimenting

ith the cell pellet had been adsorbed into the cells.
To assess the cellular uptake of the penton base

rotein and its intracellular distribution, HeLa cell mono-
ayers were incubated with penton base for 15 min at
7°C, rinsed with prewarmed culture medium, and fur-

her incubated at 37°C for different periods of time,
anging from 10 to 120 min. The cells were then lysed,
ractionated into a nuclear pellet (N), an intermediate
raction containing large organelles, membranes, and
ndosomal vesicles (V), and the cytosolic supernatant

C), and the three subcellular fractions were immunolog-
cally assayed for penton base protein, as above. At
0–20 min (Fig. 1a, lanes 6–8), a significant proportion of
he penton base was already pelletable with the nuclei
N), but the majority was found in the endosomal and
esicular fraction (V). At 60 min, the proportion of penton
ase recovered from the nuclear pellet increased (Fig.
a, lanes 9–11), and at 2 h, most of the penton base was

ound in the nuclear and cytoplasmic (C) fractions (Fig.
a, lanes 12–14). The progressive change in cellular
istribution of penton base protein and its increase in the
uclear compartment during the incubation period sug-
ested the occurrence of a cell entry process and vec-

orial movement toward the nucleus.
The possible intracellular persistence of penton base

r, the contrary, its clearance from HeLa cells was also
nvestigated, using a prolonged chase period at 37°C.

eLa cell monolayers were taken at half-confluence and
ncubated with the penton base for 15 min at 37°C as

bove, and then, after removal of nonadsorbed penton
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165CELLULAR UPTAKE AND NUCLEAR DELIVERY OF Ad2 PENTON BASE
ase, cells were further maintained in culture until 72 h,
ith renewal of the medium at 24 and 48 h. Penton base
rotein of apparent Mr 80-kDa was still detected in cell

ysates after 4 h, but barely detectable at 8 h (Fig. 1b,
anes 2–4). However, between 8 and 48 h, most of the
ntracellular penton base protein was converted to a
iscrete 60-kDa species, which likely represented a ma-

or cleavage product (Fig. 1b, lanes 5–7). The 60-kDa
and decreased at 48 h and was no longer detected at
2 h (not shown), suggesting that the penton base was
leared from the cells mainly in the form of a 60-kDa
leavage product. A pentamerization-defective mutant,
553F, occurring as penton base monomers, was used

or comparison. The Y553F pattern was similar, although
he 60-kDa species seemed to disappear at a faster rate
Fig. 1b, lanes 8–13). This suggested that penton base

onomers could enter the cell as efficiently as penta-
ers (compare lanes 2 and 8, showing WT and Y553F,

espectively), but that the penton base monomers were

FIG. 1. (a) Distribution of recombinant penton base protein in cellular
ompartments of HeLa cells. Penton base protein, adsorbed to HeLa
ells for 15 min at 37°C, was immunologically assayed in the vesicular
nd membrane fraction (V), the cytosolic supernatant (C), and the
uclear pellet (N) at different times of chase at 37°C (lanes 6–14: 20, 60,
nd 120 min, respectively). Lane 1, aliquot of cell culture medium
ontaining unadsorbed penton base (S). Lane 2, prestained molecular
ass markers (M), showing 92- and 66-kDa marker proteins. Lanes

–5, zero time point samples from control HeLa cells harvested prior to
ncubation with penton base. (b) Fate of intracellular penton base in

eLa cells. Half-confluent HeLa cell monolayers were incubated at
7°C for 15 min with recombinant penton base, WT (lanes 2–7), or
553F mutant (lanes 8–13). Cells were rinsed and further incubated in
ulture medium for 48 h at 37°C (chase), and samples were withdrawn
t different time intervals. Whole-cell lysates were analyzed by SDS–
AGE and immunoblotting with penton base antibody. The figures at

he top indicate the times of the chase period (in h), and the figures on
he left represent the molecular mass markers of 92 and 66 kDa (lane
, M).
ess resistant to proteolysis. t
The possible cytotoxicity of penton base during the
hase period following its cellular uptake was explored
y flow cytometry. No apparent detrimental effect of pen-

on base on HeLa cell growth and viability was detect-
ble, as the percentage of dead cells in penton base-

reated cells at 2, 8, 16, 24, and 48 h of postincubation
as not significantly different from that in mock-treated

ells (data not shown).

nternalization and cellular compartmentalization
f penton base

The definition of the subcellular fractions analyzed
bove was essentially operational and had the main
dvantage of providing a kinetic representation of the

ate of intracellular penton base after its cellular uptake.
owever, compartment leakage usually occurred during

ell fractionation, and cross-contaminations were inevi-
able for subcellular fractions obtained by differential
entrifugation. A refined analysis of the cell entry and
ompartmentalization of penton base was then per-

ormed by immunoelectron microscopy (IEM) using indi-
ect immunogold labeling or direct gold labeling of the
enton base protein. As shown in Fig. 2, penton base
rotein was detected by IEM in virtually all compart-
ents of HeLa cells after a 30-min incubation period at

7°C. Gold grains of penton base-bound antibody were
ound at the plasma membrane (Figs. 2a and 2c), as well
s within intracytoplasmic vacuoles (Figs. 2b, 2d, 2e, and
f), and in significant amounts within the cytoplasm and
ucleoplasm (Figs. 2b and 2g). Endosomal release was
uggested by discontinuities of the vesicular membrane,
ith the occurrence of immunogold-labeled material on
oth the inner and the outer leaflets of the disrupted
embrane (Figs. 2b, 2d, and 2f). Most of the large intra-

ellular vacuoles in which penton base labeling was
etected were apparently devoid of a clathrin layer, but

ypical clathrin-coated, small vesicles that contained
old grains were also observed (Fig. 2c), as described

or adenovirions (Chardonnet and Dales, 1970). Cellular
nternalization and vesicular and nuclear localization of
enton base in HeLa cells were also evidenced by im-
unofluorescence (IF) microscopy using a confocal la-

er system (as shown in Fig. 6a).
Examination of the plasma membrane under the EM

fter immunogold labeling of cell sections revealed gold
rains on both sides of the membrane double leaflet (as

llustrated in Figs. 2a and 2c). This could suggest a direct
echanism of entry of penton base across the plasma
embrane, as previously postulated to occur for the

denovirion itself (Morgan et al., 1969). However, the
etection of penton base antigen by indirect IEM indi-
ates its binding to a primary penton base rabbit anti-
ody molecule, bound itself to a secondary anti-rabbit

