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Abstract

Often a localization functor (in the category of groups) sends a finite simple group to another finite simple
group. We study when such a localization also induces a localization between the automorphism groups and
between the universal central extensions. As a consequence we exhibit many examples of localizations of
finite simple groups which are not simple.
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Introduction

A group homomorphism ϕ :H → G is said to be a localization if and only if ϕ induces a
bijection

ϕ∗ : Hom(G,G) ∼= Hom(H,G), (0.1)
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where ϕ∗(ψ) = ψ ◦ ϕ. This is an ad hoc definition which comes from [Cas, Lemma 2.1]. More
details on localizations can be found there or in the introduction of [RST], where we exclusively
study localizations of the form H ↪→ G, where both H and G are simple groups. Due to the tight
links with homotopical localizations, much effort has been dedicated to analyze which algebraic
properties are preserved under localization. An exhaustive survey about this problem is nicely
exposed in [Cas] by Casacuberta. For example, if H is abelian and ϕ :H → G is a localization,
then G is again abelian. Similarly, nilpotent groups of class at most 3 are preserved (see [Asc]
and the precursor [Lib2, Theorem 3.3] for class 2), but the question remains open for arbitrary
nilpotent groups. Finiteness is not preserved, as shown by the example An → SO(n − 1) (this
is the main result in [Lib1]). In the present paper we focus on simplicity of finite groups and
answer negatively a question posed both by Libman in [Lib2] and Casacuberta in [Cas] about
preservation of simplicity. In these papers it was also asked whether perfectness is preserved.
This is not the case either, as we show with totally different methods in [RSV].

Our main result here is that if H ↪→ G is a localization with H simple then G needs not be
simple in general, see Corollary 1.7. There is, for example, a localization map from the Mathieu
group M11 to the double cover of the Mathieu group M12. This is achieved by a thorough analysis
of the effect of a localization on the Schur multiplier, which encodes the information about the
universal central extension. More precisely we prove the following theorem.

Theorem 1.5. Let i :H ↪→ G be an inclusion of two non-abelian finite simple groups and
j : H̃ → G̃ be the induced homomorphism on the universal central extensions. Assume that G

does not contain any non-split central extension of H as a subgroup. Then i :H ↪→ G is a local-
ization if and only if j : H̃ → G̃ is a localization.

We only consider non-abelian finite simple groups since the localization of a cyclic group
of prime order is either trivial or itself [Cas, Theorem 3.1]. Naturally, the second part of the
paper deals with the effect of a localization on the outer automorphism group, which roughly
speaking is dual to the Schur multiplier as it encodes the information about the “super-group” of
all automorphisms. We first find a general criterion telling when an inclusion of automorphism
groups is a localization (in the spirit of [RST, Theorem 1.4]). If we assume, moreover, that we
start with a localization of finite simple groups, the conditions become quite elementary, see
Theorem 2.4. However there exists even a more convenient set of conditions to check in practice.

Theorem 2.5. Let i :H ↪→ G be a localization of non-abelian finite simple groups. The extension
j : Aut(H) ↪→ Aut(G) is then a localization if the following two conditions are satisfied:

(1) Aut(G) = Aut(H)G.
(2) H = NG(H).

These two conditions are possibly stronger than the set of necessary conditions mentioned
earlier. We explain however in the final part of the paper that they are very close to be equivalent.
In the particular case when both outer automorphism groups are cyclic of prime order they have
the advantage to be easy to check.

Corollary 2.6. Let i :H ↪→ G be a localization between two non-abelian finite simple groups.
Assume that H is a maximal subgroup of G and that both Out(H) and Out(G) are cyclic groups
of order p for some prime p. Then j : Aut(H) ↪→ Aut(G) is a localization.
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This yields many examples. Notice that the converse of the corollary does not hold: there
exists a localization Aut(L2(7)) ↪→ S8, but the induced morphism L2(7) ↪→ A8 fails to be one,
as we explain in Remark 2.7.

