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According to works of Stanley, Reisner, Hochster, Baclawski and others it 
is well known that methods of commutative algebra are powerful tools for 
investigating simplicial complexes and related questions. 

The main goal of this paper is to calculate the local cohomology modules 
of the Stanley-Reisner ring k[d] of an (arbitrary) simplicial complex 
(Section 2). 

From this result we derive an explicit description of a dualizing complex 
of k[d] and its canonical module K, (Section 3). Furthermore we construct 
a homogeneous map of degree d = dim k[A] embedding the canonical 
module in k[A]. The obtained canonical ideal generalizes a result of 
Baclawski [ 11. 

We conclude with some remarks on the number of generators of K,, the 
type of k[A] in the Cohen-Macaulay case. 

Most of our results generalize without or with slight corrections to the 
case k = Z. 

1. SIMPLICIAL COMPLEXES AND STANLEY-REISNER RINGS 

1.1. A finite set V and a (nonempty) set A of subsets of V satisfying the 
property 

aEA, tcfJ3tEA 

is called a simplicial complex on the vertex set V. 
Note that the empty set 0 is a face of every simplicial complex but {v), 

2) E V, need not be a simplex. 
Throughout this work fix a total order on V and set 

a(A,B):=card{a<b:aEA,bEB} 

ifA,Bc V. 
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]A 1 denotes the geometric realization of A, B the barycenter of 0 # u E A. 
For further definitions and notations cf. [8]. 

1.2. For a (possibly empty) simplex r E A we denote by 

link,~:={aEA:a~r=0;aUsEA} the link of r 

st,r:={aEA:aUrEA}thestarofr 

cost,r := {u E A: u ti 7} the contrastar of r. 

Set 
A,:={uEA:ucU} if UcV. 

1.3. Let k be an arbitrary field (fixed throughout the work). 

LEMMA. For simplicial (co)homologies with coeflcient group k and u E A 
there are natural k-vectorspace isomorphisms 

(a) ZT- lml (link, U) 3 H&i, cost, U) 

H’(A, cost, a) r H -‘-‘“‘(link, u) 

and 

(b) Hi(A, cost, a) E Hi(l A /, 1 A 1 - 8) 

H’(A, cost, a) z H’(j A 1, IA I- a^) @#a) 

where on the right-hand side of(b) singular (co)homologies are meant. 

(a) follows immediately from the complex isomorphism 

ci- ,,,(link,u) + C?i(A)/ci(cost,u) 

via 
t t--1 (-1) a(o’r)(t U 0) + ci(COSt, U), 

and (b) from the fact that one can construct a deformation retract from 
IAl -8 to Icost,ul. 

1.4. Let S(V) := k[x, . * v E V] denote the polynomial ring in card (V) 
variables over the field k. This ring has a natural NY-multigrading. Write 

Xa .- *- II, XT if a=(a,)EHV 

s(a) := supp x” = {v E V: a, # 0} 

n(a) := (21 E V: a, < 0} 

and %d for short if a E (0, l}‘c Z’. 
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Let Z(d) be the ideal of S(V) generated by all “non-face monomials” 

Z(A):=(x,:ac V;o&A) and k[A] := S(V)/Z(A). 

k[d] is called the Stanley-Reisner ring of the simplicial complex A and 
will be the main object of the following investigations. 

Because Z(A) is multihomogeneous the N ‘-multigrading on S(V) can be 
transferred to k[A]. 

2. LOCAL COHOMOLOGY MODULES 

Following an unpublished idea of M. Hochster [4] we now calculate the 
local cohomology modules of R = k[A] with support in the irrelevant ideal m 
of S(V). For definitions and notations cf. [3]. 

} and 2.1. Let A be a simplicial complex on the vertex set V= {l,..., n 
m := (x,: u E V) the irrelevant ideal of S(V). 

