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A cDNA of PTPN2 encoding for T-cell protein tyrosine phosphate (TC-PTP) was isolated and characterized
as long as 20 years ago. However, findings suggesting a potentially exciting role of this enzyme in general
autoimmunity have only recently been obtained. Genome-wide association scans of the human genome
revealed the involvement of PTPN2 in susceptibility to a several autoimmune disorders such as Crohn’s
disease, type 1 diabetes, and Graves’ disease. Functional studies in immune cells revealed a key role of
this enzyme in down-regulation of cytokine expression and inflammatory response, which provides an
essential background to explaining the pathophysiological role of TC-PTP in autoimmunity. Thus, in addi-
tion to PTPN22, PTPN2 is likely to represent a second member of the broad family of non-receptor PTPs
contributing to general autoimmunity.

� 2010 International Journal of Diabetes Mellitus. Published by Elsevier Ltd.
1. Introduction

Many genes identified as causing or predisposing to autoimmu-
nity encode proteins that are involved in lymphocyte, macrophage,
or dendritic cell signal transduction. Among those, intracellular
protein tyrosine phosphatases (PTPs) play a unique role as the
key regulators of signal transduction. To date, around 110 PTP-
encoding genes are found in the human genome [1]. All cells of
the immune system exhibit high levels of tyrosine phosphorylation
and express more PTP genes (up to 70) than any other tissue, with
the possible exception of neurons [2]. Acute phenotypes in many
PTP-knockout mice associated with deficient or hyperactive im-
mune states and severe hematopoietic abnormalities suggest a
crucial role of PTPs in maintaining immune balance [3].

In mice, deficient for T-cell protein tyrosine phosphate (TC-PTP;
EC 3.1.3.48), a product of the ptpn2 gene, multiple defects in the
lymphoid lineage were reported [4]. Analysis of T-cell populations
derived from the spleen of TC-PTP�/� mice revealed a 2- to 3-fold
lower proliferation rate compared with TC-PTP+/+ lymphocytes
[5]. The numbers of CD4+CD8+ T cells and pre-B-cells were de-
creased. B lymphocytes exhibited impaired T-cell dependent re-
sponses thereby suggesting for alterations in immune regulation.
In contrast, a dramatic increase in number of colony-forming mac-
rophage units was observed [4]. TC-PTP�/� mice developed an
inflammatory disorder characterized by chronic myocarditis, gas-
ellitus. Published by Elsevier Ltd.
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tritis, and nephritis due to the widespread tissue mononuclear cell
infiltration. The mouse also exhibited a drastic increase in levels of
nitric oxide and inflammatory cytokines such as interferon-c (IFN-
c), tumor necrosis factor-a (TNF-a), and interleukin-2 (IL-2) that
resulted in massive myocyte and hepatic necrosis [6]. These find-
ings therefore suggest for marked anti-inflammatory properties
of TC-PTP in the immune response.

Previously, a solid support was obtained for a role of two PTPs in
autoimmunity. There are lymphoid tyrosine phosphate (LYP),
which is encoded by the PTPN22 gene and implicated in a broad
spectrum of autoimmune disorders, and CD45, whose genetic
alterations are linked to multiple sclerosis and likely to be linked
to autoimmune hepatitis [7]. Due to the recent advances in gen-
ome-wide association (GWA) studies, a new member could be
added to the list of PTPs involved in autoimmunity. There is TC-
PTP, a product of the human PTPN2 gene. In this review, we sum-
marize current knowledge suggesting the implementation of TC-
PTP in inflammatory and autoimmune diseases.

2. TC-PTP expression results in two isoforms

The PTPN2 gene maps to chromosome 18p11.3-p11.2 [8]. The
100-kb gene comprises 10 exons, with exons 1–7 encoding a con-
servative PTP catalytic domain [9]. The promoter of PTPN2 is shown
to contain multiple regulatory sites, including two putative respon-
sive elements each for c-myc and PEA3, recognition sequences for
the Sp1 and AP2 transcription factors and putative NFjB- and
APF-binding sites [10]. The PTPN2 promoter also has a suppressor
element that inhibits expression of TC-PTP, while switching from
G1 to S phase of the cell cycle. This therefore suggests that the
pen access under CC BY-NC-ND license.
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transcription of PTPN2 is regulated by cell-cycle progression reaching
a maximal level at G1. TC-PTP is ubiquitously expressed, with the
highest expression levels in hematopoietic tissues [11]. Expression
of TC-PTP could be stimulated by various agents including mitogen
concanavalin A [12] and anti-inflammatory cytokine IL-10 [13].