1. Preservation of simplicity

We first need to fix some notation. Let Mult(G) = H2(G;Z) ∼= H 2(G;C
×) denote the Schur

multiplier of the finite simple group G and Mult(G) ↪→ G̃ � G be the universal central ex-
tension of G. In particular the only non-trivial endomorphisms of G̃ are automorphisms. This
is due to the fact that the only proper normal subgroups of G̃ are contained in Mult(G) and
Hom(G, G̃) = 0 since the universal central extension is not split. For more details, a good refer-
ence is [Wei, Section 6.9]. Recall also that a group G is perfect if it is equal to its commutator
subgroup. Equivalently G is perfect if H1(G;Z) = 0. If, moreover, H2(G;Z) = 0 we say that G

is superperfect. Hence for a perfect group G we have that G̃ = G if and only if G is superperfect.
Is simplicity preserved under localization? We show that the answer is affirmative if H is

maximal in G. By Cp we denote a cyclic group of order p.

Proposition 1.1. Let G be a finite group and let H be a maximal subgroup which is simple. If the
inclusion H ↪→ G is a localization, then G is simple.

Proof. First notice that H cannot be normal in G. Indeed if H is normal, the maximality of H

implies that the quotient G/H does not have any non-trivial proper subgroup. Hence G/H ∼= Cp

for some prime p. But then G has a subgroup of order p and there is an endomorphism of G

factoring through Cp , whose restriction to H is trivial. This contradicts the assumption that the
inclusion H ↪→ G is a localization.

Thus, as H is simple, it contains no non-trivial normal subgroup of G. If G is not simple,
a minimal normal non-trivial subgroup N of G is therefore a complement to H in G. But then
both the identity map and the projection onto H with kernel N extend the inclusion H ↪→ G.
Therefore there are no normal proper non-trivial subgroups in G. �

We indicate next (in Corollary 1.7) a generic situation where the localization of a simple group
can be non-simple (it will actually be the universal cover of a simple group). To achieve this we
study when a localization of finite simple groups induces a localization of the universal covers.

Proposition 1.2. Let H and G be non-abelian finite simple groups. Assume that any homomor-
phism between the universal central extensions H̃ → G̃ sends Mult(H) into Mult(G). Then

p : G̃ � G and q : H̃ � H induce an isomorphism F : Hom(H̃ , G̃)
�−→ Hom(H,G) character-

ized by the property that F(ϕ̃) is the unique morphism ϕ :H → G such that p ◦ ϕ̃ = ϕ ◦ q .

Proof. First notice that p and q induce indeed a map F : Hom(H̃ , G̃) → Hom(H,G). Let
ϕ̃ ∈ Hom(H̃ , G̃). By hypothesis ϕ̃(Mult(H)) � Mult(G), so Kerq = Mult(H) is contained
in Ker(p ◦ ϕ̃). Hence, there exists a unique morphism ϕ :H → G such that p ◦ ϕ̃ = ϕ ◦ q .

We show now that F is a bijection. Let α :H → G be any homomorphism. Set K =
p−1(α(H)) and L = K∞ the last term in the derived series of K . Then the restriction morphism
p :L → α(H) is a cover of α(H) since H is simple. There exists therefore a unique map from
the universal cover α̃ : H̃ → L such that α ◦q = p ◦ α̃. Regarding α̃ as a member of Hom(H̃ , G̃),
this is the unique element in F−1(α). �



768 J.L. Rodríguez et al. / Journal of Algebra 305 (2006) 765–774
The following corollary of Proposition 1.2 is a well-known consequence of the universal prop-
erty of the universal central extension.

Corollary 1.3. Let G be a non-abelian finite simple group and denote by p : G̃ � G its universal

central extension. Then we have an isomorphism F : Aut(G̃)
�−→ Aut(G).