gG molecule carrying the 5-nm gold grain tag. The

heoretical length of this two-story-high antibody com-
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FIG. 2. Immunogold labeling and EM analysis of penton base interaction with HeLa cells and intracellular localization. Recombinant penton base
as incubated at 37°C for 30 min with HeLa cell monolayers, and cells were processed for EM. Cell sections were reacted with penton base rabbit
ntibody and 5-nm gold-conjugated anti-rabbit IgG antibody. The different panels show cellular compartments taken from different areas of cell
ections. Hypothetical steps of the penton base entry pathway are arbitrarily numbered as follows: (1) attachment to the cell plasma membrane; (2)
ndocytosis; (3) intravesicular step; (4) vesicular escape and entry into the cytoplasm; (5) docking at the nuclear pore; (6) translocation across the
uclear pore. Note that clathrin-coated vesicles in (a) and (c) contained gold grain-labeled penton base. Arrows in (b), (d), and (e) point to regions
f discontinuities in the endosomal membrane. N, nucleus; C, cytoplasm; NP, nuclear pore. Bar represents 200 nm in (b), and 100 nm in all other

anels.
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167CELLULAR UPTAKE AND NUCLEAR DELIVERY OF Ad2 PENTON BASE
lex separating the penton base antigen from the gold
rain (about 40 nm; Davies and Padlan, 1990) largely
xceeded the thickness of the plasma membrane double

eaflet (5–6 nm). Thus, one could not exclude a possible
ilting of gold-labeled immunoglobulin molecules over
he plasma membrane, which could simulate an intracel-
ular localization of the penton base molecule.

To eliminate this type of ambiguity, we then used
enton base molecules labeled with colloidal gold tag
rior to their incubation with HeLa cells, to directly visu-
lize penton base protein under the EM without an in-

ermediate antibody. This experiment also tested the
apacity of penton base to serve as a carrier for a
olecule of similar size: the mean diameter of the col-

oidal gold tag (10 nm) was of the same order of magni-
ude as the size of the penton base, reported to be 9 nm
n diameter by negative staining analysis under the EM
Ruigrok et al., 1990) or 11.2 3 12.4 nm from image
econstruction data (Stewart et al., 1993, 1997). After a
-h incubation period with HeLa cells at 0°C, numerous
old-tagged penton base molecules were seen at the
ell surface (Fig. 3a). At 37°C, gold-tagged penton base
olecules were endocytosed by HeLa cells, as shown

y the occurrence of a number of gold grains within
acuoles (Fig. 3b). However, very few gold grains were
etected in the cytoplasm and in the nucleoplasm after
0 min at 37°C. This suggested that gold-tagged penton
ase molecules were less efficiently internalized and
ddressed to the nucleus than nontagged penton base,
n observation that might have significant implications if
d penton base protein is envisaged to be used as a

FIG. 3. Direct EM analysis of penton base–HeLa cell interaction.
enton base protein tagged with 10-nm gold was incubated with HeLa
ell monolayers at 0°C for 2 h (a) and shifted to 37°C for 30 min (b). N,
ucleus; C, cytoplasm. Bar represents 100 nm.
ehicle for gene therapy. a
esicular release of coendocytosed penton base
nd toxin molecules

The possible release of penton base from the endo-
ome into the cytoplasm by translocation and/or vesicu-

ar membrane disruption, as suggested by EM analysis
Figs. 2b, 2d, and 2f), was further investigated using a
ioassay based on the endosomal release of coendocy-

osed toxins with inhibitory effects on host cell protein
ynthesis (FitzGerald et al., 1983a,b; Seth et al., 1984,
985; Seth, 1994b). We used ricin agglutinin (RCA), a
eterodimeric glycoprotein with a cytotoxic A chain

inked by a disulfide bond to a B chain, a lectin that binds
o a galactose-containing receptor (Olsnes and Phil,
982). Internalization of ricin by sensitive cells leads to
eduction of the disulfide bond, separation of the chains,
nd translocation of the toxic A chain to the cytoplasm,
here it inhibits protein synthesis via N-glycosidase ac-

ivity on 28S rRNA (Endo and Tsurugi, 1987). We coupled
CA to human transferrin (Tf) via a streptavidin bridge,
uch that it would follow the well-defined pathway of Tf
eceptor endocytosis (Curiel et al., 1991; FitzGerald et al.,
983a).

We found that RCA–Tf alone decreased HeLa cell protein
ynthesis by only 30–35% under our experimental condi-

ions. However, in the presence of Ad2 virions, its cytoxicity
ncreased significantly, with 90% inhibition at 2 PFU/cell
Fig. 4). WT penton base protein also increased the cytox-
city of RCA–Tf conjugate; at 0.5–1.0 mg per 105 cells, a
oncentration at which the intrinsic cytopathic effect of
enton base was negligible, protein synthesis was reduced

o 20% of control (Fig. 4). The penton base activity was
bolished after being heated to 56°C for 30 min, suggesting

hat it required native protein conformation. These results
uggested that isolated penton base protein facilitated the

nternalization of macromolecules, as does the adenovirion
tself (Defer et al., 1990; Karayan et al., 1997), but with a

uch lower efficiency. Considering that about 1% of the
enton base input entered the cells, and that one infecting
nit of Ad2 (1 PFU) corresponded to about 30–50 physical
articles containing 12 penton capsomeres each, the level
f endosomal release of RCA–Tf was 1000 to 2000 times
ore efficient with virions than with free penton base pro-

ein. This would suggest that other capsid components
ould participate in the vesicular release process or, alter-
atively, that the conformation and biological properties
ould be different for free and virion-incorporated penton
ase or both.

nteraction of the penton base with the nuclear pore
omplex in situ

Detection of the penton base in the HeLa cell nucleus
y cell fractionation (Fig. 1) and IEM (Fig. 2) as early as
0 min after its input suggested an efficient nuclear
ddressing and passage of penton base molecules

cross the nuclear pores. Nuclear membranes of HeLa
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168 HONG ET AL.
ells incubated with the penton base were thus further
nalyzed by IEM with special focus on NPC, using single
r double immunogold labeling. In the many electron
icrographs observed, gold grains were seen in close

ssociation with NPC, and on several occasions, multi-
le gold grains were found on both the cytoplasmic and

he nucleoplasmic sides of nuclear pores, as well as
ithin the central channel viewed in cross (Figs. 2e–2g,
nd 5c) or tangential sections (Figs. 5d and 5e). This was
onfirmed by double immunogold labeling experiments,

n which penton base rabbit antibody was detected by
-nm gold-labeled conjugate, whereas Pl1, a mouse
onoclonal antibody directed against the nuclear pore

lycoprotein p62, was detected by 10-nm gold-labeled
onjugate (Figs. 5a and 5b). Several NPC carried double

abeling with both 5- and 10-nm gold grains (Figs. 5f and
g). All these observations strongly suggested a trans-

ocation of the penton base molecules through the NPC.

