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Let S be a p xp random matrix having a Wishart distribution IV&n, n-‘C). For 
testing a general covariance structure Z = E(t), we consider a class of test statistics 
Th = n inf p,,(S, Z(g)), where p&?I,, Z,) = xp= r h(2,) is a distance measure from Z, 
to ,?I,, &‘s are the eigenvalues of Z,x;‘, and h is a given function with certain 
properties. This paper gives an asymptotic expansion of the null distribution of Th 
up to the order n-‘. Using the general asymptotic formula, we give a condition for 
Th to have a Bartlett adjustment factor. Two special cases are considered in detail 
when Z is a linear combination or Z-’ is a linear combination of given matrices. 
0 1990 Academic Press, Inc. 

1. 1NTRoDuc~10~ 

Let S be a p xp random matrix having a Wishart distribution 
FV,(n, nPIZ). It is assumed that n >p, so that SE A E the set of all the p xp 

symmetric positive definite matrices, with probability one. We consder the 
problem of testing HO : Z;E A, against H, : ,Z’E A -A,, where A, is defined 
as 

A,= {C(S); bE} (1.1) 

with an open set 3 of R4. It is assumed that 

Received June 23, 1989. 
AMS 1980 subject classifications: primary 62HlO; secondary 62H15. 
Key words and phrases: asymptotic expansion, class of test statistics, general covariance 

structure, linear structure, null distribution. 

313 
0047-259X/90 $3.00 

Copyright 0 1990 by Academic Press, Inc. 
All rights of reproducimn in any form reserved. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Elsevier - Publisher Connector 

https://core.ac.uk/display/82267974?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


314 WAKAKI, EGUCHI, AND FUJIKOSHI 

Al. All the elements of Z(k) are known C4-class functions on H,, 
and the Jacobian matrix of Z(g) is of full rank. 

Thus d, is a smooth subsurface with coordinates 5 = (<l, . . . . t4)’ in the 
total space d. The hypothesis H, involves various covariance structures as 
special cases. 

We consider a class of test statistics via minimization of the following 
divergence measures from S to d,. Let h be a C4-function on (0, co) satis- 
fying that 

A2. h(l)=O, h,=O and h,= 1, 
A3. h(A) >O for any A # 1, 

where h, denotes the rth derivative of h at A= 1. For arbitrary two matrices 
,Z’, and Z, in A we define a distance measure from Z, to 2, by 

Ph(C,, Z2) = i M&), 
i=l 

where &‘s are the eigenvalues of Z,C;‘. Note that ph(C,, C,) 20 with 
equality if and only if C, = C, because of A3. However, in general, p,, is 
non-symmetric and does not satisfy the triangle law. We consider a class of 
test statistics 

(1.2) 

where th is a minimizing point. For example, for h(1) = -log I+ i - 1, 
ph is the Kullback divergence and the corresponding statistic Th is only 
based on the log-likelihood ratio criterion. Another typical example is 
h(l) = (A - 1)*/2. We note that each Th has parametrization-invariance, 
which property is common in methods via minimization or maximization 
(cf. Barndorff-Nielsen and Cox [S]). Swain [ 151 considered ph(S, 2) as a 
class of factor analysis estimation procedures and showed that for every h 
satisfying Al and A2, &, is a consistent and asmptotically efficient 
estimator of 5. Further, Eguchi [8] showed that &, is second-order efficient 
if and only if 

h,= -2. (1.3) 

These suggest that the asymptotic properties of Th under the null 
hypotheses may be closely related with the local shape of h around 1, = 1. 

