A Class of Tests for a General Covariance Structure

Hirofumi Wakaki
Oita University, Oita, Japan
Shinto Eguchi
Shimane University, Shimane, Japan
AND
Yasunori Fujikoshi
Hiroshima University, Hiroshima, Japan
Communicated by the Editors

Let S be a $p \times p$ random matrix having a Wishart distribution $W_{\rho}\left(n, n^{-1} \Sigma\right)$. For testing a general covariance structure $\Sigma=\Sigma(\xi)$, we consider a class of test statistics $T_{h}=n \inf \rho_{h}(S, \Sigma(\xi))$, where $\rho_{h}\left(\Sigma_{1}, \Sigma_{2}\right)=\sum_{j=1}^{p} h\left(\lambda_{j}\right)$ is a distance measure from Σ_{1} to $\Sigma_{2}, \lambda_{i}^{\prime}$'s are the eigenvalues of $\Sigma_{1} \Sigma_{2}^{-1}$, and h is a given function with certain properties. This paper gives an asymptotic expansion of the null distribution of T_{h} up to the order n^{-1}. Using the general asymptotic formula, we give a condition for T_{h} to have a Bartlett adjustment factor. Two special cases are considered in detail when Σ is a linear combination or Σ^{-1} is a linear combination of given matrices. © 1990 Academic Press, Inc.

1. Introduction

Let S be a $p \times p$ random matrix having a Wishart distribution $W_{p}\left(n, n^{-1} \Sigma\right)$. It is assumed that $n \geqslant p$, so that $S \in \Delta \equiv$ the set of all the $p \times p$ symmetric positive definite matrices, with probability one. We consder the problem of testing $H_{0}: \Sigma \in \Delta_{0}$ against $H_{1}: \Sigma \in \Delta-\Delta_{0}$, where Δ_{0} is defined as

$$
\begin{equation*}
\Delta_{0}=\{\Sigma(\xi) ; \xi \in \Xi\} \tag{1.1}
\end{equation*}
$$

with an open set Ξ of R^{q}. It is assumed that

Received June 23, 1989.
AMS 1980 subject classifications: primary 62 H 10 ; secondary 62 H 15 .
Key words and phrases: asymptotic expansion, class of test statistics, general covariance structure, linear structure, null distribution.

A1. All the elements of $\Sigma(\xi)$ are known C^{4}-class functions on H_{0}, and the Jacobian matrix of $\Sigma(\xi)$ is of full rank.
Thus Δ_{0} is a smooth subsurface with coordinates $\xi=\left(\xi^{1}, \ldots, \xi^{q}\right)^{\prime}$ in the total space Δ. The hypothesis I_{0} involves various covariance structures as special cases.
We consider a class of test statistics via minimization of the following divergence measures from S to Δ_{0}. Let h be a C^{4}-function on $(0, \infty)$ satisfying that

$$
\text { A2. } h(1)=0, h_{1}=0 \text { and } h_{2}=1 \text {, }
$$

A3. $h(\lambda)>0$ for any $\lambda \neq 1$,
where h_{r} denotes the r th derivative of h at $\lambda=1$. For arbitrary two matrices Σ_{1} and Σ_{2} in Δ we define a distance measure from Σ_{1} to Σ_{2} by

$$
\rho_{h}\left(\Sigma_{1}, \Sigma_{2}\right)=\sum_{i=1}^{p} h\left(\lambda_{i}\right),
$$

where λ_{i} 's are the eigenvalues of $\Sigma_{1} \Sigma_{2}^{-1}$. Note that $\rho_{h}\left(\Sigma_{1}, \Sigma_{2}\right) \geqslant 0$ with equality if and only if $\Sigma_{1}=\Sigma_{2}$ because of A3. However, in general, ρ_{h} is non-symmetric and does not satisfy the triangle law. We consider a class of test statistics

$$
\begin{equation*}
T_{h}=n \inf _{\xi \in \Xi} \rho_{h}(S, \Sigma(\xi))=n \rho_{h}\left(S, \Sigma\left(\xi_{h}\right)\right), \tag{1.2}
\end{equation*}
$$

where $\hat{\xi}_{h}$ is a minimizing point. For example, for $h(\lambda)=-\log \lambda+\lambda-1$, ρ_{h} is the Kullback divergence and the corresponding statistic T_{h} is only based on the log-likelihood ratio criterion. Another typical example is $h(\lambda)=(\lambda-1)^{2} / 2$. We note that each T_{h} has parametrization-invariance, which property is common in methods via minimization or maximization (cf. Barndorff-Nielsen and Cox [5]). Swain [15] considered $\rho_{h}(S, \hat{\Sigma})$ as a class of factor analysis estimation procedures and showed that for every h satisfying A1 and A2, $\hat{\xi}_{h}$ is a consistent and asmptotically efficient estimator of ξ. Further, Eguchi [8] showed that $\hat{\xi}_{h}$ is second-order efficient if and only if

$$
\begin{equation*}
h_{3}=-2 . \tag{1.3}
\end{equation*}
$$

These suggest that the asymptotic properties of T_{h} under the null hypotheses may be closely related with the local shape of h around $\lambda=1$.
The main purpose of this paper is to extend an asymptotic distribution theory for T_{h} based on perturbation method and derive an asymptotic expansion of the null distribution of T_{h} up to the order n^{-1}. As a special result, it is shown that every T_{h} has asymptotically a chi-square distribu-
tion with $r=p(p+1) / 2-q$ degrees of freedom. In general, a test statistic T_{h} is said to have a Bartlett adjustment factor in a strong sense if a modified statistics $T_{h}^{*}=m T_{h}$ satisfies

$$
\begin{equation*}
P\left(T_{h}^{*} \leqslant x \mid H_{0}\right)=P\left(\chi_{r}^{2} \leqslant x\right)+o\left(n^{-1}\right), \tag{1.4}
\end{equation*}
$$

where $m=O(1)$. We note that a Bartlett adjustment factor in a weak sense is determined by requiring only $E\left[T_{n}^{*}\right]=r+o\left(n^{-1}\right)$ (For a recent discussion, see, e.g., Bandorff-Nielsen and Cox [5], MacCullagh and Cox [9]). Using our general expansion formula, it is shown that T_{h} has a Bartlett adjustment factor in a strong sense if and only if

$$
\begin{equation*}
h_{3}=-2 \quad \text { and } \quad h_{4}=6 . \tag{1.5}
\end{equation*}
$$