Alternative splicing results in two forms of TC-PTP that share a
highly conservative PTP catalytic domain consisted of 272 amino
acids (a.a.) but differ in the C termini [14,15]. The catalytic domain
of TC-PTP shares a higher homology (74% amino acid identity) with
the catalytic domain of PTP1B, the first protein tyrosine phospha-
tase ever being identified and characterized [16]. The less abundant
48-kDa isoform of the enzyme comprises 415 amino acid (a.a.) res-
idues and is present in the endoplasmic reticulum (ER) and also in
the nuclear membrane [17]. This isoform has a hydrophobic C-ter-
minal tail that is necessary for binding two proteins, p23 and p25,
targeting the enzyme to the endoplasmic reticulum [18]. Interest-
ingly, the C-terminal part of TC-PTP negatively influences the en-
zyme activity. The removal of the hydrophobic C terminus of TC-
PTP resulted in a 30-fold increase in activity [19]. In addition, lim-
ited proteolysis of TC-PTP released a highly active 33-kDa fragment,
which again could be inhibited by the addition of the non-catalytic
C-terminal segment of the 45-kDa TC-PTP [20]. The autoinhibition
is a likely consequence of intramolecular interactions.

The major 45-kDa form of TC-PTP consists of 387 a.a. The C-ter-
minal region of the 45-kDa isoform has a specific bipartite nuclear
localization sequence that targets the enzyme to the nucleus [21].
This C-terminal region of TC45 is also involved in binding to DNA
[15]. The nuclear form is able to shuttle between the nucleus and
the cytoplasm in response to extracellular stimuli, thereby provid-
ing access for the nuclear enzyme to a larger variety of substrates,
compared to the cytoplasmic TC-PTP isoform [22,23].

3. Regulation of TC-PTP activity

Activity of PTPs is regulated in vivo through oxidation and
reduction reactions involving an invariant cysteine in an active site
sequence motif [I/V]HCxxGxxR[S/T] [24]. In the catalytic domain of
TC-PTP, the invariant cysteine is located at position 216 [9]. Oxida-
tion of the Cys216 is likely to be attributable to the inactivation of
TC45 by reactive oxygen species in response to insulin [25]. Since
TC-PTP is involved in negative regulation of insulin-mediated sig-
naling, the reversible oxidation of the Cys216 could be crucial in
regulating TC-PTP activity in peripheral tissues such as the muscles
and liver, which are major targets for the insulin action [26]. How-
ever, whether this mechanism plays a pivotal role in the regulation
of TC-PTP activity in immune cells needs to be elucidated.

Phosphorylation/dephosphorylation is a common mechanism
for regulating PTPs activity. Cyclin-dependent protein kinases
(CDKs) preferably CDK1/cyclin-B1 were found to phosphorylate
the Ser304 in TC45 not in TC48 [27]. The phosphorylation was cell
cycle-dependent, increasing as cells progressed from G2 into mito-
sis. However, the physiological relevance of this phosphorylation
remains unclear since, the Ser304 resides outside the catalytic do-
main of TC-PTP, and modification of this amino acid residue does
not have any apparent effect on the activity or intracellular locali-
zation of the enzyme [27]. The role of phosphorylation in the mod-
ulation of TC-PTP activity needs further clarification. In the
enzyme, other steady-state phosphorylation sites may exist. Other-
wise, in addition to the Ser340, other sites may be phosphorylated
in response to specific stimuli, and then, together with Ser-304
phosphorylation, these may regulate TC45.