Of course an automorphism of the universal central extension does not always induce the
identity on the center (all inner automorphisms do so). For example, let G = L3(7) = A2(7),
so L̃3(7) = SL3(7) and Mult(L3(7)) = Z(SL3(7)) ∼= Z/3 is generated by the diagonal matrix D

whose coefficients are 2’s. There is an outer “graph automorphism” of order 2 given by the
transpose of the inverse. It sends a matrix A to tA−1, so the image of D is D−1.

Proposition 1.4. Let G be a finite simple group. Then, the universal cover G̃ � G is a localiza-
tion.

Proof. We have to show that G̃ � G induces a bijection Hom(G,G) ∼= Hom(G̃,G) or equiva-
lently, Aut(G) ∼= Hom(G̃,G) \ {0}. This follows easily since the only non-trivial proper normal
subgroups of G̃ are contained in its center Mult(G). Thus any non-trivial homomorphism G̃ → G

can be decomposed as the canonical projection G̃ � G followed by an automorphism of G. �
Theorem 1.5. Let i :H ↪→ G be an inclusion of two non-abelian finite simple groups and
j : H̃ → G̃ be the induced homomorphism on the universal central extensions. Assume that G

does not contain any non-split central extension of H as a subgroup. Then i :H ↪→ G is a local-
ization if and only if j : H̃ → G̃ is a localization.

Proof. Let ϕ : H̃ → G̃ be any group homomorphism. By composing with p : G̃ � G we
get a morphism H̃ → G. As G does not contain any subgroup isomorphic to a non-split
central extension of H , ϕ(Mult(H)) ⊂ Mult(G). Hence Proposition 1.2 supplies bijections
F : Hom(H̃ , G̃) → Hom(H,G) and F ′ : Hom(G̃, G̃) → Hom(G,G). Then the composition
F−1 ◦ i∗ ◦ F ′ is a bijection if and only if i∗ is so (if and only if i is a localization). Further,
for any ψ ∈ Hom(G̃, G̃), Proposition 1.2 says that

F ′(ψ) ◦ i ◦ q = F ′(ψ) ◦ p ◦ j = p ◦ ψ ◦ j

and thus F(j∗(ψ)) = F(ψ ◦ j) = F ′(ψ) ◦ i = i∗(F ′(ψ)). Therefore the bijection F−1 ◦ i∗ ◦ F ′
is precisely j∗ and we are done. �
Remark 1.6. We do not know how to remove the assumption on the centers in Proposition 1.2.
There exist morphisms between covers of finite simple groups which do not send the center into
the center. One example is given in [CCN, p. 34] by the inclusion Ã5 ↪→ U3(5). A larger class
of examples is obtained as follows: Let H be a finite simple group of order k and H̃ its universal
central extension of order n = |Mult(H)| · k. The image of the representation H̃ ↪→ Sn lies in An

because the groups are perfect. Therefore An contains H̃ . However we do not know of a single
example of a localization H ↪→ G which does not satisfy this assumption and it is rather easy to
check in practice.
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Question. Let i :H ↪→ G be a localization. Is it possible that some subgroup of G is isomorphic
to a non-trivial central extension of H ? If the answer is no, we would get a more general version
of Theorem 1.5.

Beware that in general the induced morphism on the universal central extensions given by the
above theorem is not an inclusion. For example, L2(11) ↪→ U5(2) is a localization by the main
theorem in [RST]. However U5(2) is superperfect and the universal central extension SL2(11)

of L2(11) is not a subgroup of U5(2). Nevertheless there is a localization SL2(11) → U5(2). The
dual situation when H is superperfect leads to our counterexamples.

Corollary 1.7. Let i :H ↪→ G be an inclusion of two non-abelian finite simple groups and assume
that H is superperfect. Let also j :H = H̃ ↪→ G̃ denote the induced homomorphism on the
universal central extensions. Then i :H ↪→ G is a localization if and only if j :H ↪→ G̃ is a
localization.