The main purpose of this paper is to extend an asymptotic distribution 
theory for Th based on perturbation method and derive an asymptotic 
expansion of the null distribution of Th up to the order n-‘. As a special 
result, it is shown that every Th has asymptotically a chi-square distribu- 
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tion with r =p(p + 1)/2 - q degrees of freedom. In general, a test statistic 
T,, is said to have a Bartlett adjustment factor in a strong sense if a 
modified statistics Th* = mT, satisfies 

P(T,*dxlH,)=P(~S~x)+o(n-‘), (1.4) 

where m = 0( 1). We note that a Bartlett adjustment factor in a weak sense 
is determined by requiring only E[ Tz] = r + o(n-‘) (For a recent discus- 
sion, see, e.g., Bandorff-Nielsen and Cox [S], MacCullagh and Cox [9]). 
Using our general expansion formula, it is shown that T,, has a Bartlett 
adjustment factor in a strong sense if and only if 

h,= -2 and h,=6. (1.5) 

Consequently we see that the Bartlett adjustment factor is determined by 
only the local property of h. It is easily seen that h(l) = -log % - A+ 1 
satisfies (1.5) and hence there exists a Bartlett adjustment factor for the 
likelihood ratio statistic. 

It may be noted that asymptotic expansions of the distributions of T,,‘s 
in some special cases have been obtained by many authors (For example, 
Anderson [24], Muirhead [lo], Nagao [ll], Siotani, Hayakawa, and 
Fujikoshi [ 121, Sugiura [ 1411, etc.). An emphasis in this paper is put on 
an asymptotic distribution theory for Th in a general case. In Section 2 we 
give stochastic expansions of &, as well as T,,. In Section 3 we obtain an 
asymptotic expansion of the characteristic function of Th which yields an 
asymptotic expansion of the null distribution of T,, up to the order K’. A 
key reduction in the expansion method is given in Lemma 3.2. As special 
cases, we consider the case that C is a linear combination or C-i is a linear 
combination of given matrices. Some reductions are also given for the two 
cases. 

2. STOCHASTIC EXPANSION OF T, 

Let &, be an arbitrary fixed point of +Z We shall derive a stochastic 
expansion of Th at C, = C(&,). For simplicity, let us denote as g = &,, 
C = Z(k), Co = C(&,), and 2 = Z(&). We shall expand Th in terms of 

v=&z~“2(s-co)c;1’2 (2.1) 

which is O,( 1). Some of differential-geometrical notions (for example, see 
Amari [ 11, Eguchi [8]) are used in the derivation of the expansion of T,. 
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First we summarize the notations used in this paper. Let 

a, = ajay, J,,... =z;/2[a,a, . . .c-lloc;/2, 
Jab... =z;qa,a,...c-11 h z;/2, 

where [ lo and [ ] /\ denote the quantity [ ] evaluated at 5 = to and g, 
respectively. Noting that the log-likelihood function is 

l(S)=; { -tr SC-‘+log lCP’l} +const, 

we can write the score and the Fislher information matrix as 

s,=K~/~[~J(Q]~= -itr J,V, a = 1, . ..) q, 

and 

G=(gob), g,b=E(s,.d=itrJ,Jb, a, b = 1, . . . . q, 

repectively. It follows from Al that the information matrix G is non- 
singular. The exponential connection has coefficients 

r ub, d = E{ (a,sb)sd} = + tr JabJd, 

with respect to coordinates 5. As another version of Jab, let 

JLabl = z~‘2[v,abz-1]oz;‘2 = Jab - +J,gcd tr JdJab, 

where gab is the (a, 6) element of G-l, and 

v,a, = aoab - gcdrob,dac 

with Einstein’s summation convention. The summation convention is used 
throughout this paper. For example, J, gcd means Cz=, J, gtd. 

Considering the Taylor expansion of h, we have 

PJS,Z)=tr ~(S~-1-1,)2+~h~(Sr-1-Ip)3 
[ 

+$h4(SZp1 -I,)” + O(tr(SCP’ -Z,)“). 1 (2.3) 

It is known (Swain [15]) that 

p+/s(fU-5;) (2.4) 
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is asymptotically normal and hence O,(l). The Taylor expansion of ,IC(s)-’ 
yields 

A= v+(zp+$ v)J;;sb.‘(P-‘-Z;‘)#’ 

= V+Jb[“-ki 
J( n 

VJb[b+fJbc[bp 
> 

+O,(n-‘). 