4. Role of TC-PTP in myeloid cells

A range of stimulatory signals and intracellular protein
substrates of TC-PTP varies depending on the tissue where this
enzyme is expressed. For example, in the muscles and liver, TC-
PTP functions as a negative regulator of insulin receptor-mediated
signaling [28]. In hematopoietic tissues, TC-PTP regulates cellular
proliferation via several pathways, including the dephosphoryla-
tion of growth factor receptors such as the epidermal growth factor
[29] and the platelet-derived growth factor [30]. In myeloid cell
lines, the enzyme downregulates colony-stimulating factor 1
(CSF-1)-mediated signaling [31]. CSF-1 binding to the CSF-1 recep-
tor causes the autophosphorylation of the receptor molecule that
leads to the recruitment of Src family kinases and other signaling
molecules including Erk kinase, a key regulator of differentiation
in a number of cell systems [32]. Erk activation then stimulates
the proliferation of macrophage progenitor cells and their differen-
tiation to mature macrophages [33]. TC-PTP dephosphorylates
Tyr807 of the CSF-1 receptor, whose phosphorylation is shown to
be crucial in the activation of Erk [34].

The treatment of human monocytes with CSF-1 was found to
result in the tyrosine phosphorylation of p52Shc adaptor protein
and its association with Grb2, which is required in GSF-1-mediated
macrophage differentiation [35]. 45-kDa form of TC-PTP is able to
specifically recognize and then dephosphorylate p52Shc phosphor-
ylated on Tyr239 thereby preventing association of p52Shc with
Grb2 [23]. Thus, TC-PTP could suppress CSF-1-dependent stimula-
tion of the macrophage lineage through two mechanisms, i.e. via
dephosphorylation of the CSF-1 receptor and the dephosphoryla-
tion of p52Shc. In addition, TC-PTP could also inhibit the develop-
ment of macrophages through direct dephosphorylation and
down-regulation of Srk kinases [33].
5. Role of TC-PTP in lymphoid cells

In lymphoid cells, TC-PTP possesses anti-inflammatory activity
through the suppression of inflammatory response induced by a
variety of proinflammatory cytokines. The enzyme downregulates
IL-2 and IFN-c-mediated signaling (that leads to the activation of
macrophages and induction of the inflammatory response) through
dephosphorylation of JAK1 and JAK3 tyrosine kinases that partici-
pate in the activation of receptors for these cytokines (Fig. 1) [37].
In addition, both cytoplasmic and nuclear TC-PTP could suppress
IFN-c-mediated gene expression, causing the dephosphorylation
of the signal transducer and activator of transcription 1 (STAT-1)
[38,39].

TC-PTP downregulates the expression of TNF-a and TNF-
a-mediated signaling in immune cells. TC-PTP suppresses TNF-
a-mediated activation of immune cells via binding to TRAF2, a
component of the TNF-a-signaling pathway, which targets TC-
PTP to Src kinase and then leads to the subsequent inhibition of
Erk-dependent signaling (Fig. 1) [36].

The nuclear 45-kDa TC-PTP isoform implies in the dephospho-
rylation of the downstream JAK effectors, the STATs that regulate
transcription of many genes. In addition to STAT1, STAT3, STAT5a,
and STAT5b are found to be substrates for TC-PTP [40,41]. Dephos-
phorylation of STAT5a/b by TC-PTP is associated with blocking pro-
lactin signaling [40]. Dephosphorylation of STAT3 by TC-PTP
suppresses the signaling pathway mediated by IL-6, a pleiotropic
cytokine, which plays a role in hematopoiesis, immune system
and inflammatory reactions [41].
6. Genetic analyses reveal a role of PTPN2 as a putative
susceptibility gene for general autoimmunity

In two recent GWA scans performed in Europeans, a highly sig-
nificant evidence for association with type 1 diabetes (T1D) was
obtained for the chromosome region 18p11 containing the PTPN2
gene [42,43]. Two T1D-associated single nucleotide polymor-



Fig. 1. Substrates targeted by T-cell protein tyrosine phosphatase (TC-PTP). TC-PTP negatively regulates JAK/STAT signaling that leads to the induction of the inflammatory
reaction. TC-PTP downregulates signaling mediated by proinflammatory cytokines (IFN-c, TNF-a, and IL-2) through the dephosphorylation of JAK1, JAK3 and Src kinases,
which activate downstream signaling pathways induced by binding of the cytokines to their receptors. As a part of the complex with Importin-b (Imp-b), TC-PTP is able to
shuttle from the cytoplasm to the nucleus, where the enzyme can dephosphorylate STATs, the molecules involved in signal transduction and activation of the transcription of
a number of genes.