uantitative analysis of cellular uptake and
ompartmentalization of WT and mutant penton base

Quantification of penton base protein in the three ma-
or cell compartments, intracytoplasmic vacuoles (V), cy-
osol (C), and nucleus (N), was performed using IEM, by

FIG. 4. Cytotoxic assay of vesicular release of Ad2 virions and isolat
f Ad2 virion and penton base protein was determined by incubation of

nput of penton base protein (control Pb) in the absence of toxin. In tw
onstant amounts of 1 mg per 105 cells, was assessed in the presence
he level of cellular protein synthesis was determined by radiolabeling
s percentage of protein-incorporated radioactivity in control samples w
f penton base solution corresponds to 1 mg penton base protein.
ounting the penton base-associated immunogold (
rains on a series of cell sections (Carrière et al., 1995;
uvent et al., 1998; Karayan et al., 1997). The results,
xpressed in terms of grain density (i.e., the number of
rains per square micrometer of cell section area), are
hown in Table 1. After 30 min of incubation with HeLa
ells at 37°C, WT penton base was found in abundance
ithin the vesicular compartment (more than 50%), in-

luding large endosomes as well as smaller vacuoles.
he other half was distributed almost equally between
ytoplasm and nucleus. This corresponded to the pattern
f cellular distribution of penton base observed after cell

ractionation (Fig. 1a, lanes 9–11).
Five mutants with various phenotypes were also quan-

itatively analyzed for their cell uptake and localization.
utant K288E340 carried two substitutions in the inte-

rin binding motifs RGD and LDV (Karayan et al., 1997).
nly 10% of K288E340 penton base was found in the

esicular compartment, viz, five times less than WT (Ta-
le 1). This was consistent with an integrin binding-
efective phenotype, in which integrin-mediated endocy-

osis would be impaired, as was confirmed by confocal
aser immunofluorescence data shown below (refer to
ig. 6b). However, K288E340 was still found in significant
mounts in the cytoplasm and nucleus under the EM

ton base capsomeres. In control experiments, the intrinsic cytotoxicity
ell monolayers with increasing m.o.i. of Ad2 (control Ad2) or increasing
r sets of samples, cytotoxicity of transferrin-conjugated ricin (RCA), at
reasing inputs of Ad2 (Ad2 1 RCA–Tf) or penton base (Pb 1 RCA–Tf).
5S]methionine1cysteine. Results were normalized and are expressed
RCA (open symbols) or with RCA (solid symbols). On the x-axis, 10 ml
ed pen
HeLa c
o othe
of inc
with [3

ithout
Table 1), suggesting the possibility of an alternative
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169CELLULAR UPTAKE AND NUCLEAR DELIVERY OF Ad2 PENTON BASE
ntry pathway independent of the RGD and LDV motif-
ediated integrin pathway.
Penton base physiologically exists as a pentamer at

he vertex of the virion (Nermut, 1984; Stewart et al.,
991). Mutants W119H (tryptophan-to-histidine substitu-
ion at position 119), Y553F (tyrosine-to-phenylalanine
ubstitution at position 553), and RRR547EQQ (a triple-

FIG. 5. Immunogold labeling and EM analysis of sections of nuclear
t 37°C for 30 min, as in Fig. 2. Specimens were successively reacte
nti-p62 NP protein, followed by 5-nm gold-conjugated anti-rabbit IgG a
xcept for (b), cytoplasm is on the upper side and nucleoplasm on the l

b), NP show single labeling with 10-nm gold-labeled anti-p62, with NP
rains occupy the central channel position, as shown in a previous stud

n cross (c) and tangential sections (d, e). In (f, g), NP carry double-lab
-nm gold grains in (g), respectively. Bar represents 50 nm.
ubstitution mutant in the polybasic signal at position H
47) have been found to be defective in penton base
entamerization and accumulated as penton base mono-
ers in insect cells (Karayan et al., 1997). To determine
hether the quaternary structure of penton base could

nfluence its entry and compartmentalization in HeLa
ells, monomeric penton base proteins of mutants
119H, RRR547EQQ, and Y553F were incubated with

ane and nuclear pores (NP) of HeLa cells incubated with penton base
penton base rabbit antibody and mouse monoclonal antibody (IgM)

y and 10-nm gold-conjugated anti-mouse IgM antibody. For all panels,
de of the nuclear membrane section, presented horizontally. In (a) and
d in cross (a) or tangential (b) section. Note that in (b), anti-p62 gold
en et al., 1993). In (c–e), NP are seen with single penton base labeling,
ith five 10-nm and one 5-nm gold grains in (f) and one 10-nm and six
membr
d with
ntibod

ower si
viewe

y (Wilk
eling, w
eLa cells at 37°C, and cell samples were analyzed by
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170 HONG ET AL.
EM. Cell entry of W119H at 37°C apparently occurred
ith the same efficiency as WT penton base, with a

elative distribution of W119H in the three major cell
ompartments similar to that of WT penton base (Table
). The cellular uptake of Y553F monomers seemed to
ccur with slightly less efficiency than for WT pentamers
r W119H monomers, but its pattern of cellular distribu-

ion did not significantly differ from those of WT and
119H (Table 1). This implied that the monomeric status

f penton base protein had no detrimental effect on its
ellular attachment, entry, and nuclear localization in
eLa cells. This also indicated that the peptide motifs

nvolved in these functions were carried by the penton
ase monomer.