Consequently we see that the Bartlett adjustment factor is determined by only the local property of h. It is easily seen that $h(\lambda)=-\log \lambda-\lambda+1$ satisfies (1.5), and hence there exists a Bartlett adjustment factor for the likelihood ratio statistic.

It may be noted that asymptotic expansions of the distributions of T_{h} 's in some special cases have been obtained by many authors (For example, Anderson [2-4], Muirhead [10], Nagao [11], Siotani, Hayakawa, and Fujikoshi [12], Sugiura [14]], etc.). An emphasis in this paper is put on an asymptotic distribution theory for T_{h} in a general case. In Section 2 we give stochastic expansions of $\hat{\xi}_{h}$ as well as T_{h}. In Section 3 we obtain an asymptotic expansion of the characteristic function of T_{h} which yields an asymptotic expansion of the null distribution of T_{h} up to the order n^{-1}. A key reduction in the expansion method is given in Lemma 3.2. As special cases, we consider the case that Σ is a linear combination or Σ^{-1} is a linear combination of given matrices. Some reductions are also given for the two cases.

2. Stochastic Expansion of T_{h}

Let ξ_{0} be an arbitrary fixed point of Ξ. We shall derive a stochastic expansion of T_{h} at $\Sigma_{0}=\Sigma\left(\xi_{0}\right)$. For simplicity, let us denote as $\hat{\xi}_{\boldsymbol{\xi}} \hat{\xi}_{h}$, $\Sigma=\Sigma(\xi), \Sigma_{0}=\Sigma\left(\xi_{0}\right)$, and $\hat{\Sigma}=\Sigma\left(\hat{\xi}_{h}\right)$. We shall expand T_{h} in terms of

$$
\begin{equation*}
V=\sqrt{n} \Sigma_{0}^{-1 / 2}\left(S-\Sigma_{0}\right) \Sigma_{0}^{-1 / 2} \tag{2.1}
\end{equation*}
$$

which is $O_{p}(1)$. Some of differential-geometrical notions (for example, see Amari [1], Eguchi [8]) are used in the derivation of the expansion of T_{h}.

First we summarize the notations used in this paper. Let

$$
\begin{gathered}
\partial_{a}=\partial / \partial \xi^{a}, \quad J_{a b \ldots}=\Sigma_{0}^{1 / 2}\left[\partial_{a} \partial_{b} \cdots \Sigma^{-1}\right]_{0} \Sigma_{0}^{1 / 2}, \\
\hat{J}_{a b \cdots}=\Sigma_{0}^{1 / 2}\left[\partial_{u} \partial_{b} \cdots \Sigma^{-1}\right]_{\wedge} \Sigma_{0}^{1 / 2},
\end{gathered}
$$

where []$_{0}$ and []$_{\wedge}$ denote the quantity [] evaluated at $\xi=\xi_{0}$ and $\hat{\xi}$, respectively. Noting that the log-likelihood function is

$$
l(\xi)=\frac{n}{2}\left\{-\operatorname{tr} S \Sigma^{-1}+\log \left|\Sigma^{-1}\right|\right\}+\text { const }
$$

we can write the score and the Fislher information matrix as

$$
s_{a}=n^{-1 / 2}\left[\partial_{a} l(\xi)\right]_{0}=-\frac{1}{2} \operatorname{tr} J_{a} V, \quad a=1, \ldots, q,
$$

and

$$
G=\left(g_{a b}\right), \quad g_{a b}=E\left(s_{a} s_{b}\right)=\frac{1}{2} \operatorname{tr} J_{a} J_{b}, \quad a, b=1, \ldots, q
$$

repectively. It follows from A1 that the information matrix G is nonsingular. The exponential connection has coefficients

$$
\Gamma_{a b, d}=E\left\{\left(\partial_{a} s_{b}\right) s_{d}\right\}=\frac{1}{2} \operatorname{tr} J_{a b} J_{d},
$$

with respect to coordinates ξ. As another version of $J_{a b}$, let

$$
J_{[a b]}=\Sigma_{0}^{1 / 2}\left[\nabla_{a} \partial_{b} \Sigma^{-1}\right]_{0} \Sigma_{0}^{1 / 2}=J_{a b}-\frac{1}{2} J_{c} g^{c d} \operatorname{tr} J_{d} J_{a b},
$$

where $g^{a b}$ is the (a, b) element of G^{-1}, and

$$
\nabla_{a} \partial_{b}=\partial_{a} \partial_{b}-g^{c d} \Gamma_{a b, d} \partial_{c}
$$

with Einstein's summation convention. The summation convention is used throughout this paper. For example, $J_{c} g^{c d}$ means $\sum_{c=1}^{q} J_{c} g^{c d}$.