Proof. There are no non-trivial central extensions of H so Theorem 1.5 applies. �
Example 1.8. The inclusion M11 ↪→ M̃12 of the Mathieu group M11 into the double cover of
the Mathieu group M12 is a localization. This follows from the above proposition. Note that
M11 is not maximal in M̃12 (the maximal subgroup is M11 × C2), so this does not contradict
Proposition 1.1. The following inclusions are localizations: Co2 ↪→ Co1 and Co3 ↪→ Co1 by
[RST, Section 4]. As the smaller group is superperfect we get localizations Co2 ↪→ C̃o1 and
Co3 ↪→ C̃o1.

We get many other examples of this type using [RST, Corollary 2.2]. All sporadic groups
appearing in this corollary which have trivial Schur multiplier (that is M11, M23, M24, J1, J4,
Co2, Co3, He, Fi23, HN, and Ly) admit the double cover of an alternating group as localization
(as Mult(An) is cyclic of order 2 for n > 7).

Remark 1.9. The inclusion Fi23 ↪→ B of the Fischer group into the baby monster is a localization
by [RST, Section 3(vi)]. This yields a localization Fi23 ↪→ B̃ . As the double cover B̃ is a maximal
subgroup of the Monster M , it would be nice to know if B̃ ↪→ M is a localization. This would
connect the Monster to the rigid component of the alternating groups (in [RST] we were able
to connect all other sporadic groups to an alternating group by a zigzag of localizations, it is an
open problem to determine whether or not any pair of finite non-abelian simple groups can be
connected by a zigzag of localizations).

2. Localizations between automorphism groups

The purpose of this section is to show that a localization H ↪→ G can often be extended to
a localization Aut(H) ↪→ Aut(G), similarly to the dual phenomenon observed in Theorem 1.5.
This generalizes the observation made by Libman (cf. [Lib2, Example 3.4]) that the localization
An ↪→ An+1 extends to a localization Sn ↪→ Sn+1 if n � 7. This result could be the starting point
for determining the rigid component (as defined in [RST]) of the symmetric groups, but we will
not go further in this direction. Let us recall two well-known results about the automorphism
group of a finite simple group.
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Lemma 2.1. Let G be a non-abelian finite simple group. Then any proper normal subgroup
of Aut(G) contains G. In particular any endomorphism of Aut(G) is either an isomorphism, or
contains G in its kernel.

Lemma 2.2. Let G be a non-abelian finite simple group. Then any non-abelian simple subgroup
of Aut(G) is contained in G.

Proof. Let H be a non-abelian simple subgroup of Aut(G). The kernel G of the projection
Aut(G) � Out(G) contains H because Out(G) is solvable (this is the Schreier conjecture, whose
proof depends on the classification of finite simple groups, see [GLS, Theorem 7.1.1]). �

We consider from now on finite simple groups H and G, and their automorphism groups
Aut(H) and Aut(G). Assume first that Aut(H) is contained in Aut(G) (any automorphism of H

extends to one of G, see the discussion in [RST, Section 1]). We want to know when this is a
localization (without claiming anything about H ↪→ G being a localization). The proof of the
following theorem is very similar to that of [RST, Theorem 1.4].

Theorem 2.3. Let j : Aut(H) ↪→ Aut(G) be an inclusion of the automorphism groups of two
non-abelian finite simple groups H and G. Then j is a localization if and only if the following
four conditions are satisfied:

(a) Aut(G) acts transitively on the set Ω of subgroups of Aut(G) isomorphic to Aut(H).
(b) CAut(G)(Aut(H)) = 1.
(c) Any morphism ψ : Aut(H)G/G → Aut(G) extends uniquely to Out(G) → Aut(G).
(d) If ϕ : Aut(H) → Aut(G) contains H in its kernel, then also G ∩ Aut(H) � Kerϕ.