Fig. 2. Structure of the protein tyrosine phosphatase, non-receptor 2 (PTPN2) gene encoding T-cell protein tyrosine phosphatase. The PTPN2 gene encompasses nearly 100 kb
on chromosome 18p11 and includes 10 exons. The location of two SNPs associated with type 1 diabetes is shown.
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phisms (SNPs) of PTPN2 are situated in intronic portions of the
gene (e.g., rs478582 (C/T) and rs1893217 (C/T) in intron 3 and 7,
respectively) (Fig. 2). Both SNPs are located within a 114-kb-long
linkage disequilibrium block that includes the entire PTPN2 gene
[44]. The association between PTPN2 and T1D was then confirmed
by GWA analysis of the independent cohort of US Caucasians and
the subsequent meta-analysis of the joint (American + European)
population sample (Odds Ratio (OR) = 1.14; p = 8.73 � 10�8 for
marker rs2542151 (A/C) located near the PTPN2 gene) [45].

Both markers within PTPN2 (rs1893217 and rs478582) that
showed association with T1D were found to be associated with
Graves’ disease (OR = 1.13 (p = 0.0251) for rs1893217 and
OR = 0.91 (p = 0.0239) for rs478582) [42]. The marker rs2542151
(A/C) located near the PTPN2 gene also showed a strong association
with Crohn’s disease (OR = 1.15; p = 3.16 � 10�8) in a GWA-based
search analysis of 1182 affected and 2024 control individuals from
UK [46]. The association between PTPN2 and Crohn’s disease was
then replicated by several large-scale population studies in Cauca-
sians [47–50].
These findings suggest that the PTPN2 gene could represent a
general autoimmunity locus implicated in susceptibility to several
autoimmune diseases. Although additional studies are required to
replicate this association, as well as to analyze the functionality of
the disease-associated markers, recent genetic analyses provide
intriguing evidence for the presence of a genetic locus, with a likely
involvement of PTPN2, that controls predisposition to autoimmu-
nity on chromosome 18p11.
7. Conclusion

In summary, strong evidence in support of the implication of
PTPN2 in organ-specific autoimmunity is obtained for Crohn’s dis-
ease and T1D. Findings about the role of this gene in susceptibility
to Graves’ disease require further confirmation. Disease-associated
markers at PTPN2 are located in non-coding regions, and their
function is unclear. To date, the etiological variant(s) in PTPN2 is
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unknown, and therefore should be revealed through resequencing
and other robust genetic approaches.

Generally, a role of the predisposing variants of PTPN2 in auto-
immunity might be attributed to less efficient suppression of the
inflammatory response. The hypothesis can be supported by dele-
terious outcomes observed in the murine models deficient for
ptpn2 [4–6]. The major protective role of TC-PTP in autoimmunity
is likely to be referred to the anti-inflammatory activity of this en-
zyme in the immune system and its inhibitory effects against mac-
rophage hyperactivity. TC-PTP suppresses expression of major
proinflammatory cytokines such as TNF-a and IL-6 whose overpro-
duction accomplishes acute phase response in the pathogenesis of
Crohn’s disease, rheumatoid arthritis and other autoimmune
inflammatory disorders [51]. Etiological variants of the PTPN2 gene
that are needed to be discovered and functionally characterized
could alter the function of TC-PTP as an anti-inflammatory trigger
and hence predispose to impaired immune response, a prerequisite
of many autoimmune-related inflammatory diseases.

A role of the PTPN22 gene encoding for lymphoid tyrosine phos-
phatase in a broad spectrum of autoimmune disorders was re-
cently established [52]. Therefore, PTPN2 is a likely candidate to
extend the list of members of the large family of non-receptor PTPs
involved in general autoimmunity.
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