Let K’ (x’; R) = @l=, (0 + R +Xi R -+ 0) be the cokoszul complex 
relative to x’ := (x{, xi,..., xi). Then we have [3,4.7] 

of R 

H~(R)a~H’(x’;R)2H’~K’(x’;R)) 
t 

and 

6 (O+R$R-+O) &A)) 
i=l 

because direct limits commute with cohomologies and tensor products. An 
easy calculation shows that 

lim(O-rR~R-*0)2(O~RIR,~O) 
T 

where R, denotes the localisation of R at the multiplicative set (x”: n E N} 
of powers of x and i the natural localisation map. Therefore local 
cohomologies of R can be calculated by calculating cohomologies of the 
complex 

o+c”+cl-+*.. +C”+O (1) 

with components C’ := @ ,,= “, IoI =i Rx* and boundary maps induced by 

fro 1 Rxr -$z (lzl=i-l,lol=i) 
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via 

if r&a 
if r c 0. 

2.2. The complex (1) admits a natural Z”-multigrading induced by the 
NY-multigrading of R since the boundary maps preserve it. Therefore we 
have 

f&(R) = @ HXR)lu 
LIE Z” 

as k-vectorspaces where [ It, denotes the Uth graded part. Write R, := Rx0 
for short. 

[R,]” := 1;” . k 
ifn(U)co ands(U)UaEd 

otherwise. (2) 

This is easy to verify because x” is the only monomial that can be contained 
in [RolLI. Only in the first case x ’ is not 0 in R, and contained in R,. 

Following (2) [C’], as k-vectorspace is generated in a natural way by 
card{a c V: /u I= i, n(U) c CJ, o(U) U (T E A} basic elements. Examining the 
boundary maps we get an isomorphism of complexes 

[C’+‘],r~‘(uEA:n(U)cu,s(U)uuEA). (3) 

Removing n(U) we get the isomorphism of complexes 

C’(O E A: n(U) C Uy S(U) U 0 E A) 5 CSi-‘n’LI”(Stlinkdn(“)(S(U) - n(u))) 

via 

u t-+ (-1) aw),u-nwyu _ q-q)* (4) 

It follows 

[H:‘(R)], zz E71-‘“‘U”(St,i,k,nc”,(S(U) - n(U)>)* (5) 

If U is “partly positive,” i.e., s(U) - n(U) # 0, the star in (5) is contrac- 
tible and therefore acyclic. This means 

[H;‘(R)], = 0 if s(v> # n(v) or s(v> @A. (6) 

On the other hand, if s(U) = n(u) we get 
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Composing (4) and (1.3a) we get the isomorphism of complexes 

c”(u E A: s(U) c 0) 5 t?(A)/ei(costAs(U)) (7) 

via 

(7 2 u + P(cost, s( U)). 

It follows 

THEOREM 1. As k-vectorspaces Hz’(k[A]) and 

@ H’(A, cost, s(U)) = E?‘(A) @ @ (H’(A, cost, a)) r+ 
-UEW 0#osA 

are isomorphic. 

2.3. (1) COROLLARY [5,2.1]. 

depth k[A] - 1 = min(i: H’(A, cost,o) f Ofir some u E A) 

= min(i: pi- ‘“‘(link, u) # 0 for some u E A) 

= min(i: H’(] A ], ] A ] - p) # 0 for some p E /A 1 or I?‘(A) # 0). 

This follows from the characterisation of depth by local cohomology 
[3,4.10] depth R = min(i: Hi(R) # 0). 

(2) COROLLARY. 

endim k[A] - 1 = min(i: H’(A, cost,a) # 0 for some 0 # u E A) 

= min(i: fi’-‘“‘(link,u) # 0 for some 0 # u E A) 

= min(i: H’(] A 1, ] A I - p) # 0 for some p E ] A 1). 

Here endim R := min(i: H&(R) is not fin. gen.) denotes the finiteness 
dimension of R (cf. [7]). The corollary follows from the fact that H’,(R) is 
artinian and so of finite length if it is finitely generated. 