Proof. Notice first that j (H) must be contained in G by Lemma 2.2, so j restricts to an inclu-
sion H ↪→ G. Moreover, Aut(G) is complete: Aut(Aut(G)) = Aut(G) (see, for example, [Rot,
Theorem 7.14]). An inclusion Aut(H) ↪→ Aut(G) (i.e. an element in Ω) extends to an auto-
morphism in Aut(G) if and only if condition (a) holds. Condition (b) holds if and only if this
extension is unique. Let us now consider a non-injective morphism ϕ : Aut(H) → Aut(G), which
must contain H in its kernel by Lemma 2.1. In this case it extends to Aut(G) if and only if both
condition (d) (the extension must contain G in its kernel) and condition (c) are satisfied. �

Now we refine the above theorem, assuming that the inclusion H ↪→ G is a localization. As
explained in [RST, Remark 1.3], the inclusion extends to an inclusion j : Aut(H) ↪→ Aut(G)

given by the identification of Aut(H) with NAut(G)(H).

Theorem 2.4. Let i :H ↪→ G be a localization of non-abelian finite simple groups. The exten-
sion j : Aut(H) ↪→ Aut(G) is then a localization if and only if conditions (c) and (d) above are
satisfied.

Proof. We only have to show that conditions (a) and (b) hold when i is a localization. As
Aut(H) = NAut(G)(H), the automorphism group Aut(G) acts transitively on the set of subgroups
of Aut(G) isomorphic to H . Let A′ be an element in Ω , i.e. a subgroup of Aut(G) isomorphic
to Aut(H), and let K be its normal subgroup isomorphic to H . We know that there exists an
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automorphism α ∈ Aut(G) such that Kα = H , so conjugates A′ to a subgroup A = A′α isomor-
phic to Aut(H) and containing H . Hence any element x ∈ A normalizes H , so A = Aut(H)

because Aut(H) = NAut(G)(H). The second condition is also satisfied since CAut(G)(Aut(H)) is
a subgroup of the trivial group CAut(G)(H). �

As conditions (c) and (d) are not expressed in a suitable way to check in practice, we propose
next a set of simpler conditions which guarantees j : Aut(H) ↪→ Aut(G) to be a localization. We
are not quite sure that these conditions are also necessary and include below a discussion about
this.

Theorem 2.5. Let i :H ↪→ G be a localization of non-abelian finite simple groups. The extension
j : Aut(H) ↪→ Aut(G) is then a localization if the following two conditions are satisfied:

(1) Aut(G) = Aut(H)G.
(2) H = NG(H).

Proof. Condition (1) trivially implies condition (c) and condition (2) tells us that if x is an
element in G such that conjugation by x is an automorphism of H , then x is actually an element
of H . Thus condition (d) holds and we conclude by the preceding theorem. �

The two conditions of the theorem imply in particular that the outer automorphism groups
of H and G are isomorphic: Out(H) ∼= Out(G). We do not know of any localization between
automorphism groups of finite simple groups which does not have this property. However even
when Out(H) and Out(G) are cyclic of order 2, a localization H ↪→ G does not always induce
one Aut(H) ↪→ Aut(G). For example, i :L3(3) ↪→ G2(3) is a localization (see [RST, Proposi-
tion 4.2]), but the normalizer in Aut(L3(3)) of an L3(3)-subgroup of G2(3) is actually contained
in G2(3). Thus j : Aut(L3(3)) ↪→ Aut(G2(3)) cannot be a localization because that precompos-
ing with j the non-trivial morphism Aut(G2(3)) � Out(G2(3)) ∼= C2 ↪→ Aut(G2(3)) is trivial.
The same phenomenon occurs again for i : He ↪→ Fi′24. Still, many examples can be directly
derived from the following corollary of Theorem 2.5.

Corollary 2.6. Let i :H ↪→ G be a localization between two non-abelian finite simple groups.
Assume that H is a maximal subgroup of G and that both Out(H) and Out(G) are cyclic groups
of order p for some prime p. Then j : Aut(H) ↪→ Aut(G) is a localization.