The penton base mutants W119H, W165H, and
RR547EQQ have been found to be phenotypically de-

ective in nuclear addressing in insect cells (Karayan et
l., 1997). In HeLa cells, however, W119H showed WT

evels of nuclear localization, and RRR547EQQ showed
n even higher efficiency than WT (Table 1). This sug-
ested that the N-terminal domain carrying the W119H
utation and the C-terminal polybasic signal at position

47 in penton base were not acting as nuclear localiza-
ion signals (NLS) in human cells. The higher ratio of
uclear to cytoplasmic gold particles observed with mu-

ant RRR547EQQ might result from its monomeric status,
hich could facilitate its transport or diffusion, and/or

rom alteration of some cytoplasmic retention signal(s).
165H carried a tryptophan-to-histidine substitution at

T

Cellular Distribution of Recombinant Ad

Penton base
(WT or mutant)

Oligomeric
statusb

Intracytoplasmic vesicle
(V)

ontrol HeLac — 0.0
(n 5 5; S 5 1.4)

T Pb P 72.8 6 58.3
(n 5 10; S 5 2.6)

288E340 P 13.9 6 14.9
(n 5 7; S 5 4.5)

119H M 60.9 6 45.6
(n 5 4; S 5 3.9)

165H P 63.3 6 54.5
(n 5 8; S 5 3.6)

RR547EQQ M 37.6 6 23.3
(n 5 3; S 5 2.5)

553F M 25.2 6 13.4
(n 5 11; S 5 18.8)

a HeLa cell monolayers were incubated with penton base (WT or mu
nalysis of penton base cellular distribution was performed by counting
s number of gold grains per mm2 of surface area, 6SD. n, number o

b The penton base mutant phenotype, with respect to the major protei
efective monomers) or P (pentamers).

c Control HeLa corresponded to cell monolayers incubated with PBS
rimary and gold-labeled secondary antibodies.

d NA: background labeling, calculation of the ratio not applicable.
osition 165 and occurred as a pentamer (Karayan et al., i
997). Only 20% of W165H penton base molecules were
ound in the cytosol and the nucleus, versus 60% within
esicles (Table 1). W165H seemed therefore to be phe-
otypically defective in nuclear transport in HeLa cells,
s observed in Sf9 cells.

ellular requirements for intracellular movement
nd nuclear import of penton base

The following experiment was designed to determine
hether WT penton base could diffuse freely within the

ytoplasm to reach the NPC or whether its intracellular
ovement required cell components or subcellular

tructures. Immunolocalization of the penton base was
hus analyzed in situ using permeabilized cells. HeLa
ells were fixed and permeabilized with Triton X-100,

ncubated with penton base or anti-NPC p62-glycopro-
ein IgM antibody, and processed for IF or IEM. No
enton base labeling could be detected in the vicinity of

he nuclear membrane or at the NPC (not shown),
hereas NPCs were found to be labeled with anti-p62

olloidal grains (as in Figs. 5a and 5b). Likewise, when
T penton base was incubated with nuclear membranes

solated from HeLa cells under conditions that preserve
he NPC architecture (Matunis et al., 1996) and p62
mmunoreactivity (Dabauvalle et al., 1988), no penton
ase binding to the NPC was detected by IF and IEM

data not shown). These results suggested that, contrary
o anti-NPC p62 antibodies that bind to the NPC of

on Base in HeLa Cell Compartmentsa

Cytoplasm
(C)

Nucleus
(N)

Ratio (%)
V:C:N

2.7 6 1.4 3.2 6 1.8 NAd

(n 5 5; S 5 37.2) n 5 5; S 5 27.2)
32.8 6 24.7 34.7 6 31.8 50:25:25

(n 5 6; S 5 32.3) (n 5 5; S 5 32.0)
56.9 6 13.0 66.3 6 17.0 10:40:50

(n 5 5; S 5 78.9) (n 5 4; S 5 37.7)
33.5 6 18.1 34.4 6 16.8 50:25:25

(n 5 7; S 5 83.8) (n 5 7; S 5 25.5)
19.1 6 9.7 18.0 6 9.5 60:20:20

(n 5 11; S 5 56.5) (n 5 6; S 5 81.8)
62.1 6 39.3 81.0 6 30.5 20:35:45

(n 5 5; S 5 17.7) (n 5 5; S 5 13.6)
16.7 6 7.8 18.3 6 2.2 40:30:30

(n 5 13; S 5 90.2) (n 5 7; S 5 83.9)

37°C for 1 h and analyzed by IEM, as presented in Fig. 2. Quantitative
lloidal gold grains in the different cell compartments. Results are given
ate cell sections analyzed; S, total surface analyzed in mm2.
es recovered (Karayan et al., 1997), is indicated as M (pentamerization-

t penton base at 37°C, processed for EM, and reacted with the same
ABLE 1

2 Pent

s

tant) at
the co

f separ
n speci

withou
solated nuclear envelopes, intracellular vectorial move-
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171CELLULAR UPTAKE AND NUCLEAR DELIVERY OF Ad2 PENTON BASE
ent of the penton base to the nucleus, its docking at the
PC, and its nuclear import required the integrity of

ecipient cells. The next experiments investigated the
ole of cytoskeletal elements in this process.

The intracellular localization of penton base protein
as analyzed under various conditions using penton
ase antibody and FITC-conjugated anti-IgG in confocal

aser IF microscopy. After 30 min of incubation of WT
enton base with HeLa cells at 37°C, the cells showed a
redominant cytoplasmic fluorescence consisting of

arge bright speckles visible over a field of diffuse and
inely punctuated fluorescence, suggesting both cyto-

FIG. 6. Effects of cytoskeleton-targeted drugs on cellular compartmen
eLa cell monolayers, pretreated or not with the drug, were incubat
nti-penton base antibody and FITC-conjugate. (a) WT penton base with
ith cytochalasin D-treated cells; (d) WT penton base with nocodazole
lasmic and vesicular localization. A nuclear fluores- p
ence was also detectable, although fainter compared to
he cytoplasm (Fig. 6a). The double mutant K288E340
howed a faint cytoplasmic and nuclear fluorescence
nd a bright halo at the periphery of the cells (Fig. 6b).
his pattern suggested a delay in endocytosis and cel-

ular uptake, consistent with the phenotype of this inte-
rin-binding defective mutant protein.

In cells pretreated with the microfilament-disrupting
rug cytochalasin D prior to incubation with WT penton
ase, the fluorescent signal of the penton base formed a
right peripheral ring at the plasma membrane (Fig. 6c).

n cells pretreated with nocodazole, a microtubule-de-

n of penton base, analyzed by indirect IF in confocal laser microscopy.
penton base at 37°C for 30 min, permeabilized, and reacted with

ted cells; (b) K288E340 mutant with untreated cells; (c) WT penton base
d cells.
talizatio
ed with
untrea
olymerizing drug, and incubated with WT penton base
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172 HONG ET AL.
t 37°C, a similar pattern of peripheral, plasma mem-
rane localization of the penton base fluorescent signal
as observed, contrasting with a faint cytoplasmic fluo-

escence and the absence of nuclear fluorescence (Fig.
d). IEM analysis confirmed the absence of detectable
enton base immunogold labeling in the cytoplasm and
ucleus of cytochalasin D- and nocodazole-treated cells

not shown). This suggested that the integrity of actin
icrofilaments and microtubules was essential for the

ntry and vectorial movement of penton base toward the
ucleus and its nuclear import.