Considering the Taylor expansion of h, we have

$$
\begin{align*}
\rho_{h}(S, \Sigma)= & \operatorname{tr}\left[\frac{1}{2}\left(S \Sigma^{1}-I_{p}\right)^{2}+\frac{1}{3!} h_{3}\left(S \Sigma^{1}-I_{p}\right)^{3}\right. \\
& \left.+\frac{1}{4!} h_{4}\left(S \Sigma^{-1}-I_{p}\right)^{4}\right]+O\left(\operatorname{tr}\left(S \Sigma^{-1}-I_{p}\right)^{4}\right) . \tag{2.3}
\end{align*}
$$

It is known (Swain [15]) that

$$
\begin{equation*}
\bar{\xi}^{a}=\sqrt{n}\left(\hat{\xi}^{a}-\xi_{0}^{a}\right) \tag{2.4}
\end{equation*}
$$

is asymptotically normal and hence $O_{p}(1)$. The Taylor expansion of $\Sigma(\xi)^{-1}$ yields

$$
\begin{equation*}
\sqrt{n} \Sigma_{0}^{1 / 2}\left(\hat{\Sigma}^{-1}-\Sigma_{0}^{-1}\right) \Sigma_{0}^{1 / 2}=J_{b} \bar{\xi}^{b}+\frac{1}{\sqrt{n}} J_{b c} \bar{\xi}^{b} \bar{\xi}^{c}+O_{p}\left(n^{-1}\right) \tag{2.5}
\end{equation*}
$$

Let

$$
\begin{equation*}
\Lambda=\sqrt{n} \Sigma_{0}^{-1 / 2}\left(S \hat{\Sigma}^{-1}-I_{p}\right) \Sigma_{0}^{1 / 2} \tag{2.6}
\end{equation*}
$$

Then

$$
\begin{align*}
\Lambda & =V+\left(I_{p}+\frac{1}{\sqrt{n}} V\right) \sqrt{n} \Sigma_{o}^{1 / 2}\left(\hat{\Sigma}^{-1}-\Sigma_{0}^{-1}\right) \Sigma_{0}^{1 / 2} \\
& =V+J_{b} \bar{\xi}^{b}+\frac{1}{\sqrt{n}}\left(V J_{b} \bar{\xi}^{b}+\frac{1}{2} J_{b c} \bar{\xi}^{b} \bar{\xi}^{c}\right)+O_{p}\left(n^{-1}\right) \tag{2.7}
\end{align*}
$$

Using (2.3) and (2.7), we obtain an expansion of T_{h},

$$
\begin{equation*}
T_{h}=\operatorname{tr}\left[\frac{1}{2} \Lambda^{2}+\frac{1}{3!\sqrt{n}} h_{3} \Lambda^{3}+\frac{1}{4!n} h_{4} \Lambda^{4}\right]+O_{p}\left(n^{-3 / 2}\right) \tag{2.8}
\end{equation*}
$$

In order to obtain an explicit expansion of T_{h}, it is necessary to obtain an expansion of $\bar{\xi}^{a}$. The estimates $\hat{\xi}^{a}, a=1, \ldots, q$, satisfy the system of equations

$$
\begin{equation*}
\left[\partial_{u} \rho_{h}(S, \Sigma)\right]_{\wedge}=0, \quad a=1, \ldots, q \tag{2.9}
\end{equation*}
$$

Using (2.3) it can be seen that ξ^{a} 's satisfy

$$
\operatorname{tr}\left[S\left[\partial_{a} \Sigma^{-1}\right]_{\wedge}\left\{S \hat{\Sigma}^{-1}-I_{p}+\frac{1}{2 \sqrt{n}} h_{3}\left(S \hat{\Sigma}^{-1}-I_{p}\right)^{2}\right\}=O_{p}\left(n^{-1}\right)\right.
$$

or equivalently

$$
\begin{equation*}
\operatorname{tr}\left[\left(I_{p}+\frac{1}{\sqrt{n}} V\right) \hat{J}_{a}\left(\Lambda+\frac{1}{2 \sqrt{n}} h_{3} \Lambda^{2}\right)\right]=O_{p}\left(n^{-1}\right) \tag{2.10}
\end{equation*}
$$

Substituting (2.7) and

$$
\begin{equation*}
\hat{J}_{a}=J_{a}+\frac{1}{\sqrt{n}} J_{a b} \xi^{b}+O_{p}\left(n^{-1}\right) \tag{2.11}
\end{equation*}
$$

into (2.10), it is seen that ξ^{a} 's satisfy

$$
\begin{align*}
& \operatorname{tr}\left\{J_{a}\left(V+J_{b} \xi^{b}\right)\right\}+\frac{1}{\sqrt{n}} \operatorname{tr}\left[\tilde{h}_{3} J_{a}\left(V+J_{b} \bar{\xi}^{b}\right)^{2}+J_{a}\left(\frac{1}{2} J_{b c}-J_{b} J_{c}\right) \bar{\xi}^{b} \bar{\xi}^{c}\right. \\
& \left.\quad+J_{a b}\left(V+J_{c} \bar{\xi}^{c}\right) \bar{\xi}^{b}\right]=O_{p}\left(n^{-1}\right), \quad a=1, \ldots, q \tag{2.12}
\end{align*}
$$

where $\tilde{h}_{3}=1+\frac{1}{2} h_{3}$. The solution of $\bar{\xi}^{a}$ in (2.12) can be found in an expanded form

$$
\begin{equation*}
\xi^{a}=e^{a}+\frac{1}{\sqrt{n}} \varepsilon^{a}+O_{p}\left(n^{-1}\right) \tag{2.13}
\end{equation*}
$$

In fact, substituting (2.13) into (2.12) we obtain

$$
\begin{equation*}
e^{a}=g^{a b} s_{b}, \quad \varepsilon^{a}=-\frac{1}{2} g^{a b} \operatorname{tr}\left(J_{b} M+J_{b c} e^{c} W\right) \tag{2.14}
\end{equation*}
$$

where

$$
\begin{equation*}
W=V+J_{b} e^{b}, \quad M=\tilde{h}_{3} W^{2}-J_{b} J_{c} e^{b} e^{c}+\frac{1}{2} J_{b c} e^{b} e^{c} \tag{2.15}
\end{equation*}
$$