We recall that k[A] is Cohen-Macaulay iff depth k[A] = dim k[A] 
(= dim A + 1) and quasi-Cohen-Macaulay [7] iff endim k[A] = dim k[A]. 
For the special nature of k[A] the later in fact means that k[A] is 
Buchsbaum. 

According to these definitions the underlying complex A is also called 
Cohen-Macaulay resp. Buchsbaum. 



STANLEY-REISNERRING 277 

2.4. To transfer the S-module structure from H’,(R) to the right-hand side 
of (2.2.8) it suffices to follow up the multiplication maps 

* xw: [HZ’]“4 [Hy]“,, WE NV 

under the isomorphisms of (2.2). 
If T c (T we get cost, T c cost, o c d. The exact sequence of this triple gives 

rise to define 

d: P(A)/C”‘(cost, a) -3 C”‘(A)/C”‘(cost, T) 

Ui: C"i(d)/~i(COSt*~)+ ci(d)/ci(COSt*U) 

and the coresponding maps for (co)homologies which we will also denote by 
u” and ai. 

If we wind up the isomorphisms (2.2.3-7) we get the map corresponding 
to .xw on the right-hand side of (2.2.8) as 

. xw= 
I 
o-map if U or U + W are partly positive or s(U) & A 
ui: H’(A, cost,s(U)) -+ Hi@, cost,s(U + w)) (2) 

if s(U) E A and 0 < W < - U (in the componentwise 
partial order on Z”). 

Comments. The first case follows from (2.2.6) by [Hk]. = 0 or 
Ifcnl”+w = 0. The contraposition of the assumptions of the first case is: 
s(U) E A and U < 0, U + W < 0. This is equivalent to s(U) E A and 
0 < W< -U (W> 0 by definition). Furthermore we get s(U) 3 s(U + W) 
and u’ makes sense. 

We have proved the following 

THEOREM 2. (2.2.8) describes an S-module isomorphism 

H;‘(k[A]) z -EN” H’(A, cost,s(U)) 
s(U)EA 

giving the right-hand side an S-module structure via (2). 

3. DUALIZING COMPLEX AND CANONICAL MODULE 

3.1. DEFINITION [2, 8.11. A dualizing complex over the (local) ring 
(R, m) is a complex 

z.:o-+z,+z,+ . . . *I,+0 (1) 
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of injective R-modules with finitely generated cohomology modules, such 
that the canonical morphism 

R + Hom,(Z. ,I. > 

is a quasi-isomorphism (i.e., induces an isomorphism in cohomologies). 

PROPOSITION [2,8.5]. A complex (1) of injective R-modules withfinitely 
generated cohomologies is a dualizing complex over R if Hom,(k, Z.) 2 
k[-m] for some m E Z. 

Here modules are viewed as complexes concentrated in the zero 
component and by k[-m] the complex concentrated in the mth component is 
meant. 

Analogous results are valid in the category of homogeneous R-modules. 

3.2, Let Horn be the Horn-functor in the category of multihomogeneous 
R-modules. Let C’ be as in (2.1.1) 

C, := Hom,(C’, k) = @ [Hom,(C’, k)]v = @ Hom,( [CilcI, k) 
cl u 

with the natural Z”-grading and 

Di := @ [Cijag @ Ci-,(A, cost,s(U)) 
U>O U>O 

a submodule of the R-module Ci (analogous to (2.4)). 

THEOREM 3. 

C.:O+C,+,+Cc,+*~- -+c,-ko 

is a dualizing complex of R = k[A] (in the category of homogeneous R- 
modules). The complex 

D.:O-+DN+,+DDN+ ..’ -*Do+0 

is quasi-isomorphic to C., i.e., the embedding D. c C. induces an 
isomorphism in homologies (N = dim A), 

Proof. (1) All C’ are flat R-modules: Let A4 be an (horn.) R-module: 
M&Ci= @,o,=iM@RRXO= @MXo by (2.1). So .&Ci is an exact 
functor because localisation is. 