DISCUSSION

It is now generally considered that Ad enters its host
ells by endocytosis (Chardonnet and Dales, 1970), a

emperature-dependent, receptor-mediated phenome-
on, which physiologically occurs at 37°C and requires
enton base–integrin interaction (Belin and Boulanger,
993; White, 1993; Wickham et al., 1993). Functions such
s (i) cell binding and endocytosis of Ad particles (Belin
nd Boulanger, 1993; Mathias et al., 1994; Nemerow et
l., 1994; Wickham et al., 1993), (ii) vesicular escape of
irions (Seth, 1994a; Wickham et al., 1995), and (iii) en-
osomal release of coendocytosed toxins (Otero and
arrasco, 1987; Seth et al., 1984) or macromolecules

Defer et al., 1990; Karayan et al., 1997; Seth et al., 1994;
oshimura, 1985; Yoshimura et al., 1993) have been as-
igned to the penton base capsomeres present in the Ad
apsid. However, no cell trafficking function had been

hus far attributed to the isolated penton base protein. In
his study, we present biochemical and EM data suggest-
ng that the Ad vertex capsomere devoid of its fiber
rojection and used as recombinant penton base protein

solated from baculovirus-infected insect cells carries
unctional domains for (i) its cell attachment, (ii) endocy-
osis, (iii) vesicular escape, (iv) cytoplasmic transport, (v)
assage through the nuclear pore, and (vi) nuclear im-
ort, as do infectious adenovirions (Figs. 2, 3, and 6).
owever, the endosomal release of coendocytosed toxin

icin was three orders of magnitude less efficient for
enton base than for adenovirions, for the same amounts
f penton base protein involved (Fig. 4). Considering the
mount of WT penton base protein occurring within the
ucleus, this suggested that endosomolysis was not the
nly route of cytoplasmic entry for this protein.

Data with pentamerization-defective mutants W119H,
RR547EQQ, and Y553F indicated that pentamerized
enton base protein was apparently not required for any
f the intracellular steps, suggesting that the peptide
omains responsible for these functions were present in

he penton base monomer itself. It was reported recently
hat dodecamers of Ad3 penton base, consisting of the
ymmetrical arrangement of 12 pentons (also termed
odecahedrons), were capable of cell entry. However, in

ontrast to our single Ad2 penton base capsomere or its t
onomeric subunits, Ad3 dodecamers were blocked at
he nuclear pore (Fender et al., 1997), suggesting that the
omains responsible for the NPC traverse were probably
asked or conformationally altered in the 12-mer edifice.

ikewise, Ad2 capsid proteins derived from virions dis-
upted by heat, pyridine, and mild protease or detergent
reatments, as well as complete penton capsomeres
base 1 fiber) isolated from the cellular pool of soluble
roteins, failed to provoke detectable endosome lysis in
B cells, as assayed with EGF-coupled Pseudomonas
xotoxin (Seth, 1994b). This suggested that the peptide
otifs responsible for the membrane lysis function were

ighly sensitive to physicochemical modifications of the
enton base structure and might not be active in fiber-
ound penton base, a situation that has been shown to

nfluence the conformational structure of the penton
ase (Schoen et al., 1996).

The penton base double mutant K288E340, substituted
n both RGD and LDV motifs, showed a peripheral cell
ocalization phenotype in IF (Fig. 6b) and a low level of
ndosomal localization in IEM (Table 1). This pattern
uggested a defect in endocytosis, consistent with its
utations at two major integrin-binding sites. However,

ignificant quantities of K288E340 mutant protein were
een in the cytoplasm and the nucleus under the EM

Table 1). This implied that K288E340 penton base could
nteract with HeLa cells via a domain(s) independent of
he RGD and LDV motifs and enter the cells via an
lternative pathway involving receptors other than the
reviously identified av, aM, and a4 integrins. Our data
ith WT penton base, showing that a significant propor-

ion of penton base protein was still vesicular after 60
in (Fig. 1a), suggested that, if this alternative pathway

xists, it would be fully functional only when the pre-
erred integrin-mediated pathway is blocked or slowed.

o indication of an entry pathway involving caveolae
Anderson et al., 1992; Parton, 1996) was found in IEM
sing double labeling with penton base and caveolin
ntibodies (not shown).

Mutants W119H and RRR547EQQ, which have been
ound to be defective in nuclear addressing in Sf9 cells
Karayan et al., 1997), localized in the nucleus of HeLa
ells at WT levels or higher (Table 1). This suggested that
utant phenotypes could vary with extrinsic factors,

uch as the cellular context. It also indicated that the
egion overlapping tryptophan-119 and the C-terminal
olybasic signal at position 547 in the penton base had
o function as a NLS in human cell lines.

In contrast, W165H was found to localize in the nu-
leus with a low efficiency (Table 1), as in Sf9 cells

Karayan et al., 1997), and preferentially occurred within
he endosomal compartment (Table 1). This pattern sug-
ested that W165H could be altered in its vesicular
scape or its transport to the nucleus or both. However,
esicular release of coendocytosed RCA–Tf conjugate

ook place with the same efficiency as with WT penton
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173CELLULAR UPTAKE AND NUCLEAR DELIVERY OF Ad2 PENTON BASE
ase (data not shown), which seemed to exclude the first
ypothesis. The penton base domain involved in the
165H mutation showed sequence homology with WD

epeats (Karayan et al., 1997), which are frequently found
n proteins with cell trafficking properties (Neer et al.,
994). It also shared structural and functional features
ith a region of the Drosophila Antennapedia DNA-bind-

ng homeodomain with membrane translocation capacity
Derossi et al., 1994, 1996). (i) The third helix of the
ntennapedia homeodomain and its 16-amino-acid-long
erived peptide AntpHD41-58 (referred to as penetratin;
erossi et al., 1994) are internalized by cells in culture in
non-receptor-mediated manner (Derossi et al., 1996), a