Hence, from (2.7), (2.8), and (2.14) we obtain an expansion of T_{h} given by

$$
\begin{equation*}
T_{h}=\frac{1}{2} \operatorname{tr} W^{2}+\frac{1}{\sqrt{n}} T_{1}(V)+\frac{1}{n} T_{2}(V)+O_{p}\left(n^{-3 / 2}\right) \tag{2.16}
\end{equation*}
$$

where

$$
\begin{aligned}
T_{1}(V)= & \frac{1}{2} \operatorname{tr}\left(J_{[a b]} W\right) e^{a} e^{b}-\operatorname{tr}\left(J_{a} J_{b} W\right) e^{a} e^{b}+\operatorname{tr}\left(J_{a} W^{2}\right) e^{a}+\frac{1}{6} h_{3} \operatorname{tr} W^{3}, \\
T_{2}(V)= & \frac{1}{24} h_{4} \operatorname{tr} W^{4}-\frac{1}{4} \tilde{h}_{3}^{2} g^{a b} \operatorname{tr}\left(J_{a} W^{2}\right) \operatorname{tr}\left(J_{b} W^{2}\right) \\
& +\frac{1}{2} \tilde{h}_{3} \operatorname{tr}\left(J_{[a b]} W^{2}\right) e^{a} e^{b}-\tilde{h}_{3} \operatorname{tr}\left(J_{a} J_{b} W^{2}\right) e^{a} e^{b} \\
& +\frac{1}{2} \tilde{h}_{3} g^{a b} \operatorname{tr}\left(J_{b} J_{c} J_{d}\right) \operatorname{tr}\left(J_{a} W^{2}\right) e^{c} e^{d}+\operatorname{tr}\left(J_{a} J_{b} W^{2}\right) e^{a} e^{b} \\
& -\frac{1}{4} g^{a b} \operatorname{tr}\left(J_{[a c]} W\right) \operatorname{tr}\left(J_{[b d]} W\right) e^{c} e^{d}+\frac{1}{2} \operatorname{tr}\left(J_{a} W J_{b} W\right) e^{a} e^{b} \\
& +\frac{1}{8}\left\{\operatorname{tr}\left(J_{[a b]} J_{[c d]}\right)-4 \operatorname{tr}\left(J_{a} J_{b} J_{[c d]}\right)+4 \operatorname{tr}\left(J_{a} J_{b} J_{c} J_{d}\right)\right. \\
& \left.-2 g^{e f} \operatorname{tr}\left(J_{a} J_{b} J_{e}\right) \operatorname{tr}\left(J_{c} J_{d} J_{f}\right)\right\} e^{a} e^{b} e^{c} e^{d} .
\end{aligned}
$$

3. Asymptotic Expansion of the Null Distribution of T_{h}

We shall obtain an asymptotic expansion of the null distribution of T_{h} by formally inverting an asymptotic expansion of the characteristic
function of T_{h}. the validity of the asymptotic expansions obtained by this method has been discussed under certain regularity conditions (see, e.g., Bhattacharya ad Ghosh [6], Chandra and Ghosh [7]). Our interest is how to evaluate the characteristic function of T_{h} up to the order n^{-1}. We can write the characteristic function of T_{h} as

$$
\begin{equation*}
\phi(t)=E\left[\exp \left(i t T_{h}\right)\right]=E\left[\operatorname{etr}\left(\frac{1}{2} \theta W^{2}\right) T(V)\right]+O\left(n^{-3 / 2}\right) \tag{3.1}
\end{equation*}
$$

where $\theta=$ it and $T(V)$ is defined by

$$
\begin{equation*}
T(V)=1+n^{-1 / 2} \theta T_{1}(V)+n^{-1}\left\{\frac{1}{2} \theta^{2} T_{1}(V)^{2}+\theta T_{2}(V)\right\} \tag{3.2}
\end{equation*}
$$

with the expressions T_{1} and T_{2} in (2.16). The pdf of V is expressed as (see, e.g., Siotani, Hayakawa, and Fujikoshi [12, p. 160])

$$
\begin{equation*}
f(V)=f_{0}(V) Q(V)+O\left(n^{-3 / 2}\right) \tag{3.3}
\end{equation*}
$$

where $f_{0}(V)=\left\{\pi^{p(p+1) / 4} 2^{p(p+3) / 4}\right\}^{-1} \operatorname{etr}\left(-\frac{1}{4} V^{2}\right)$,

$$
\begin{align*}
& Q(V)=1+\frac{1}{\sqrt{n}} Q_{1}(V)+\frac{1}{n} Q_{2}(V) \\
& Q_{1}(V)=-\frac{1}{2}(p+1) \operatorname{tr} V+\frac{1}{6} \operatorname{tr} V^{3}, \tag{3.4}\\
& Q_{2}(V)=\frac{1}{2}\left\{Q_{1}(V)\right\}^{2}-\frac{1}{24} p\left(2 p^{2}+3 p-1\right)+\frac{1}{4}(p+1) \operatorname{tr} V^{2}-\frac{1}{8} \operatorname{tr} V^{4} .
\end{align*}
$$

Therefore, we have

$$
\begin{equation*}
\phi(t)=\int a_{p} \operatorname{etr}\left(-\frac{1}{4} V^{2}+\frac{1}{2} \theta W^{2}\right) Q(V) T(V) d V+O\left(n^{-32}\right) \tag{3.5}
\end{equation*}
$$

where $d V=d v_{11} d v_{12} \cdots d v_{p-1, p}$ and $a_{p}=\left\{\pi^{p(p+1) / 4} 2^{p(p+3) / 4}\right\}^{-1}$.
We prepare some lemmas useful for reductions of (3.5). Noting that $G^{-1}=\left(g^{a b}\right)$ exists, let

$$
\begin{equation*}
e^{a}=-\frac{1}{2} g^{a b} \operatorname{tr}\left(J_{b} V\right), \quad U=-J_{a} e^{a}, \quad \text { and } \quad W=V-U \tag{3.6}
\end{equation*}
$$