Using (2.3) and (2.7), we obtain an expansion of T,,, 

(2.7) 

1 + O&n -3’2). (2.8) 

In order to obtain an explicit expansion of T,,, it is necessary to obtain 
an expansion of p. The estimates p”, a = 1, . . . . q, satisfy the system of 
equations 

a = 1, . ..) q. (2.9) 

Using (2.3) it can be seen that P’S satisfy 

or equivalently 

tr[(ZP+-$ V)j.(A+*h3A2)]=0,(ne1). (2.10) 

Substituting (2.7) and 

(2.11) 

683/32/2-l I 
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into (2.10), it is seen that p’s satisfy 

i;3Ja(v+Jbgb)2+J .(+bx:) t”c 

+Jab( V+J,p)gb = O,(n-‘), 1 a=1 3 . . . . 4, (2.12) 

where z, = 1 + ih3. The solution of p in (2.12) can be found in an 
expanded form 

~=e”+LP+Op(npl). 
J;I 

In fact, substituting (2.13) into (2.12) we obtain 

ea = gabsb) &a = - + gab tr(J,M + JbceC W), 

(2.13) 

(2.14) 

where 

W= V+ Jbeb, M=z, W2-JbJcebe”+ iJbcebec. (2.15) 

Hence, from (2.7), (2.8), and (2.14) we obtain an expansion of T,, given by 

where 

Th=itr W2+~T,(V)+~T2(V)+0,(n~312), 
J;; 

(2.16) 

T,(v) = $ tr(JCnb, W)e”eb - tr(J,J, W)e”eb + tr(J, W2)eu+ i/z3 tr W3, 

T2( V) = $h4 tr W4 - $h”: gab tr(J, W’) tr(J, W2) 

+ 9i3 tr(&,, w2)e”eb - 7;, tr(J,J, w2)e”eb 
+ 4g3gab tr(JbJcJd) tr(J, W2)e”ed+ tr(J,J, W2)e”eb 

- a gab MJCocl w) tr(J[bd] W)e”ed+ 4 tr(J, wJb W)e”eb 

+ ${tr(JEoblJLcdl) - 4 tr(JaJbJLrdl) + 4 tr(J,J,J,J,) 
-2geftr(J,JbJ,) tr(J,JdJf)}euebe’ed. 

3. ASYMPTOTIC EXPANSION OF THE NULL DISTRIBUTION OF T,, 

We shall obtain an asymptotic expansion of the null distribution of T, 
by formally inverting an asymptotic expansion of the characteristic 
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function of T,, . the validity of the asymptotic expansions obtained by this 
method has been discussed under certain regularity conditions (see, e.g., 
Bhattacharya ad Ghosh [6], Chandra and Ghosh [7]). Our interest is 
how to evaluate the characteristic function of T,, up to the order n- ‘. We 
can write the characteristic function of Th as 

d(t) = E[exp(itT,)] = E[etr(@W*)T( V)] + 0(nd3/*), (3.1) 

where 19 = it and T(V) is defined by 

T(V)= 1 +n-“28T1(V)+n~1{~~2T,(V)2+t?T2(V)} (3.2) 

with the expressions T, and T2 in (2.16). The pdf of V is expressed as (see, 
e.g., Siotani, Hayakawa, and Fujikoshi [12, p. 1603) 

f( J’) =A( VQ( V + W-3’2), (3.3) 

where fo( V) = { nP(P+ 1)/42P(P+ 3)/4} - ’ etr( - i V’), 

Q(V)=l+lQ,cv,+~Q,cV), 
J;; 

Q,(V)= -&+l)tr V+itr V3, (3.4) 

Q2(V)=~{Q1(V)}*-~~(2~*+3~-1)+~(~+1)tr V’-itr V4. 