roperty that has been used to address biologically ac-
ive substances to the nucleus of cultured cells (Théo-
ore et al., 1995). (ii) Both proteins contain relatively
omologous peptide motifs, QIKIWFQN in AntpHD41-58
nd ELKYEWVE within residues 160–167 in the penton
ase. If the W165H mutation had altered a domain in-
olved in cell trafficking of the penton base, this in turn
ould provoke a negative feedback effect on its release

rom the endosomal compartment.
The alteration of the intracellular distribution of penton

ase by cytochalasin D and nocodazole (Figs. 6c and 6d)
uggested that actin cables and microtubules were both

nvolved in its vectorial transport to the nucleus. A reor-
anization of the actin filament network, termed actin
abling, has already been reported in HeLa cells upon
dsorption of Ad2 virions or pentons, but not isolated

ibers (Belin and Boulanger, 1993), an observation con-
istent with the finding that actin cables are connected to

he intracytoplasmic domain of the plasma membrane
ntegrins (Ruoshlahti, 1988). Likewise, a-tubulin co-
alently linked to infecting Ad2 particles has been recov-
red from BHK-21 cells after in situ cross-linking exper-

ments (Belin and Boulanger, 1985), and Ad virions have
een found to bind to reconstituted microtubules in vitro

Weatherbee et al., 1977). Since the cytoskeletal network
s functionally and structurally connected to the cytoplas-

ic fibrils of the NPC (Davis, 1995; Görlich and Mattaj,
996; Nigg, 1997; Richardson et al., 1988), it is tempting to
peculate that the cytoskeleton could serve to guide the
enton base molecules toward the nuclear pore channel.
he fact that we were unable to find any detectable

nteraction between the penton base and the HeLa cell
uclear membrane or NPC in permeabilized cells or in in
itro binding assays suggested that cell internalization
nd binding to cytoskeletal elements of human cells
ere prerequisite steps for efficient penton base nuclear
ddressing, docking, and translocation through the NPC.

Biological functions associated with Ad penton base
ere reminiscent of those of VP22, a tegument protein of
erpesvirus HSV-1, which has recently been shown to
ossess cell trafficking properties. Exported from the
ells from which it was synthesized by a nonclassical,

olgi-independent pathway, it was capable of reentering e
urrounding cells and being delivered to the nucleus
here it bound to chromatin and was segregated to
aughter cells (Elliott and O’Hare, 1997). Likewise, pen-

on base secreted from Sf9 cells by a Golgi-independent
echanism could enter HeLa cells, and its intracellular
ovement in the recipient cells depended, at least par-

ially, on the integrity of the actin network. However, in
ontrast to VP22, the penton base was not maintained in
ecipient cells after 72 h of culture and was likely elimi-
ated by proteolysis. Despite these differences, both Ad
enton base and VP22 proteins offer some clue to the
evelopment of new types of nonreplicating, virus-de-

ived vectors. Alternatively, they could be advantageously
sed as viral probes to dissect molecular mechanisms of
ellular events, such as membrane translocation, endo-
omolysis, or nuclear import of macromolecules through

he NPC.

MATERIALS AND METHODS

Recombinant penton base proteins. Ad2 WT recombi-
ant penton base protein (PbFL571) and point mutants
288E340, W119H, W165H, RRR547EQQ, and Y553F
ere expressed in baculovirus-infected insect cells, as
escribed in detail in previous studies (Karayan et al.,
994, 1997). K288E340 carried a double mutation at po-
itions 288 (D to K substitution) and 340 (R to E substi-

ution). W119H and W165H were two single mutants with
tryptophan-to-histidine substitution at positions 119

nd 165, respectively, and Y553F had a conservative
utation (Y to F substitution) at position 553 near the
-terminus. RRR547EQQ was a triple-substitution mutant

n the C-terminal polybasic motif at position 547–549.
enton base proteins were isolated from Sf9 cell lysates
nd purified using a modification of our three-step pro-
edure (Boudin et al., 1979; Boulanger and Puvion, 1973):

he first step of ammonium sulfate precipitation was
eplaced by ultracentrifugation in the sucrose gradient in
rder to isolate 9S pentameric capsomeres for WT,
288E340, and W165H, and 3S monomers for W119H,
RR54EQQ, and Y553F mutants (Karayan et al., 1994,
997).

Interaction of Ad2 penton base with HeLa cells. Ali-
uots of recombinant penton base, WT or mutant (6 mg
rotein, corresponding to 12 3 1012 penton base mole-
ules), in 300 ml of phosphate-buffered saline (PBS) sup-
lemented with 0.5% BSA were incubated with 106 HeLa
ells at 37 or 0°C for periods of time ranging from 15 min

o 2 h, as indicated. The WT penton base-induced cell-
etaching effect (Bai et al., 1993; Boudin and Boulanger,
982; Karayan et al., 1994, 1997) was reduced to less
han 20% of the cell monolayers under these experimen-
al conditions. The remaining cells attached to the solid
upport were harvested at the times indicated and pro-
essed for immunofluorescence, electron and immuno-

lectron microscopy, or biochemical analysis. Since
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174 HONG ET AL.
here was no significant difference in the cellular distri-
ution of the penton base in the two cell populations, as
hown by Western blot analysis, the detached cells were
liminated.

Generation of ricin–transferrin complex and endoso-
olysis assay. Ricin was coupled to transferrin via a

treptavidin bridge. Biotin-labeled ricin agglutinin
RCA120, 120,000 mol wt; Sigma) was mixed with biotin-
abeled human transferrin (85,000 mol wt; Sigma) in PBS
n an equal molar ratio of biotin groups. In a standard
rocedure, 8.4 nmol of RCA120 carrying 5.3 mol biotin
er mole of lectin, and 6.5 nmol of Tf with 6.7 mol biotin
er mole of Tf were mixed, then 22 nmol of streptavidin

Sigma), providing a total number of 88 biotin-binding
ites, was added to the mixture. Thus, each mole of
treptavidin would statistically carry 2 mol of RCA and 2
ol of Tf. The complex was used at a final input of 1 mg

f RCA120 per sample of 105 HeLa cells, grown as
onolayers. Cells were preincubated with RCA–Tf com-

lex with or without Ad or penton base for 1 h at 37°C, in
ethionine- and cysteine-deprived culture medium.

