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1. INTRODUCTION

Many papers and books on fractional calculus have appeared recently.
Most of them are devoted to the solvability of linear fractional equations

Ž w xin terms of special functions see for example Miller and Ross 7 and
w x. ŽCampos 1 and to problems of analyticity in the complex domain see for

w x.example Ling and Ding 6 . No contribution exists, as far as we know,
concerning nonlinear fractional equations of the form

D su s f x , uŽ .

where 0 - s - 1 and D s is the standard Riemann]Liouville fractional
q Ž .derivative, considered in R or in an interval 0, h with h ) 0.

In principle, one may reduce such an equation to an integral equation
with weak singularity and apply to it basic techniques of nonlinear analysis
Ž .fixed points theorems, Leray]Schauder theory . In practice, to obtain
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explicit results, one has to take into account the peculiarity of the kernel.
We proceed in this direction here, presenting a list of theorems of
existence and uniqueness.

We shall not give applications in this paper, but we remark that the
previous fractional differential equation is easily shown to be equivalent to

Ža nonlinear heat conduction problem by using the Heaviside calculus cf.
w x.Courant and Hilbert 2, Appendix to Chapter V ; this allows an extension

w xto a nonvariational setting of some results of 4 . We finally mention that
similar results, for a different fractional differential equation, have been

w xobtained by the first author 3 .
The paper is organized as follows. In Section 2 we recall the definitions

of fractional integral and derivative and related basic properties used in
the text. Section 3 contains results for solutions which are continuous at
the origin. Section 4 concerns initial value problems of the type

D su s f x , uŽ .½ u a s bŽ .

with a g Rq, b g R.

2. DEFINITIONS AND PRELIMINARY RESULTS

0Ž q.Let us denote by C R the space of all continuous real functions
q � 4 1 Ž q.defined on R s x g R, x ) 0 and by L R the space of all realloc

functions defined on Rq which are Lebesgue integrable on every bounded
q 0Ž q.subinterval of R . Consider also the space C R of all continuous real0

q � 4functions on R s x g R, x G 0 , which later on we shall identify, by0
0Ž q. Ž .abuse of notation, with the class of all f g C R such that f 0 q s

Ž .lim f x g R.x ª 0q
The definitions and the results of the fractional calculus reported below

are not exhaustive but rather oriented to the subject of this paper. For the
w xproofs, which are omitted, we refer the reader to Miller and Ross 7 or

other texts on basic fractional calculus.

DEFINITION 2.1. The fractional primitive of order s ) 0 of a function
f : Rqª R is given by

x1 sy1sI f x s x y t f t dtŽ . Ž . Ž .H
G sŽ . 0

provided the right side is pointwise defined on Rq.
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s 0Ž q. 1 Ž q.For instance, I f exists for all s ) 0, when f g C R l L R ;loc
0Ž q. s 0Ž q. s Ž .note also that when f g C R then I f g C R and moreover I f 00 0

s 0.

EXAMPLE 2.1.1.

G m q 1Ž .
s m mqsI x s x , s ) 0, m ) y1.

G m q s q 1Ž .

Recall that the law of composition

I rI s s I rqs

holds for all r, s ) 0.

DEFINITION 2.2. The fractional derivative of order 0 - s - 1 of a
continuous function f : Rqª R is given by

x1 d yssD f x s x y t f t dtŽ . Ž . Ž .H
G 1 y s dxŽ . 0

provided that the right side is pointwise defined on Rq.

EXAMPLE 2.2.1. As a basic example, we quote for l ) y1

G l q 1Ž .
s l lysD x s x ,

G l y s q 1Ž .

giving in particular D s x sy1 s 0.
s s 0Ž q. 1 Ž .We have D I f s f for all f g C R l L R . From definition 2.2loc

and Example 2.2.1 we then obtain:
0Ž q. 1 Ž q.LEMMA 2.3. Let 0 - s - 1. If we assume u g C R l L R , thenloc

the fractional differential equation

D su s 0

has u s cx sy1, c g R, as unique solutions.