Therefore, we have 

4(t)=J apetr(-$V2+$3W2)Q(V)T(V)dV+O(n-32), (3.5) 

where dV=dv,, dv12...dvp--l,p and ap= {~p(p+1)‘42p(p+3”4}-1. 
We prepare some lemmas useful for reductions of (3.5). Noting that 

G ~ ’ = (gab) exists, let 

e” = - 4 gab tr(Jb V), U= -Jaea, and W= V- U. (3.6) 

Further, let 

M= (vet * (J,), . . . . vet * (J,)), (3.7) 

where for any p xp symmetric matrix A = (Q), 

vet * (A) = (a,,/&, . . . . a,/$, al,, . . . . ap--I,p)‘. 

Noting that vet * (A)’ vet * (B) = 4 tr Al?, we have the following lemma. 
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LEMMA 3.1. Let P,,, = M(M’M) - ’ M’. Then 

e = (e’, . . . . e4)’ = (M’M) - ’ M’ vet * ( V), 

vec*(U)=P,vec*(V), 

vet * (W) = UPC, + 1)/2 - PM) vet * (VI. 

LEMMA 3.2. Let 8 be any complex number whose real part is greater than 
- 4. Then, for a function h(V) of V and a function g(h, W) of U and W, 

s 
etr(-$V2+@W2)h(V)g(U, W)dV 

=(1-2e)-r/2Setr(-$v2)h(U+(i-2e)-1/2w) 

xg(U,(1-28)-“2W)dV, (3.8) 

where r=ip(p+ 1)-q. 

Proof: We shall show that (3.8) is obtained by considering the transfor- 
mation V + P defined by 

P= u+(i -2epw. (3.9) 

Since tr UW = 2 vet * (U)’ vet * ( W) = 0, we have 

tr P’=tr V2-28tr W2. 

Using Lemma 3.1 we can write (3.9) as 

vec*(Q=(P,+(1-2e)‘/2(zp~p+,~,2-PW))vec*(V). 

This implies that the inverse transformation is 

vec*(V)=(P,+(1-2e)-‘/2(zp~p+1~,2-PM))vec*(8) 

or, equivalently, 

v=O++i-2e)-l/W, 

where 8= iJa gab tr(Jb P) and &= P-- 6 Therefore, the Jacobian of the 
transformation (3.9) is 

IP, + (1 - 2w’2 upcp+ 1j,2 - w 

which equals (1 - 28) pr/2, since the characteristic roots of P, are one 
or zero and rank(P,,,) = q. Further, it holds that U = fl and W= 
(1 - 2e)pW, since vet * (D) = P, vec( 8) = PM{ P, + (1 - 2ep2 
x (4(p+1),2-Pd vet * (V) = vec( U). These complete the proof. 
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LEMMA 3.3. Let V be a p x p symmetric random matrix with pdf fo( V) in 
(3.3). Let e”, U, and W be the random variables defined by (3.6). Then 

(i) e = (e’, . . . . eq)’ and W are independent, 

(ii) e is distributied as N&O, G-l), 

(iii) vet * (U) and vet * (W) are independently distributed as 
Npcp+ I&X PM) and N p(p + 1),2(0, Zpcp+ 1112 -PM), respectively. 

Proof The results are easily obtained by using Lemma 3.1 and the fact 
that vet * ( V) is distributed as NPCP+ 1j,2(O, ZpCp+ 1j,2). 

Using Lemmas 3.2 and 3.3, we can write the characteristic function (3.5) 
as 

~(t)=(1-228))r’2E[Q(U+(1-20)-1’2W) 

x T(U+ (1 -28))‘/2 W)] + O(ne312). (3.10) 

Here the expectation in (3.10) is taken with respect to the distribution of 
U (or e) and W given in Lemma 3.3. After calculation of these expected 
values, we obtain 

&t)=(l-28)-Q 
{ 

1 + i ,i cj( 1 - 28)-j} + O(np3’*), (3.11) 
J=o 

where the coefftcients cis are given by 

Co = & { - 3p( 2p2 + 3p - 1) - 9gabcdK,,bcd + gabrdefK&def. > 

+ h gabgcd(4K [ob]cd - K[ab][cd, + 2&c,[bd, >Y 

cl= -co+@C-(h,-6)B+g,D, (3.12) 