35S]Methionine and [35S]cysteine (.1000 Ci/mmol; PRO-
IX; Amersham) were added at 15 mCi per 105 cells and

ncubation further proceeded for 1 h at 37°C. Ad2 inoc-
lum was added at a m.o.i. ranging from 0 to 50 PFU/cell,
nd penton base was added at protein inputs ranging

rom 0 to 5 mg per 105 cells. Cells were then rinsed with
ulture medium, detached from the support, and dis-
olved in 0.2N NaOH, 1% SDS. Cellular proteins were
recipitated by addition of 10 vol trichloroacetic acid

TCA) at 10% and retained on GF/C glass filters, and
CA-precipitable radioactivity was determined by scintil-

ation counting in a liquid spectrometer (Beckman LS
500).

Antibodies and reagents for cytology. Penton base
abbit antiserum, raised against WT Ad2 penton base 9S
entamers (laboratory-made; Karayan et al., 1994, 1997),
nd monoclonal antibody directed against the p62 nu-
lear pore glycoprotein (mouse IgM; Dabauvalle et al.,
988; Starr et al., 1990) have been described in previous
tudies. Anti-penton base monoclonal antibodies (mouse

gG) 5A5 and 1D2 were kindly provided by Marc Eloit
Ecole Nationale Vétérinaire, Maisons-Alfort). Anti-caveo-
in 11.1-kDa cytoplasmic domain rabbit antibody was pur-
hased from Transduction Laboratories (Lexington, KY).
luorescein isothiocyanate (FITC)-conjugated, affinity-
urified, goat anti-rabbit or anti-mouse IgG antibodies
ere obtained from Jackson ImmunoResearch (West
rove, PA). The cytoskeleton targeted drugs cytochalasin
, used at 1 mM, and nocodazole, used at 10 mg/ml, were
oth purchased from Sigma. They were added to HeLa
ell cultures for 1 h at 37°C prior to penton base addition
t 20 mg/ml in PBS.

Electron microscopy and immunoelectron microscopy.
ell specimens were processed for inclusion in epoxy
esin (Epon), as previously described (Carrière et al., H
995; Huvent et al., 1998). Hydrophobic resin Epon was
referred to hydrophilic resin metacrylate in the present
tudy for the following reasons: (i) it allowed better mor-
hological analyses than metacrylate resins (Lowicryl) in
onventional EM and IEM; (ii) most penton base anti-
enic epitopes apparently resisted the Epon inclusion
nd etching processes and still reacted with our poly-
lonal anti-penton base antibody in IEM (Karayan et al.,
994, 1997). Indirect visualization of cell-associated pen-
on base molecules on cell sections was performed by
ncubation with primary penton base rabbit antibody di-
uted at 1:150 in Tris-buffered saline (TBS), followed by a
econdary 5-nm colloidal gold-labeled anti-rabbit IgG
ntibody (Amersham) at 1:50 in TBS for 3 h at room

emperature (RT). For double immunogold labeling, sec-
ions were postincubated with unlabeled goat anti-rabbit
gG at 1:50 in TBS overnight at 4°C to quench any
ossible nonspecific reaction with the antibody of the

irst labeling step. Sections were then incubated with
nti-p62 nuclear pore glycoprotein at 1:100 in TBS over-
ight at 4°C, followed by 10-nm colloidal gold-labeled
nti-mouse IgM antibody (British BioCell International,
ardiff, UK) at 1:50 in TBS for 3 h at RT. Specimens were
xamined under the Hitachi HU-7100 electron micro-
cope. Cell compartments were quantitatively analyzed

or immunogold labeling by manual counting of grains
nder a magnification glass and confirmed by scanning
f EM photographs, using an image analyzer (Agfa Ar-
us2-PCF) and the NIH Image program, version 1.60.

Gold labeling of penton base. Penton base was tagged
ith colloidal gold for direct visualization of cell-associ-
ted penton base molecules under the EM. Gold colloid

10 nm in diameter) was purchased from British BioCell
nternational. Gold labeling of penton base protein was
arried out according to the method of De Mey (1983)
ith the following modification: the reaction medium was
djusted to pH 5.85, i.e., the isoelectric pH of Ad2 penton
ase (Lemay and Boulanger, 1980), as recommended by

he manufacturer.
Immunofluorescence microscopy. HeLa cells treated

ith penton base were fixed with 2% paraformaldehyde
nd permeabilized with 0.1% Triton X-100 before being
rocessed for IF microscopy. After being blocked with 1%
ovine serum albumin in PBS for 30 min at room tem-
erature, the cells were first incubated with penton base

abbit antibody diluted at 1:1000 in PBS, followed by the
econdary, FITC-labeled anti-rabbit antibody (Sigma) di-

uted at 1:100. Cellular localization of penton base pro-
ein was analyzed using a confocal microscope (Bio-Rad
024). Optical sections of 0.35 mm in thickness were
ampled through the cell monolayers and images were
canned at 512 3 512 pixel resolution.

Flow cytometry. Cell viability was analyzed by flow
ytometry, performed by differential cell labeling using

oechst 33342 reagent and propidium iodine, in a FAC-
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can flow cytometer (Becton Dickinson, Mountain View,
A).
Biochemical and immunological analyses. Cells were

efrigerated in ice and lysed in precooled hypotonic
uffer, and all subsequent steps of cell fractionation
ere conducted at 4°C to minimize further transport
rocesses between cell compartments. Cell lysates
ere fractionated using a conventional differential cen-

rifugation method, yielding three subcellular fractions:
uclei, recovered in the pellet at 1000g for 10 min (re-

erred to as fraction N), endosomal vesicles, lysosomes,
arge organelles, and mitochondria (referred to as V) at
0,000g for 30 min, and the final supernatant (C), con-
isting of cytosol with ribosomes and endoplasmic retic-
lum. Each fraction was analyzed by SDS–PAGE and

mmunoblotting using penton base polyclonal or mono-
lonal primary antibody and peroxidase- or phospha-

ase-conjugated anti-rabbit or anti-mouse IgG secondary
ntibody (Sigma). Immunological quantification of penton
ase protein on blots was carried out using luminescent
ubstrate (SuperSignal, Pierce) or 125I-labeled secondary
ntibody (750–3000 Ci/mmol; 5–20 mCi/mg antibody;
mersham) at 3 to 5 mCi/200-cm2 blot and autoradiog-

aphy. Radioactively labeled penton base bands were
xcised from the blots and the radioactivity was deter-
ined by liquid scintillation counting, using a liquid

pectrometer (LS-5000, Beckman) as previously de-
cribed (Huvent et al., 1998).