From this lemma we deduce the following law of composition.
0Ž q. 1 Ž q.PROPOSITION 2.4. Assume that f is in C R l L R with a frac-loc

0Ž q. 1 Ž q.tional derï atï e of order 0 - s - 1 that belongs to C R l L R .loc
Then

I sD s f x s f x q cx sy1Ž . Ž .

for some c g R.
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0Ž q.When the function f is in C R , then c s 0.0

In all the definitions and results of this section the set Rq can be
Ž . Ž xsubstituted by the intervals 0, a or 0, a , a ) 0. For simplicity, in the next

sections we shall often limit arguments to the choice a s 1.
A more precise analysis of the operators I s, D s can be given in the

0Ž q. 0Ž q.frame of the spaces C R , r G 0, of all functions f g C R such thatr 0
r 0Ž q. 0Žw x.x f g C R . We define similarly C 0, a , which turns out to be a0 r

Banach space when endowed with the norm

5 5 r < <f s max x f x .Ž .r
w xxg 0, a

0Ž q. 0Ž q. 0Žw x. 0Žw x.We have C R s C R and C 0, a s C 0, a , the Banach space0 0 0 0
w xof all continuous functions on 0, a with norm

5 5 < <f s max f x .Ž .
w xxg 0, a

0Ž q. 1 Ž q.Obviously C R ; L R if r - 1.r 0 loc
0Ž q. s 0Ž q.Let 0 - s - 1; if f g C R with r - s, then I f g C R , withr 0 0

s Ž . 0Ž q. sI f 0 s 0. If f g C R then I f is bounded at the origin, whereas ifs 0
0Ž q. sf g C R with s - r - 1, then we may expect I f to be unbounded atr 0

the origin. Concerning Proposition 2.4, the last part can now be stated
more precisely:

0Ž q. s 0Ž q. 1 Ž q.If f g C R with r - 1 y s and D f g C R l L R , thenr 0 loc
I sD s f s f.

3. DIFFERENTIAL EQUATIONS OF REAL ORDER:
w xCONTINUOUS SOLUTIONS ON 0, 1

Consider the fractional differential equation

D su s f x , u 3.1Ž . Ž .
w xwhere 0 - s - 1 and f : 0, a = R ª R, 0 - a F q`, is a given function,

Ž .continuous in 0, a = R.
Ž .We introduce the following definition of a solution for Eq. 3.1 .

0ŽŽ .. 1ŽŽ ..DEFINITION 3.1. A real valued function u g C 0, a l L 0, a , or
0Ž q. 1 Ž q.u g C R l L R in the case a s q`, with continuous fractionalloc

s Ž .derivative D u on 0, a , is a solution of fractional differential equation
Ž .3.1 if

D su x s f x , u xŽ . Ž .Ž .
Ž .for all x g 0, a .



NONLINEAR FRACTIONAL DIFFERENTIAL EQUATION 613

Remark 3.2. We may apply the results of Section 2, in particular
Ž .Proposition 2.4 and the subsequent remarks, to reduce 3.1 to an integral

0Žw x. 0Žw x.equation. In fact, if u g C 0, a , or more generally, u g C 0, a withr
Ž Ž .. 0ŽŽ ..r - 1 y s, and further assumptions guarantee f x, u x g C 0, a l

1ŽŽ .. Ž .L 0, a , then the equation 3.1 is equivalent to the integral equation

u x s I s f x , u x . 3.2Ž . Ž . Ž .Ž .

Such a reduction will be systematically used in this section.
0Žw x.If we allow u g C 0, a with 1 y s F r - 1, then u is a solution ofr

Ž .3.1 if and only if for some c g R

u x s I s f x , u x q cx sy1. 3.2UŽ . Ž . Ž .Ž .

It will be natural in this case to submit u to an initial condition; results in
this connection will be given in Section 4.

We first present a local existence theorem.

w xTHEOREM 3.3. Let 0 F s - s - 1 and let f : 0, 1 = R ª R be a gï en
Ž x s Ž .function continuous in 0, 1 = R. Assume that t f t, y is a continuous

w xfunction on 0, 1 = R. Then the fractional differential equation

D su s f x , u 3.3Ž . Ž .

w xhas at least a continuous solution defined on 0, d for a suitable d F 1.