Further, let

$$
\begin{equation*}
M=\left(\operatorname{vec} *\left(J_{1}\right), \ldots, \text { vec } *\left(J_{q}\right)\right) \tag{3.7}
\end{equation*}
$$

where for any $p \times p$ symmetric matrix $A=\left(a_{i j}\right)$,

$$
\operatorname{vec} *(A)=\left(a_{11} / \sqrt{2}, \ldots, a_{p p} / \sqrt{2}, a_{12}, \ldots, a_{p-1, p}\right)^{\prime}
$$

Noting that vec $*(A)^{\prime} \mathrm{vec} *(B)=\frac{1}{2} \operatorname{tr} A B$, we have the following lemma.

Lemma 3.1. Let $P_{M}=M\left(M^{\prime} M\right)^{-1} M^{\prime}$. Then

$$
\begin{aligned}
& \mathbf{e}=\left(e^{1}, \ldots, e^{q}\right)^{\prime}=\left(M^{\prime} M\right)^{-1} M^{\prime} \operatorname{vec} *(V), \\
& \operatorname{vec} *(U)=P_{M} \operatorname{vec} *(V) \\
& \operatorname{vec} *(W)=\left(I_{p(p+1) / 2}-P_{M}\right) \operatorname{vec} *(V)
\end{aligned}
$$

Lemma 3.2. Let θ be any complex number whose real part is greater than $-\frac{1}{2}$. Then, for a function $h(V)$ of V and a function $g(h, W)$ of U and W,

$$
\begin{align*}
& \int \operatorname{etr}\left(-\frac{1}{4} V^{2}+\frac{1}{2} \theta W^{2}\right) h(V) g(U, W) d V \\
&=(1-2 \theta)^{-r / 2} \int \operatorname{etr}\left(-\frac{1}{4} V^{2}\right) h\left(U+(1-2 \theta)^{-1 / 2} W\right) \\
& \times g\left(U,(1-2 \theta)^{-1 / 2} W\right) d V \tag{3.8}
\end{align*}
$$

where $r=\frac{1}{2} p(p+1)-q$.
Proof. We shall show that (3.8) is obtained by considering the transformation $V \rightarrow \widetilde{V}$ defined by

$$
\begin{equation*}
\tilde{V}=U+(1-2 \theta)^{1 / 2} W \tag{3.9}
\end{equation*}
$$

Since $\operatorname{tr} U W=2 \mathrm{vec} *(U)^{\prime}$ vec $*(W)=0$, we have

$$
\operatorname{tr} \tilde{V}^{2}=\operatorname{tr} V^{2}-2 \theta \operatorname{tr} W^{2}
$$

Using Lemma 3.1 we can write (3.9) as

$$
\operatorname{vec} *(\tilde{V})=\left\{P_{M}+(1-2 \theta)^{1 / 2}\left(I_{p(p+1) / 2}-P_{M}\right)\right\} \text { vec } *(V) .
$$

This implies that the inverse transformation is

$$
\operatorname{vec} *(V)=\left\{P_{M}+(1-2 \theta)^{-1 / 2}\left(I_{p(p+1) / 2}-P_{M}\right)\right\} \text { vec } *(\tilde{V})
$$

or, equivalently,

$$
V=\tilde{U}+(1-2 \theta)^{-1 / 2} \tilde{W}
$$

where $\tilde{U}=\frac{1}{2} J_{a} g^{a b} \operatorname{tr}\left(J_{b} \tilde{V}\right)$ and $\tilde{W}=\tilde{V}-\tilde{U}$. Therefore, the Jacobian of the transformation (3.9) is

$$
\left|P_{M}+(1-2 \theta)^{-1 / 2}\left(I_{p(p+1) / 2}-P_{M}\right)\right|
$$

which equals $(1-2 \theta)^{-r / 2}$, since the characteristic roots of P_{T} are one or zero and $\operatorname{rank}\left(P_{M}\right)=q$. Further, it holds that $U=\tilde{U}$ and $W=$ $(1-2 \theta)^{-1 / 2} \bar{W}, \quad$ since $\quad \operatorname{vec} *(\widetilde{U})=P_{M} \operatorname{vec}(\widetilde{V})=P_{M}\left\{P_{M}+(1-2 \theta)^{1 / 2}\right.$ $\left.\times\left(I_{p(p+1) / 2}-P_{M}\right)\right\} \operatorname{vec} *(V)=\operatorname{vec}(U)$. These complete the proof.

Lemma 3.3. Let V be a $p \times p$ symmetric random matrix with pdf $f_{0}(V)$ in (3.3). Let e^{a}, U, and W be the random variables defined by (3.6). Then
(i) $\mathbf{e}=\left(e^{1}, \ldots, e^{q}\right)^{\prime}$ and W are independent,
(ii) \mathbf{e} is distributied as $N_{q}\left(\mathbf{0}, G^{-1}\right)$,
(iii) vec $*(U)$ and $\mathrm{vec} *(W)$ are independently distributed as $N_{p(p+1) / 2}\left(0, P_{M}\right)$ and $N_{p(p+1) / 2}\left(0, I_{p(p+1) / 2}-P_{M}\right)$, respectively.

Proof. The results are easily obtained by using Lemma 3.1 and the fact that vec $*(V)$ is distributed as $N_{P(P+1) / 2}\left(\mathbf{0}, I_{p(p+1) / 2}\right)$.