Proof. As H is maximal in G, condition (2) is obviously satisfied. Moreover, Aut(H) is not
contained in G, so GAut(H) is a subgroup of Aut(G) which strictly contains G. The index of G

in Aut(G) is prime, so condition (1) holds as well. �
Directly from the corollary we deduce that Sn ↪→ Sn+1 and SL2(p) ↪→ Sp+1 are localiza-

tions (by [RST, Proposition 2.3(i)] L2(p) ↪→ Ap+1 is a localization). Suzuki’s chain of groups
L2(7) ↪→ G2(2)′ ↪→ J2 ↪→ G2(4) ↪→ Suz (see [Gor, pp. 108–109]) also extends to a chain of
localizations of automorphism groups

Aut
(
L2(7)

)
↪→ Aut

(
G2(2)′

)
↪→ Aut(J2) ↪→ Aut

(
G2(4)

)
↪→ Aut(Suz).
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Remark 2.7. The converse of the corollary is false in general. There exist localizations between
automorphism groups which do not restrict to a localization of the corresponding finite simple
groups. Consider, for example, the transitive action of K = PGL2(7) ∼= Aut(L2(7)) on the pro-
jective line. Thus K is a subgroup of the symmetric group S8 = Aut(A8). We check now that
this is a localization with the help of Theorem 2.3 (and the information from the atlas [CCN]).
As this is the unique equivalence class of representations of K of degree 8, S8 acts transitively
on its K-subgroups. Moreover, K contains an odd permutation, so S8 = KA8, which implies
condition (c). Finally, condition (b) holds as well since the fixed set of the stabilizer of a point
x of the projective line under the action of K is reduced to x (one could also check Eq. (0.1)
quickly with the help of MAGMA). However the induced morphism L2(7) ↪→ A8 fails to be a
localization: there are three conjugacy classes of L2(7)-subgroups in A8, and only two of them
fuse in S8.

We end the paper with a discussion on the two sets of conditions appearing in Theorems 2.3
and 2.5. We prove first that condition (d) is actually equivalent to condition (2). Consider the
intersection

IH =
⋂{

Kerα | α : Out(H) → Aut(H)
}
.

Proposition 2.8. Let i :H ↪→ G be a localization of non-abelian finite simple groups and assume
that IH = 1. The following two conditions are then equivalent:

(d) If ϕ : Aut(H) → Aut(G) contains H in its kernel, then also G ∩ Aut(H) � Kerϕ.
(2) H = NG(H).

Proof. We have seen in Theorem 2.5 that (2) always implies (d). Now if IH = 1 the intersection
of all morphisms ϕ : Aut(H) → Aut(G) containing H in their kernel is precisely H while con-
dition (d) implies that G ∩ Aut(H) is contained in that intersection, hence G ∩ Aut(H) = H . On
the other hand, NG(H) consists in those automorphisms of H which are inner automorphisms
of G, and we get (2). �

Notice that IH is always contained in the commutator subgroup [Out(H),Out(H)]: consider
any element x ∈ Out(H) which is not zero in the abelianization Out(H)ab . We construct a mor-
phism αx : Out(H) → Aut(H) such that αx(x) �= 1 as a composition of type:

Out(H) � Out(H)ab
∼=

⊕
Z/q � Z/q ↪→ Aut(H),

where the cyclic component Z/q is chosen so that the image of x is not zero. The inclusion
Z/q ↪→ Aut(H) is any such inclusion. This shows that x /∈ IH . In particular, when Out(H)

is abelian, IH must be trivial. This takes care of all sporadic and alternating groups (the outer
automorphism group is always trivial or cyclic of order 2, except for A6 where it is a Klein group,
see, for example, [GLS, Chapter 5]). Thus the only case where it could be that IH is not trivial is
that of the (twisted) Chevalley groups.