Proof. According to Remark 3.2, we are reduced to consider the
following nonlinear integral equation

x1 sy1u x s x y t f t , u t dt.Ž . Ž . Ž .Ž .H
G sŽ . 0

0Žw x. 0Žw x.Let T : C 0, 1 ª C 0, 1 be the operator defined as

x1 sy1Tu x s x y t f t , u t dt.Ž . Ž . Ž . Ž .Ž .H
G sŽ . 0

We claim that the operator T is compact. Indeed, the operator is the
composition of two simple operators in this way

T s A( N

where

Nu x s x s f x , u xŽ . Ž . Ž .Ž .
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Ž .is a continuous and bounded operator Nemytskii operator and

x1 sy1 ysA¨ x s x y t t ¨ t dtŽ . Ž . Ž . Ž .H
G sŽ . 0

w xis a compact operator, since s y s ) 0; since for example 5 .
Moreover, from Example 2.1.1 we have for 0 F x F d F 1

x1 sy1 ysA¨ x F sup ¨ x x y t t dtŽ . Ž . Ž .Hž / G sŽ . 0w xxg 0, d

G 1 y sŽ .
sysF d sup ¨ x ;Ž .

G 1 y s q sŽ . w xxg 0, d

0Žw x.therefore, taking the norms in C 0, d ,

5 5 5 5A¨ F e ¨ ,

where we may assume e ) 0 as small as we want by shrinking d ) 0.
�Now fix B as a domain of the operator T , where B s ¨ gr r

0Žw x. 5 5 4C 0, d : ¨ F r , which is a convex, bounded, and closed subset of the
0Žw x.Banach space C 0, d .

For d sufficiently small, we have

T B : B .Ž .r r

The Schauder fixed point theorem assures that operator T has at least
Ž .one fixed point and then 3.3 has at least one continuous solution u

w xdefined on 0, d , where d F 1.

EXAMPLE 3.3.1. From the preceding proof we also obtain that, under
0Žw x.the assumptions of Theorem 3.3, all solutions u g C 0, d , d ) 0, of

Ž .3.3 vanish at the origin.
Observe also that we cannot expect uniqueness for such solutions, in

general. Consider for example the equation

D su s ur 3.4Ž .

with 0 - r, s - 1, which admits the two solutions u s 0 and

u x s kx srŽ1yr . ,Ž .
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where

Ž .1r ry1
G m sŽ .

k s with m s q 1ž /G m y s 1 y rŽ .

as we have from Example 2.2.1

EXAMPLE 3.3.2. Theorem 3.3 is a local existence theorem and we
q w .cannot expect all the solutions to extend to R or 0, 1 . Consider for

example the equation

Mx1r2
21r2D u s u q M , M ) 0, 3.5Ž . Ž .1r2p

which admits the solution

y1r2y2u x s M y x y MŽ . Ž .

Ž w x.use formula IIc, page 354, in Miller and Ross 7 . The domain of
Ž . w 2 .existence of u x is 0, 1rM , which shrinks to zero as M ª q`.

The following theorem shows that uniqueness and global existence can
be obtained under an uniform Lipschitz-type assumption. The result

Ž . Ž . Ž .applies in particular to the linear case f x, u s g x q h x u with g, h g
0Žw x.C 0, 1 , s - s.s

s Ž .THEOREM 3.4. Let 0 F s - s - 1 and assume t f t, y is continuous on
w x0, 1 = R. Assume further

L
f t , u y f t , ¨ F u y ¨ 3.6Ž . Ž . Ž .st

Ž xfor some positï e constant L independent of u, ¨ g R, t g 0, 1 . Then the
equation

D su s f x , uŽ .

0Žw x.has a unique solution u g C 0, 1 .

Proof. As in the proof of Theorem 3.3, we are reduced to studying the
operator

x1 sy1Tu x s x y t f t , u t dt , 3.7Ž . Ž . Ž . Ž .Ž .H
G sŽ . 0
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0Žw x. 0Žw x.which is well defined and continuous as a map T : C 0, 1 ª C 0, 1 , in
s Ž .view of the assumption of continuity on t f t, y . Let us define the iterates

of operator T as is standard:

T 1 s T T n s T (T ny1.