Using Lemmas 3.2 and 3.3, we can write the characteristic function (3.5) as

$$
\begin{align*}
\phi(t)= & (1-2 \theta)^{-r / 2} E\left[Q\left(U+(1-2 \theta)^{-1 / 2} W\right)\right. \\
& \left.\times T\left(U+(1-2 \theta)^{-1 / 2} W\right)\right]+O\left(n^{-3 / 2}\right) \tag{3.10}
\end{align*}
$$

Here the expectation in (3.10) is taken with respect to the distribution of U (or e) and W given in Lemma 3.3. After calculation of these expected values, we obtain

$$
\begin{equation*}
\phi(t)=(1-2 \theta)^{-r / 2}\left\{1+\frac{1}{n} \sum_{j=0}^{3} c_{j}(1-2 \theta)^{-j}\right\}+O\left(n^{-3 / 2}\right) \tag{3.11}
\end{equation*}
$$

where the coefficients c_{j} 's are given by

$$
\begin{align*}
c_{0}= & \frac{1}{72}\left\{-3 p\left(2 p^{2}+3 p-1\right)-9 g^{a b c d} K_{a b c d}+g^{a b c d e f} K_{a b c, d e f}\right\} \\
& +\frac{1}{16} g^{a b} g^{c d}\left\{4 K_{[a b] c d}-K_{[a b][c d]}+2 K_{[a c][b d]}\right\}, \\
c_{1}= & -c_{0}+\widetilde{h}_{3}^{2} C-\left(h_{4}-6\right) B+\widetilde{h}_{3} D, \tag{3.12}\\
c_{2}= & -\widetilde{h}_{3}^{2}(A+C)+\left(h_{4}-6\right) B-\widetilde{h}_{3} D, \quad c_{3}=\tilde{h}_{3}^{2} A,
\end{align*}
$$

and the coefficients A, \ldots, D are given by

$$
\begin{align*}
A= & \frac{1}{72}\left\{6 p\left(4 p^{2}+9 p+7\right)-36 q(3 p+4)-9\left(p^{2}+2 p+3\right) g^{a b} K_{a, b}\right. \\
& \left.+6(p+1) g^{a b c d} K_{a b c, d}+18 g^{a b c d} K_{a b c d}-g^{a b c d e f} K_{a b c, d e f}\right\} \\
B= & \frac{1}{48}\left\{p\left(p^{2}+5 p+5\right)-4 q(2 p+3)-2 g^{a b} K_{a, b}+g^{a b c d} K_{u b c u t}\right\} \\
C= & \frac{1}{12}\left\{p\left(4 p^{2}+9 p+7\right)-12 q(p+1)-3 g^{a b} g^{c d} K_{a c b d}\right. \\
& \left.2 g^{a b} g^{c d} g^{e f} K_{a c e, b d f}\right\}, \\
D= & -\frac{1}{6} p\left(p^{2}+3 p+4\right)+q(2 p+3)+\frac{1}{2} g^{a b} K_{a, b}-\frac{1}{4}(p+1) g^{a b} g^{c d} K_{a b c, d} \\
& -\frac{1}{2} g^{a b c d} K_{a b c d}+\frac{1}{36} g^{a b c d e f} K_{a b c, d e f}-\frac{1}{4}(p+1) g^{a h} K_{[a b]} \\
= & \frac{1}{4} g^{a b} g^{c d} K_{[a b] c d} . \tag{3.13}
\end{align*}
$$

Here we use the following notations:

$$
\begin{align*}
g^{a b c d}= & g^{a b} g^{c d}+g^{a c} g^{b d}+g^{a d} g^{b c}, \\
g^{a b c d e f}= & g^{a b} g^{c d e f}+g^{a c} g^{b d e f}+g^{a d} g^{b c e f}+g^{a e} g^{b c d f}+g^{a f} g^{b c d e}, \\
K_{a b c} \ldots= & \operatorname{tr}\left(J_{a} J_{b} J_{c} \cdots\right), \quad K_{[a b] c d}=\operatorname{tr}\left(J_{[a b]} J_{c} J_{d}\right), \\
& K_{a b c, d e f}=K_{a b c} K_{d e f}, \quad \text { and so on. } \tag{3.14}
\end{align*}
$$

The formulae needed for the expectations are given in Appendix. By inverting the characteristic function term by term, we obtain an expansion of the null distribution of T_{h} as in the following theorem.

Theorem 3.1. Let T_{h} be the test statistic given by (1.3) with a function h satisfying A2 and A3. Suppose that a given covariance structure $\Sigma=\Sigma(\xi)$ satisfies A1. Then under the null hypothesis H_{0} the distribution of T_{h} can be expanded for large n as

$$
\begin{equation*}
P\left(T_{h} \leqslant x\right)=G_{r}(x)+\frac{1}{n} \sum_{j=0}^{3} c_{j} G_{r+2 j}(x)+O\left(n^{-3 / 2}\right), \tag{3.15}
\end{equation*}
$$

where $r=p(p+1) / 2-q, G_{k}(\cdot)$ is the distribution function of χ^{2}-variable of k degrees of freedom and the coefficients c_{j} 's are given by (3.12).

We note that all the terms in the coefficients are scalor functions, or independent of the parametrization. Consider a reparametrization of the model Δ_{0} by $\xi=f(\xi)$, where f is a q-dimensional C^{4}-diffeomorphism. Then we can show that $g^{a b} K_{a, b}=\tilde{g}^{a b} \tilde{K}_{a, b}, g^{a b} g^{c d} K_{[a b] c d}=\tilde{g}^{a b} \tilde{g}^{c d} \tilde{K}_{[a b] c d}$, and so on, where the derivatives included in the right sides are evaluated at $\xi=\xi_{0}\left(=f\left(\xi_{0}\right)\right)$.