Proposition 2.9. Let H be any non-abelian finite simple group. Then IH = 1.
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Proof. We can suppose that H is a (twisted) finite Chevalley group from now on. We learn
from [GLS, Theorem 2.5.12] that Aut(H) is a split extension of Inndiag(H) by a certain group
ΦH ΓH , and likewise Out(H) is a split extension of O = Outdiag(H) by the same group ΦH ΓH .
Therefore IH must be contained in O . The only cases where O is not trivial are indicated in the
quoted theorem: Aε

m(q), Bm(q),Cm(q), D2m(q), 2D2m(q), Dε
2m+1(q), Eε

6(q), and E7(q).
When H = Aε

m(q), the group O is cyclic of order r = (m + 1, q − ε) and Out(H) is a semi-
direct product of O with ΦH

∼= Cps , a cyclic group of field automorphisms (or with Cps × C2
where C2 is the graph automorphism group ΓH in the case ε = +). The group of field automor-
phisms acts faithfully on a cyclic group of order r inside a torus of H , so one can actually embed
Out(H)/ΓH in Aut(H). The case of the graph automorphism of order 2 is similar and therefore
IH = 1.

When H is one of the groups Bm(q), Cm(q), 2D2m(q), or E7(q) the group O is cyclic
of order 2 and the outer automorphism group splits as a direct product C2 × ΦH ΓH . So
O ∩ [Out(H),Out(H)] = 1 in these cases and IH must be trivial.

When H = D2m(q), the group O is a Klein group, centralized by the field automorphisms
ΦH , but with a faithful action of the graph automorphisms ΓH , isomorphic to Σ3 or C2. As
H = PΩ4m(q,f ) where f is the bilinear form

∑2m
i=1 xix−i (see [GLS, p. 71]), it contains a

subgroup isomorphic to Σ2m. Hence, one can construct a morphism Out(H) → Aut(H) which
restricts to an injection on O and so IH = 1.

When H = Dε
2m+1(q), the group O is either cyclic of order 2 (in which case we conclude as in

the second case), or of order 4. There exists then a quotient of Out(H) of the form C4 : C2 ∼= D8
since the subgroup of ΦH ΓH acting trivially on C4 has index 2. When ε = +, we conclude as
above. When ε = −, H = PΩ4m+2(q, f ) where f is the bilinear form

2m∑

i=1

xix−i + x2
2m+1 + bx2m+1x−2m+1 + x2−2m+1,

so H contains a subgroup isomorphic to Σ2m. In any case D8 can be embedded into H .
When H = Eε

6(q), the group O is cyclic of order 3 (or trivial). There exists then a quotient
of Out(H) of the form C3 : C2 ∼= Σ3, which always embeds into Dε

5(q), a subgroup of H by
[GLS, Table 4.5.2]. �

Likewise, conditions (c) and (1) are very close to be equivalent.

Proposition 2.10. Let i :H ↪→ G be a localization of non-abelian finite simple groups and as-
sume that Out(G) is nilpotent. The following two conditions are then equivalent:

(c) Any morphism ψ : Aut(H)G/G → Aut(G) extends uniquely to Out(G) → Aut(G).
(1) Aut(G) = Aut(H)G.

Proof. We only have to prove that (c) implies (1). Let N be the normal closure of the subgroup
Aut(H)G/G � Out(G). If N were a strict subgroup of Out(G), there would exist an abelian
quotient of Out(G)/N (recall that Out(G) is solvable) which would yield a non-trivial morphism
Out(G) → Aut(G) extending the trivial one from Aut(H)G/G, contradicting condition (c). Thus
N = Out(G). But if Out(G) is nilpotent, any maximal subgroup is normal, so Aut(H)G/G =
Out(G) and condition (1) holds. �
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Question. Is it true that conditions (1) is equivalent to (c)? If it were so, Theorem 2.5 would
characterize the localizations H ↪→ G which extend to a localization Aut(H) ↪→ Aut(G) by a
very manageable criterion.
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