It will be sufficient to prove that T n is a contraction operator for n
0Žw x.sufficiently large. Actually, we have for u, ¨ g C 0, 1

n
KLŽ .

n n nŽ sys . 5 5T u x y T ¨ x F x u y ¨ 3.8Ž . Ž . Ž .
G n s y s q 1Ž .Ž .

where the constant K depends only on s and s . In fact,

x1 sy1Tu x y T¨ x F x y t f t , u t y f t , ¨ t dtŽ . Ž . Ž . Ž . Ž .Ž . Ž .H
G sŽ . 0

Ž .which we further estimate using 3.6 and Example 2.1.1 by

G 1 y s LŽ .
sys 5 5x u y ¨ . 3.9Ž .

G s y s q 1Ž .

Ž . Ž .Therefore 3.8 is proved for n s 1, if K G G 1 y s . Assuming by
Ž .induction that 3.8 is valid for n, we obtain similarly

nq1 nq1T u x y T ¨ xŽ . Ž .
n nq1 xK L sy1 nŽ sys .ys5 5F u y ¨ x y t t dtŽ .H

G n s y s q 1 G sŽ . Ž .Ž . 0

G n s y s y s q 1 K nLnq1Ž .Ž .
Žnq1.Ž sys . 5 5s x u y ¨ ,

G n s y s q 1 G n q 1 s y s q 1Ž . Ž . Ž .Ž . Ž .

Ž .and then 3.8 follows for n q 1 if K is given by

G n s y s y s q 1Ž .Ž .
K s max K , K s . 3.10Ž .n n G n s y s q 1n Ž .Ž .

Ž . ŽNote that 3.10 defines actually a finite K, since K F 1 for n G 1 qn
. Ž . Ž .s r s y s . Taking n sufficiently large in 3.8 , we have, say,

Ž .n Ž Ž . .KL rG n s y s q 1 F 1r2 and therefore

1n n5 5 5 5T u y T ¨ F u y ¨ ,2

which gives the proof.
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Finally, we consider the limit case when in Theorem 3.4 we have s s s.
s Ž .THEOREM 3.5. Let 0 - s - 1. Assume that t f t, y is continuous on

w x0, 1 = R and moreo¨er, that

L
f t , u y f t , ¨ F u y ¨ 3.11Ž . Ž . Ž .st

where
1

L - ,
G 1 y sŽ .

Ž xfor all u, ¨ g R and t g 0, 1 . Then

D su x s f x , uŽ . Ž .
0Žw x.has a unique solution u g C 0, 1 .

Proof. We shall prove that under the preceding assumptions T :
0Žw x. 0Žw x. Ž .C 0, 1 ª C 0, 1 , defined by 3.7 is a contraction operator.

Ž .Indeed, setting s s s in 3.9 , we have the estimate

5 5Tu x y T¨ x F LG 1 y s u y ¨ .Ž . Ž . Ž .
Thus we obtain that

5 5 5 5Tu y T¨ F k u y ¨
where

k s LG 1 y s - 1.Ž .
Our theorem is proved.

Ž Ž .EXAMPLE 3.5.1. The assumption L - 1r G 1 y s in Theorem 3.5 is
not a technical accident, as the following simple example shows. The linear
equation

1
s ysD u s x u

G 1 y sŽ .
Ž . Ž .admits the two solutions u x s 0, u x s 1.

Ž .Therefore, the result of uniqueness fails, in general, if L s 1rG 1 y s
Ž .in 3.11 .

4. INITIAL VALUE PROBLEM: CONTINUOUS
Ž xSOLUTIONS ON 0, 1

We open this section with some basic examples, concerning the case
0Ž q.when the solutions in C R are submitted to an initial condition.
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Ž . qPROPOSITION 4.0. Let 0 - s - 1. For all a, b g R = R the initial
¨alue problem

D su s 0½ u a s bŽ .
1ys sy1 0Ž q. 1 Ž q.admits u s ba x as unique solution in C R l L R .loc

This proposition follows directly from Lemma 2.3.