,c2= -@(A+C)+(h,-6)B-E,D, c3 = @A, 

and the coefficients A, . . . . D are given by 

A = ${ 6p(4p2 + 9p + 7) - 36q(3p + 4) - 9(p2 + 2p + 3) gabK,,b 

+ 6( P + 1) fbcdKabc, d + 1 8gubCd&cd - fbcde%zbc, def }, 

B = &{ p( p2 + 5p + 5) - 4q(&’ + 3) - 2gabKo,b + gabcdK&.d}, 

c= &{p(4p’ + 9p + 7) - 12q(p + 1) - 3gabgcdKacbd 

- 2g=bgcdkffK,ce, bdf > 3 

D= -;p(p2+3p+4)+q(2p+3)+$g”bK,,,-+(p+ l)gabgCdKObc,d 
1 abed 

- I &? &x-d + 8 g 
abcdefK 

abc,def - ;(P + 1) gabK,,,, 

+ $ &‘nbgcdK[nb, rd. (3.13) 
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Here we use the following notations: 

g abed = gebgcd + gacgbd + gadgbc, 

g 
abcdef = gabgcdef + gacgbdef + gadgbcef + gaegbcdf + gafgbcde, 

K nbr... = tr(JaJbJc ” ’ ), &blcd= tr(J[oblJcJd)? 

K abc,def = Kabc&ep and so on. (3.14) 

The formulae needed for the expectations are given in Appendix. By invert- 
ing the characteristic function term by term, we obtain an expansion of the 
null distribution of T,, as in the following theorem. 

THEOREM 3.1. Let T,, be the test statistic given by (1.3) with a function 
h satisfying A2 and A3. Suppose that a given covariance structure C = C(k) 
satisfies Al. Then under the null hypothesis H,, the distribution of T,, can be 
expanded for large n as 

P(T,$x)=G,(x)+i ,i cjG,+zj(x)+O(n-3’2), (3.15) 
J=o 

where r =p(p + 1)/2-q, Gk( .) is the distribution function of X2-variable of 
k degrees of freedom and the coefficients cis are given by (3.12). 

We note that all the terms in the coefficients are scalar functions, or 
independent of the parametrization. Consider a reparametrization of the 
model do by t = f (Q, where f is a q-dimensional C4-diffeomorphism. Then 
we can show that gabK,,b - = rbK,,b, gabgcdi$+ = gabgCdKCQblcd, and SO 

on, where the derivatives included in the right sides are evaluated at 
c = Eoc =f Go)). 

THEOREM 3.2. Under the same assumptions as in Theorem 3.1 it holds 
that T,, has a Bartlett adjustment factor in a sense of (1.4) if and only if the 
condition (1.5) is satisfied. Further, the Bartlett adjustment factor is given by 
m = 1 + 2c,/(rn), i.e., it holds that 

P((l+?) T,,<x)=G,(x)+O(n-)-‘), (3.16) 

if the condition (1.5) is satisfied. 

Proof Let m = 1 + b(n)/n, where b(n) = o(l). Then, the characteristic 
function of mT,, can be expanded as 

$(t)=f$(itm)=(l-228))“* [I+%{ (1-28)-‘-l 

+jocj(l-2B)‘j+O(nP3.‘)]. 
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Therefore, it is shown that T,, has a Bartlett adjustment factor if and only 
if 

co = -cl = $b(n), c*=o, c3 =o, 

which is equivalent to b(n) = 2c,/r, h, = -2, and h, = 6. This completes the 
proof. 

When h(A)= -log 1+11- 1, condition (1.5) is satisfied. So, the 
likelihood ratio test has a Bartlett adjustment factor. However, it may be 
noted that, in general, the adjustment factor c,, depends on unknown 
parameter 5. In practical use we need to use the adjustment factor E, 
obtained from c0 by replacing 5 by t. It is interesting to obtain the condi- 
tion such that c0 does not depend on 4 or d,,. 