HeLa cell permeabilization and isolation of nuclei and
uclear envelopes. For immunolocalization in situ, HeLa
ells fixed with 2% paraformaldehyde and permeabilized
ith 0.1% Triton X-100 were incubated with penton base

100 mg/ml in PBS) for 1 h at 20°C. For in vitro binding
ssays, nuclei from HeLa cells were isolated as de-
cribed by Krohne et al. (1981). Nuclear envelopes were

solated essentially as described by Matunis et al. (1996)
nd incubated with penton base under the same condi-

ions as described above, using envelopes from 1 3 106

uclei per sample. Possible penton base–NPC interac-
ion was assessed by IF and IEM microscopy.
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arriére, C., Gay, B., Chazal, N., Morin, N., and Boulanger, P. (1995).
Sequence requirements for encapsidation of deletion mutants and
chimeras of human immunodeficiency virus type 1 Gag precursor
into retrovirus-like particles. J. Virol. 69, 2366–2377.

hardonnet, Y., and Dales, S. (1970). Early events in the interaction of
adenovirus with HeLa cells. I. Penetration of type 5 and intracellular
release of the DNA genome. Virology 40, 462–477.

hroboczek, J., Ruigrok, R. W. H., and Cusack, S. (1995). Adenovirus
fiber. In “The Molecular Repertoire of Adenoviruses, I, Virion Struc-
ture and Infection” Current Topics in Microbiology and Immunology,
Vol. 199, pp. 165–200, Springer-Verlag, Berlin/Heidelberg.

uriel, D. T., Agarwal, S., Wagner, E., and Cotten, M. (1991). Adenovirus
enhancement of transferrin-polylysine-mediated gene delivery. Proc.
Natl. Acad. Sci. USA 88, 8850–8854.

abauvalle, M.-C., Benavente, R., and Chaly, N. (1988). Monoclonal
antibodies to a Mr 68,000 pore complex glycoprotein interfere with
nuclear uptake in Xenopus oocytes. Chromosoma 97, 183–197.

ales, S., and Chardonnet, Y. (1973). Early events in the interaction of
adenovirus with HeLa cells. IV. Association with microtubules and
the nuclear pore complex during vectorial movement of the inocu-
lum. Virology 56, 465–483.

avies, D. R., and Padlan, E. A. (1990). Antibody–antigen complexes.
Annu. Rev. Biochem. 59, 439–473.

avis, L. I. (1995). The nuclear pore complex. Annu. Rev. Biochem. 64,
865–896.

efer, C., Belin, M. T., Caillet-Boudin, M. L., and Boulanger, P. (1990).
Human adenovirus–host cell interactions: A comparative study with
members of subgroups B and C. J. Virol. 64, 3661–3673.

e Mey, J. (1983). The preparation of immunoglobulin gold conjugates
(IGS reagents) and their use as markers for light and electronmicro-
scopic immunocytochemistry. In “Immunohistochemistry” (A. C.
Cuello, Ed.), pp. 347–372. Wiley, Chichester.

erossi, D., Calvet, S., Trembleau, A., Brunissen, A., Chassaing, G., and

Prochiantz, A. (1996). Cell internalization of the third helix of the



D

D

E

E

F

F

F

G

G

G

H

H

H

H

H

K

K

K

K

L

L

M

M

M

N

N

N

N

N

O

O

P

R

R

R

R

S

S

S

S

S

S

176 HONG ET AL.
Antennapedia homeodomain is receptor-independent. J. Biol. Chem.
271, 18188–18193.

erossi, D., Joliot, A., Chassaing, A., and Prochiantz, A. (1994). The third
helix of the Antennapedia homeodomain translocates through bio-
logical membranes. J. Biol. Chem. 269, 10444–10450.

’Souza, S. E., Haas, T. A., Piotrowicz, R. S., Byers-Ward, V., McGrath,
D. E., Soule, H. R., Cierniewski, C., Plow, E. F., and Smith, J. W. (1994).
Ligand and cation binding are dual functions of a discrete segment
of the integrin b3 subunit: Cation displacement is involved in ligand
binding. Cell 79, 659–667.

lliott, G., and O’Hare, P. (1997). Intercellular trafficking and protein
delivery by a herpesvirus structural protein. Cell 88, 223–233.

ndo, Y., and Tsurugi, K. (1987). RNA N-glycosidase activity of ricin
A-chain. Mechanism of action of the toxic lectin ricin on eukaryotic
ribosomes. J. Biol. Chem. 262, 8128–8130.

ender, P., Ruigrok, R. W. H., Gout, E., Buffet, S., and Chroboczek, J.
(1997). Adenovirus dodecahedron, a new vector for human gene
therapy. Nat. Biotechnol. 15, 52–56.

itzGerald, D. J. P., Padmanabhan, R., Pastan, I., and Willigham, M. C.
(1983a). Adenovirus-induced release of epidermal growth factor and
Pseudomonas toxin into the cytosol of KB cells during receptor-
mediated endocytosis. Cell 32, 607–617.

itzGerald, D. J. P., Trowbridge, I. S., Pastan, I., and Willigham, M. C.
(1983b). Enhancement of toxicity of antitransferrin receptor antibody–
Pseudomonas exotoxin conjugates by adenovirus. Proc. Natl. Acad.
Sci. USA 80, 4134–4138.

örlich, D., and Mattaj, I. W. (1996). Nucleocytoplasmic transport. Sci-
ence 271, 1513–1518.

reber, U. F., and Kasamatsu, H. (1996). Nuclear targeting of SV40 and
adenovirus. Trends Cell Biol 6, 189–195.

reber, U. F., Willetts, M., Webster, P., and Helenius, A. (1993). Stepwise
dismantling of adenovirus 2 entry into cells. Cell 75, 477–486.

ong, S. S., and Boulanger, P. (1995). Protein ligands of the human
adenovirus type 2 outer capsid identified by biopanning of a phage-
displayed peptide library on separate domains of wild-type and
mutant penton capsomers. EMBO J. 14, 4714–4727.

ong, S. S., Karayan, L., Tournier, J., Curiel, D. T., and Boulanger, P.
(1997). Adenovirus type 5 fiber knob binds to the MHC class I alpha-2
domain at the surface of human epithelial and B lymphoblastoid
cells. EMBO J. 16, 2294–2306.

uang, S., Kamata, T., Takada, Y., Ruggeri, Z. M., and Nemerow, G. R.
(1996). Adenovirus interaction with distinct integrins mediates sepa-
rate events in cell entry and gene delivery to hematopoietic cells.
J. Virol. 70, 4502–4508.

uvent, I., Hong, S. S., Fournier, C., Gay, B., Tournier, J., Carriére, C.,
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