Ž . 0Ž q. 1 Ž q.COROLLARY 4.0.1. Let 0 - s - 1. Assume f x g C R l L R .loc
Ž . qThen for all a, b g R = R the initial ¨alue problem

D su s f xŽ .½ u a s bŽ .
0Ž q. 1 Ž q.has a unique solution in C R l L R gï en byloc

a sy11 xsy1u x s b y a y t f t dtŽ . Ž . Ž .H sy1ž /G s aŽ . 0

x1 sy1q x y t f t dt.Ž . Ž .H
G sŽ . 0

Now we introduce the function e : Rqª Rq defined bys

q` k sy1x
e x s .Ž . Ýs G ksŽ .ks1

Ž . 0 Ž q.The function e x belongs to C R . Indeed, taking the norm ins 1ys 0
0 Žw x.C 0, h , h ) 0, we have1ys

q` Žky1. sh
5 5e x F - `.Ž . Ý1yss G ksŽ .ks1

Ž .Remark that the function e x can be expressed by means of thes
Ž w x.classical Mittag]Leffler special function see Miller and Ross 7, Chap. 5 .

THEOREM 4.1. Let 0 - s - 1. The initial ¨alue problem

D su s u
4.1Ž .½ u a s b ,Ž .

0 Žw x.where a ) 0 and b g R, has a unique solution u g C 0, h , h ) a,1ys
gï en by

y1u x s be a e x .Ž . Ž . Ž .s s
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Proof. We are reduced to consider the integral equation

u x s cx sy1 q I su x , c g R. 4.1UŽ . Ž . Ž .
0 Žw x.Fix h ) a and find u g C 0, h .1ys

Ž U .From 4.1 we obtain, by iteration,

sy1 2 sy1 sny1x x x
n su x s cG s q q ??? q q I u x .Ž . Ž . Ž .

G s G 2 s G snŽ . Ž . Ž .

5 n s Ž .5 0 Žw x.Letting n ª q`, one has I u x ª 0 if u g C 0, h , as we1ys 1ys
deduce easily from Definition 2.1. On the other hand, the sum in the

Ž . 0 Žw x.right-hand side tends to e x in the C 0, h -norm. This implies thats 1ys

u x s cG s e x .Ž . Ž . Ž .s

This equality enables us to solve the initial value problem uniquely.
0 Žw x.The preceding example suggest we look for solutions u g C 0, h of1ys

the general autonomous initial value problem

D su s f uŽ .
4.2Ž .½ u a s b ,Ž .

where 0 - s - 1, a ) 0, and b g R. As for the function f : R ª R, we
shall argue initially under the hypothesis:

f 0 s 0Ž .
4.3Ž .½ f u y f ¨ F L u y ¨Ž . Ž .

for some positive constant L independent of u, ¨ g R.

Ž .LEMMA 4.2. Let 0 - s - 1. Assume that f : R ª R satisfies 4.3 . Then
for any fixed c g R the nonlinear integral equation

x1 sy1sy1u x s cx q x y t f u t dtŽ . Ž . Ž .Ž .H
G sŽ . 0

0 Žw x.has a unique solution u g C 0, h for all h ) 0.1ys

Proof. Our problem is equivalent to the problem of determination of
fixed points of the continuous operator

x1 sy1sy1T u x s cx q x y t f u t dt.Ž . Ž . Ž . Ž .Ž .Hc G sŽ . 0
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It is immediate to verify that

Ž . 0 Žw x. 0 Žw x.i T : C 0, h ª C 0, h is well defined.c 1ys 1ys
Indeed, we have

1ys5 5 5 5T u x s max x T u x F c q R uŽ . Ž . Ž .1ys 1ysc c
w xxg 0, h

< Ž . < < <since f j F L j from assumption, the constant R being given by

1ys xx G sŽ .sy1 sy1 smax L x y t t dt s L hŽ .H
G s G 2 sw x Ž . Ž .xg 0, h 0

in view of Example 2.1.1.
Ž . nii T is a contraction operator for n sufficiently large.c

Ž .Indeed we have, computing as in i ,

LG sŽ .
1ys s 5 5x T u x y T ¨ x F x u y ¨Ž . Ž . 1ysc c G 2 sŽ .

Ž . 0 Žw x.for any x g 0, h and for all u, ¨ g C 0, h and, by induction, arguing1ys
as in the proof of Theorem 3.4 that

LnG sŽ .
1ys n n n s 5 5x T u x y T ¨ x F x u y ¨Ž . Ž . 1ysc c G n q 1 sŽ .Ž .