(2) All Ci are injective modules: 

Hom,(., Ci) = Hom,(., Hom,(C’, k)) = Hom,(. @ R C’, k) 
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is exact because . OR C’ by (1) and Hom,(., k) as dualizing vector spaces 
are. 

(3) C. and D. are quasi-isomorphic: In accordance with the 
multihomogeneous structure of C. it suffices to show that [C. lU and [D. II/ 
have the same homologies. But this follows from the exactness of Hom,(., k) 
and (2.6.6). 

(4) D. is finitely generated and therefore its homologies are too. To 
verify this one should remember the definition of the multiplicative structure 

on ho Ci-,(A, costAs( r Di. 

(5) Hom,(k, C.) z Hom,(k OR C’, k) by (2). By (1) we have 

k& C’z @ k,/ 
lol=i 

If c # 0, x, E m and therefore k,. = 0. It follows 

k@,C’r(O+k+O+... -0) 

and Hom,(k, C.) E k. 

3.3. HN+,(C.)=: K, is called the canonical module of R = k[A]. 
Theorem 2 implies 

THEOREM 4. 

K, z @ H,(A, costAs( (N=dimd) 
UE N” 

sCCOEA 

with the S-module structure on the RHS defined by (2.4). 

3.4. Let’s describe a homogeneous map of degree N + 1 embedding K, in 
R. 

Map H,,,(A, cost,u) into R in the following way: 

c a, r + &(cost, o) E H,(A, cost, o) F-+ x a,x,x, E R. 

This map is well defined (independent of the chaise of the representative) 
because r E CN(costA IT) is maximal and so x,x, = 0 in R. 

Let K(A) be the ideal of R generated by the images of all H,(A, costAu) 
(a E A). 

THEOREM 5. 

yl:K,+R=k[A] 
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T 
c7 =;u, 

a,o + Z’,(cost,s(U)) t-+ y a,x,xU 

defines an embedding of K, in R which is homogeneous of degree N + 1 
(N = dim d) and p(KJ = K(A). 

Proof: All assertions follow immediately from Theorem 4 and the above 
discussion. For example, let’s prove the injectivity of (a: 

Let beaEKercp and a=Ca,, a,=2 ols(U, aye, its decomposition into 
multihomogeneous components a, E H&l, cost, s(U)), U E R\l’. Then we 
have 

O=fp(a)=C C ayx,xU 
u 03s(U) 

and by multiplying with x, 

0= 2 ayx:x’. 
u:u 3S(Ii) 

(All terms U: CJ $ s(U) vanish because u is maximal and therefore x,x’ = 0 
in R.) But if U # W, x:x” and xixw have distinct degrees and hence a,” = 0 
for all U and u. So a = 0. 

Remark. This result extends a result of Baclawski [ 1 ] and shows it 
natural access. 

3.5. Now let’s point out some information about the generators of the 
canonical module K,. By (3.3) we get 

[K,/mK,], E Coker @ H,(A, cost, s( w)) + H,(A, cost,s(U)) . (1) 
o<w<u 

That is, Kd is generated by elements of multidegree U E {O, 1 }’ and has at 
least dim,Z?#) generators. 

Kd is generated exactly by t?,(d) if and only if 

a, : ji,(A) --) H,(A, cost, 0) 

is surjective for all (T E d. 
By the long exact sequence of homologies of the pair cost, u c A this is 

valid if H N- ,(cost,cr) = 0. If fi,,- ,(A) = 0, e.g., in the Cohen-Macaulay 
case, these conditions are even equivalent. 

Baclawski [ 1 ] calls simplicial complexes A 2 - CM iff A is Cohen- 
Macaulay and for every vertex v E V cost,(v) has the same dimension as A 
and is CM too. 
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PROPOSITION [ 1, Theorem 21. Let A be CM. K(A) is generated by RN(A) 
if and only if A is 2 - CM. 

This can also be concluded from the above by a Mayer-Vietoris 
argument. 
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