Theorem 3.2. Under the same assumptions as in Theorem 3.1 it holds that T_{h} has a Bartlett adjustment factor in a sense of (1.4) if and only if the condition (1.5) is satisfied. Further, the Bartlett adjustment factor is given by $m=1+2 c_{0} /(r n)$, i.e., it holds that

$$
\begin{equation*}
P\left(\left(1+\frac{2 c_{0}}{r n}\right) T_{h} \leqslant x\right)=G_{r}(x)+O\left(n^{=3 / 2}\right), \tag{3.16}
\end{equation*}
$$

if the condition (1.5) is satisfied.
Proof. Let $m=1+b(n) / n$, where $b(n)=o(1)$. Then, the characteristic function of $m T_{h}$ can be expanded as

$$
\begin{aligned}
\tilde{\phi}(t)= & \phi(\text { itm })=(1-2 \theta)^{-r / 2}\left[1+\frac{b(n) r}{2 n}\left\{(1-2 \theta)^{-1}-1\right.\right. \\
& \left.\left.+\sum_{j=0}^{3} c_{j}(1-2 \theta)^{-j}\right\}+O\left(n^{-3 / 2}\right)\right]
\end{aligned}
$$

Therefore, it is shown that T_{h} has a Bartlett adjustment factor if and only if

$$
c_{0}=-c_{1}=\frac{1}{2} r b(n), \quad c_{2}=0, \quad c_{3}=0,
$$

which is equivalent to $b(n)=2 c_{0} / r, h_{3}=-2$, and $h_{4}=6$. This completes the proof.

When $h(\lambda)=-\log \lambda+\lambda-1$, condition (1.5) is satisfied. So, the likelihood ratio test has a Bartlett adjustment factor. However, it may be noted that, in general, the adjustment factor c_{0} depends on unknown parameter ξ. In practical use we need to use the adjustment factor \hat{c}_{0} obtained from c_{0} by replacing ξ by ξ. It is interesting to obtain the condition such that c_{0} does not depend on ξ or Δ_{0}.

4. Apllications

In this section, we consider two types of structures: (i) Σ is a linear combination of given matrices and (ii) Σ^{-1} is a linear combination of given matrices. It may be noted that these types of structures include many important structures as special cases (see, Anderson [2,3]). The first structure (i) is

$$
\begin{equation*}
\Sigma=\xi^{1} G_{1}+\xi^{2} G_{2}+\cdots+\xi^{q} G_{q}, \tag{4.1}
\end{equation*}
$$

where G_{a} 's are given $p \times p$ symmetric matrices which are linearly independent, and $\xi^{a}{ }^{\text {a }}$'s are unknown such that Σ is positive definite. For applications of the general results in the preceding section, we have to prepare only two arrays of matrices J_{a} and $J_{a b}$ which are easily calculated as

$$
\begin{equation*}
J_{a}=-\Sigma_{0}^{-1 / 2} G_{a} \Sigma_{0}^{-1 / 2}, \quad a=1, \ldots, q, \tag{4.2}
\end{equation*}
$$

and

$$
\begin{equation*}
J_{a b}=J_{a} J_{b}+J_{b} J_{a}, \quad a, b=1, \ldots, q . \tag{4.3}
\end{equation*}
$$

The second structure (ii) is

$$
\begin{equation*}
\Sigma^{-1}=\xi^{1} G_{1}+\xi^{2} G_{2}+\cdots+\xi^{q} G_{q}, \tag{4.4}
\end{equation*}
$$

where G_{a} 's are given $p \times p$ symmetric matrices which are linearly independent, and ξ^{a} 's are unknown such as to make Σ positive definite. In this case $J_{a b}$'s are all 0 and

$$
\begin{equation*}
J_{a}=-\Sigma_{0}^{1 / 2} G_{a} \Sigma_{0}^{1 / 2}, \quad a=1, \ldots, q . \tag{4.5}
\end{equation*}
$$

The asymptotic expansion formula in this case is much simpler than the one in the first case, (i).

We note that the sphericity structure $\Sigma=\sigma^{2} I_{p}$ can be regarded as special cases of both covariance structures (i) and (ii). Since we can choose an arbitrary parametrization, we use

$$
\begin{equation*}
\Sigma=e^{\xi} I_{p} \tag{4.6}
\end{equation*}
$$

For the likelihood ratio test, the coefficients c_{3} and c_{4} are zero, since $\tilde{h}_{3}=0$ and $h_{4}=6$. In this case we must calculate only two terms $g^{a b c d} K_{a b c d}$ and $g^{a b c d e f} K_{a b c, \text { def }}$ since the terms including $J_{[a b]}$ are all zero. It is easily seen that

$$
\begin{equation*}
g^{a b c d} K_{a b c d}=12 p^{-1} \quad \text { and } \quad g^{a b c d e f} K_{a b c, d e f}=120 p^{-1} \tag{4.7}
\end{equation*}
$$

Therefore, as is well known, we have $c_{0}=-c_{1}=-\frac{1}{24}\left\{2 p^{3}+3 p-1-4 p^{-1}\right\}$.