0 Žw x.for all u, ¨ g C 0, h .1ys
Thus we get

Lnhn sG sŽ .
n n5 5 5 5T u y T ¨ F u y ¨ .1ys 1ysc c G n q 1 sŽ .Ž .

Since

Lnhn s

ª 0
G n q 1 sŽ .Ž .

as n tends to q`, then for n sufficiently large the operator T n is a
Ž .contraction operator. Therefore for any c there exists u s u x, c defined

Ž .on 0, h for all h ) 0, satisfying the required equation.

We shall begin by applying Lemma 4.2 to the case of an initial condition
Ž .at the origin and then pass to considering the problem 4.2 .
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Ž .THEOREM 4.3. Let 0 - s - 1. Assume that f : R ª R satisfies 4.3 .
Then for all b g R, the initial ¨alue problem

D su s f uŽ .
4.4Ž .1ys½ <x u x s bŽ . xs0

0 Žw x.has a unique solution u g C 0, h for all h ) 0.1ys

0 Žw x.Proof. Since we seek a solution u g C 0, h the initial value prob-1ys
Ž .lem 4.4 is equivalent to the nonlinear integral equation

x1 sy1sy1u x s bx q x y t f u t dt. 4.5Ž . Ž . Ž . Ž .Ž .H
G sŽ . 0

In fact, in view of Remark 3.2, it suffices to verify that

lim x sy1u x s b ,Ž .
xª0

or, equivalently,

1ys xx sy1lim x y t f u t dt s 0Ž . Ž .Ž .H
G sxª0 Ž . 0

which is evident from the first part of the proof of Lemma 4.2. Theorem
4.3 follows then by applying Lemma 4.2.

Ž .THEOREM 4.4. Let 0 - s - 1. Assume that f : R ª R satisfies 4.3 .
Ž . 0 Žw x.Then the initial ¨alue problem 4.2 has a unique solution u g C 0, h1ys

for all h ) a, pro¨ided a - a , where a is a suitable positï e constant0 0
depending on s and L.

Ž .Proof. The initial value problem 4.2 will be solved in two steps:

Ž .1 Local existence. The integral equation

a1 sy1 1ys sy1u x s b y a y t f u t dt a xŽ . Ž . Ž .Ž .Hž /G sŽ . 0

x1 sy1q x y t f u t dt 4.6Ž . Ž . Ž .Ž .H
G sŽ . 0

Ž .is equivalent to the initial value problem 4.2 , cf. Corollary 4.0.1.
Ž .Note that solving 4.6 is equivalent to finding the fixed points of the

operator

0 w x 0 w xA: C 0, h ª C 0, hŽ . Ž .1ys 1ys



DELBOSCO AND RODINO622

Ž . Ž . Ž .defined as A¨ x s u x where u x is the unique solution of

a1 sy1 1ys sy1u x s b y a y t f ¨ t dt a xŽ . Ž . Ž .Ž .Hž /G sŽ . 0

x1 sy1q x y t f u t dt.Ž . Ž .Ž .H
G sŽ . 0

Note also that operator A is well defined from Lemma 4.2.
We shall now prove that A is a contraction.
Indeed, setting A¨ s u , we havei i

5 5 5 5u y u s A¨ y A¨1ys 1ys1 2 1 2

LG s hs LG s asŽ . Ž .
5 5 5 5F u y u q ¨ y ¨1ys 1ys1 2 1 2G 2 s G 2 sŽ . Ž .

0 Žw x.for all ¨ , ¨ g C 0, h .1 2 1ys
Let us assume

G s 1Ž .
sL a - ,

G 2 s 2Ž .
that is,

1rs
G 2 sŽ .

a - a s .0 ž /2 LG sŽ .

Taking h y a ) 0 sufficiently small, we also have

LG s hs 1Ž .
-

G 2 s 2Ž .
and then

5 5 5 5A¨ y A¨ F R ¨ y ¨1ys 1ys1 2 1 2

Ž Ž . s Ž ..with R s 2 L G s a rG 2 s - 1.
Therefore A is a contraction operator.