4. APLLICATIONS 

In this section, we consider two types of structures: (i) Z is a linear 
combination of given matrices and (ii)C-’ is a linear combination of 
given matrices. It may be noted that these types of structures include 
many important structures as special cases (see, Anderson [2, 31). The first 
structure (i) is 

C= (‘G, + C2G2 + .‘. + tyGy, (4.1) 

where G,‘s are given p xp symmetric matrices which are linearly independ- 
ent, and 5”‘s are unknown such that C is positive definite. For applications 
of the general results in the preceding section, we have to prepare only two 
arrays of matrices J, and Jo6 which are easily calculated as 

and 

J 
u 

= -2-‘/2G C-112 
0 00, a = 1, . ..) q, (4.2) 

Jab=JaJt,+JbJa, 

The second structure (ii) is 

a, b = 1, . . . . q. (4.3) 

27’ = (‘G, + (*G, + ... + tYG,, (4.4) 

where G,‘s are given p xp symmetric matrices which are linearly inde- 
pendent, and 5”‘s are unknown such as to make C positive definite. In this 
case Job’s are all 0 and 

J a = -z1/*(-3 Cl/* 
0 a07 a = 1, . ..) q. (4.5) 
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The asymptotic expansion formula in this case is much simpler than the 
one in the first case, (i). 

We note that the sphericity structure C = 0~1, can be regarded as special 
cases of both covariance structures (i) and (ii). Since we can choose an 
arbitrary parametrization, we use 

C=e<I,. (4.6) 

For the likelihood ratio test, the coefficients cg and cq are zero, since K, = 0 
and h4 = 6. In this case we must calculate only two terms gubCd&,Cd and 

abcdef g f&de-f since the terms including JCab3 are all zero. It is easily seen 
that 

gnbcd&,rd = 12p ~ ’ and gabcdefKabc def= 120~ ~ ‘. . (4.7) 

Therefore, as is well known, we have co = - c, = - &{ 2p3 + 3p - 1 - 4p ~ ’ }. 

APPENDIX 

Let V be a p xp symmetric random matrix normal with pdf fo( V) in 
(3.3). Let e = (e’, . . . . e4)’ and W be the random vector and matrix defined 
by (3.6). Then, it holds that for any p x p matrices A and B, 

E[e”eb] = gab, E[eaebeced] = gubcd, E[e”ebe”ede’ef ] = gubcdef, 

E[tr(A W) tr(BW)] = 2 tr(AB) -gab tr(AJ,) tr(BJ,), 

E[tr(A WBW)] = tr A . tr B + tr(AB’) -g”’ tr(AJ,BJ,), 

E[tr(A W2) tr(BW2)] = 2(p + 2) tr(AB) + (p’+ 2p + 3) tr A . tr B 

-(p+ l)g”b{tr ‘4. tr(BJ,J,) + tr B. tr(AJ,J,)} 
-- 

- 4g”‘(tr(AJ,BJb) + tr(ABJ,J,)} 

+ gnbcd tr(AJoJb) tr(BJ,Jd), 

E[tr(A W) tr( W3)] = 6(p + 1) tr A - 6gob tr(AJ,J,) 

-3(p+ l)gab tr(AJ,)Kb+gabcdtr(AJa)Kbcd, 

E[tr( W4)] =p(2p2 + 5p + 5) - 4q(2p + 3) - 2gUbKa,b +gabcdKabcd, 

E[{tr(W3)}2]=6p(4p2+9p+7)-36q(3p+4) 

- 9(p2 + 2.D + 3) gab&, + 6(p + 1) fbcd&,c,d 

+ 18g abCdKnbcd - gabcdefKubc,def, 
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where 2 = $(A + A’). The expectations are obtained by using Lemma 3.3 
and the fact that vet * (V) is distributed as NPCP+ lj,z(O, ZPCP+ l,,z). The 
calculations can be simplified by using the properties such as 

E[tr W* . tr W’] = E[tr W2. tr @* + 2 tr Wp. tr WR], 

where @ is a p xp symmetric random matrix having the same distribution 
W and being independent of W. 
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