Appendix

Let V be a $p \times p$ symmetric random matrix normal with pdf $f_{0}(V)$ in (3.3). Let $\mathbf{e}=\left(e^{1}, \ldots, e^{q}\right)^{\prime}$ and W be the random vector and matrix defined by (3.6). Then, it holds that for any $p \times p$ matrices A and B,

$$
\begin{aligned}
& E\left[e^{a} e^{b}\right]=g^{a b}, \quad E\left[e^{a} e^{b} e^{c} e^{d}\right]=g^{a b c d}, \quad E\left[e^{a} e^{b} e^{c} e^{d} e^{e} e^{f}\right]=g^{a b c d e f}, \\
& E[\operatorname{tr}(A W) \operatorname{tr}(B W)]= 2 \operatorname{tr}(A B)-g^{a b} \operatorname{tr}\left(A J_{a}\right) \operatorname{tr}\left(B J_{b}\right), \\
& E[\operatorname{tr}(A W B W)]= \operatorname{tr} A \cdot \operatorname{tr} B+\operatorname{tr}\left(A B^{\prime}\right)-g^{a b} \operatorname{tr}\left(A J_{a} B J_{b}\right), \\
& E\left[\operatorname{tr}\left(A W^{2}\right) \operatorname{tr}\left(B W^{2}\right)\right]= 2(p+2) \operatorname{tr}(A \bar{B})+\left(p^{2}+2 p+3\right) \operatorname{tr} A \cdot \operatorname{tr} B \\
&-(p+1) g^{a b}\left\{\operatorname{tr} A \cdot \operatorname{tr}\left(B J_{a} J_{b}\right)+\operatorname{tr} B \cdot \operatorname{tr}\left(A J_{a} J_{b}\right)\right\} \\
&-4 g^{a b}\left\{\operatorname{tr}\left(A J_{a} \bar{B} J_{b}\right)+\operatorname{tr}\left(\bar{A} \bar{B} J_{a} J_{h}\right)\right\} \\
&+g^{a b c d} \operatorname{tr}\left(A J_{a} J_{b}\right) \operatorname{tr}\left(B J_{c} J_{d}\right), \\
& E\left[\operatorname{tr}(A W) \operatorname{tr}\left(W^{3}\right)\right]= 6(p+1) \operatorname{tr} A-6 g^{a b} \operatorname{tr}\left(\bar{A} J_{a} J_{b}\right) \\
&-3(p+1) g^{a b} \operatorname{tr}\left(A J_{a}\right) K_{b}+g^{a b c d} \operatorname{tr}\left(A J_{a}\right) K_{b c d}, \\
& E\left[\operatorname{tr}\left(W^{4}\right)\right]= p\left(2 p^{2}+5 p+5\right)-4 q(2 p+3)-2 g^{a b} K_{a, b}+g^{a b c d} K_{a b c d}, \\
& E\left[\left\{\operatorname{tr}\left(W^{3}\right)\right\}^{2}\right]= 6 p\left(4 p^{2}+9 p+7\right)-36 q(3 p+4) \\
&-9\left(p^{2}+2 p+3\right) g^{a b} K_{a, b}+6(p+1) g^{a b c d} K_{a b c, d} \\
&+18 g^{a b c d} K_{a b c d}-g^{a b c d e f} K_{a b c, d e f},
\end{aligned}
$$

where $\bar{A}=\frac{1}{2}\left(A+A^{\prime}\right)$. The expectations are obtained by using Lemma 3.3 and the fact that vec $*(V)$ is distributed as $N_{p(p+1) / 2}\left(0, I_{p(p+1) / 2}\right)$. The calculations can be simplified by using the properties such as

$$
E\left[\operatorname{tr} W^{2} \cdot \operatorname{tr} W^{2}\right]=E\left[\operatorname{tr} W^{2} \cdot \operatorname{tr} \tilde{W}^{2}+2 \operatorname{tr} W \tilde{W} \cdot \operatorname{tr} W \tilde{W}\right],
$$

where \tilde{W} is a $p \times p$ symmetric random matrix having the same distribution W and being independent of W.

References

[1] Amari, S. (1982). Differential geometry of curved exponential families-Curvatures and information loss. Ann. Statist. 10 357-387.
[2] Anderson, T. W. (1969). Statistical inference for covariance matrices with linear structure. In Multivariate Analysis-II (P. R. Krishnaiah, Ed.), pp. 55-66. Academic Press, New York.
[3] Anderson, T. W. (1970). Estimation of covariance matrices which are linear combinations or whose inverses are linear combinations of given matrices. In Essays in Probability and Statistics (R.C. Bose and others, Eds.), pp. 1-24. Univ. of North Carolina Press, Chapel Hill.
[4] Anderson, T. W. (1984). An Introduction to Multivariate Analysis, 2nd ed. Wiley, New York.
[5] Banadorff-Nielsen, O. E., and Cox, D. R. (1984). Bartlett adjustments to the likelihood ratio statistic and the distribution of the maximum likelihood estimator. J. Roy. Statist. Soc. Ser. B 46483-495.
[6] Bhattacharya, R. N., and Ghosh, J. K. (1978). On the validity of the formal Edgeworth expansion. Ann. Statist. 6 434-451.
[7] Chandra, T. K., and Ghosh, J. K. (1979). Valid asymptotic expansions for the likelihood ratio statistic and other perturbed chi-square valiables. Sankhyā Ser. A 41 22-47.
[8] Eguchi, S. (1985). A differential geometric approach to statistical inference on the basis of contrast functions. Hiroshima Math. J. 15 341-391.
[9] McCullagh, P., and Cox, D. R. (1986). Invariants and likelihood ratio statistics. Ann. Statist. 14 1419-1430.
[10] Muirhead, R. J. (1982). Aspects of Multivariate Statistical Theory. Wiley, New York.
[11] Nagao, H. (1973). On some test criteria for covariance matrix. Ann. Statist. 1 700-709.
[12] Siotani, M., Hayakawa, T., and Fuikoshi, Y. (1985). Modern Multivariate Statistical Analysis. Amer. Sci., Columbus, Ohio.
[13] Srivastava, J. N. (1966). On testing hypotheses regarding a class of covariance structures. Psychometrika 31 147-164.
[14] Sugiura, N. (1969). Asymptotic expansions of the distributions of the likelihood-ratio criteria for covariance matrix. Ann. Math. Statist. 40 2051-2063.
[15] Swain, A. J. (1975). A class of factor analysis estimation procedures with common asymptotic sampling properties. Psychometrika 40 315-335.