Ž .This shows that initial problem 4.2 has a unique solution.
Ž . Ž .2 Continuation of solution. Since we know the value of u x on

Ž x0, a , then we can compute

a1 sy1 1ysc s b y a y t f u t dt a .Ž . Ž .Ž .H* ž /G sŽ . 0
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Lemma 4.2 enables us to solve the integral equation

x1 sy1sy1w x s c x q x y t f w t dt ,Ž . Ž . Ž .Ž .H* G sŽ . 0

0 Žw x.obtaining a unique solution w g C 0, h for all h ) 0.1ys
Ž . Ž . Ž x Ž . Ž .Now u x and w x agree on 0, a . Thus the solution u x admits w x

as its continuation.
The proof is complete.

By using somewhat more sophisticated arguments, we can enlarge the
bound a given in the preceding proof; however, we do not know whether0
existence and uniqueness in Theorem 4.4 hold for all a g Rq, as we had in
Theorem 4.1.

Finally we want to study the not-globally-Lipschitzian case. For simplic-
Ž . aity, we limit ourselves to analyzing the model f t s t , with a ) 0, under

Ž .the initial condition 4.4 .

THEOREM 4.5. Let 0 - s - 1 and b g R. If we assume 0 - a -
Ž .1r 1 y s , then the initial ¨alue problem

D su s ua

4.7Ž .1ys½ <x u x s bŽ . xs0

0 Žw x.has at least a solution in C 0, h for h ) 0 sufficiently small.1ys

0 Žw x. Ž . a 1ŽŽ ..Proof. If u g C 0, h and a s y 1 ) y1, then u g L 0, h . In1ys
view of Remark 3.2, we are therefore reduced again to the nonlinear
integral equation

x1 sy1sy1 au x s bx q x y t u t dt. 4.7.iŽ . Ž . Ž . Ž .H
G sŽ . 0

The existence of a solution to the above problem can be formulated as a
fixed point equation Tu s u where

x1 sy1sy1 aTu x s bx q x y t u t dt 4.7.iiŽ . Ž . Ž . Ž . Ž .H
G sŽ . 0

0 Žw x.in the space C 0, h . To prove existence we use Schauder’s fixed point1ys
theorem.

The proof is divided in two parts:

A priori estimates. We seek an a priori estimate of fixed points of
Ž .operator T defined by 4.7.ii by means of a closed sphere S defined asr

0 5 sy1 5w xS s u g C 0, h : u y bx F r .� 4Ž . 1ysr 1ys
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To obtain r ) 0 such that T S : S , we note thatr r

1ys xx sy1sy1 a Ž sy1. a Ž1ys. a5 5Tu y bx s max x y t t t u t dtŽ . Ž .1ys H
G aw x Ž .xg 0, h 0

G a s y 1 q 1Ž .Ž . aa Ž sy1.q1 5 5F h u .1ys
G a s y 1 q 1 q sŽ .Ž .

5 5 < <Since u F r q b , it will be sufficient to impose1ys

asy1 a Ž sy1.q15 5u y bx F const.h r q b F r .Ž .1ys

Ž .In view of the assumption a s y 1 q 1 ) 0, the second estimate is
< <satisfied if, say, r s b and h is chosen sufficiently small.

Proof of compactness of T. To prove the compactness of

0 w x 0 w xT : C 0, h ª C 0, hŽ . Ž .1ys 1ys

Ž .defined by 4.7.ii , it will be sufficient to argue on the operator

0 w x 0 w xT : C 0, h ª C 0, hŽ . Ž .*

defined in this way:

T u x s x1ysT x sy1u x .Ž . Ž . Ž .Ž .*

We have T#u s b q TU u where the operator

x1 sy1U 1ys a Ž sy1. aT u x s x x y t t u t dtŽ . Ž . Ž .H
G sŽ . 0

Ž .turns out to be compact from classical sufficient conditions, since a s y 1
) y1. The proof is complete.

Ž .Remark 4.6. If in the preceding theorem one assumes a G 1r 1 y s ,
0 Žw x. Ž . s a 1ŽŽ ..then u g C 0, h and b / 0 in 4.7 give D u s u f L 0, h , so our1ys

very reduction to the integral equation fails in this case. Observe also that
under the assumptions of the previous theorem we cannot expect unique-
ness as shown by Example 3.3.1.
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