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1. Introduction

The plant cell wall surrounds every cell in plants and forms a
dynamic physical barrier that protects the cell from microbial
infection. The main constituents of the plant cell wall are cellulose,
hemicelluloses, pectins, and glycoproteins (Carpita and Gibeaut,
1993). Cellulose form crystalline microfibers and provides a scaf-
fold to the cell wall, hemicelluloses crosslink with celluloses to
provide support to the cellulose microfibrils network, while pec-
tins not only crosslink cell wall polymers but also serve as
hydrated extracellular matrix components (Somerville et al.,
2004). The exact composition of the cell wall polysaccharides var-
ies between tissues and can differ in the same tissues during devel-
opmental processes. During pathogen infections, the cell wall
undergoes dramatic structural and chemical changes (Eggert
et al., 2014; Voigt, 2014; Vorwerk et al., 2004), including lignifica-
tion (Vance et al., 1980; Zhao and Dixon, 2014), deposition of cal-
lose (Luna et al., 2011), cell wall protein cross-linking (Bradley
et al,, 1992), accumulation of reactive oxygen species and antimi-
crobial compounds (phytoalexins) (Franke et al., 2005; Lamb and
Dixon, 1997; O'Brien et al., 2012), which can culminate to restrict
the infection and prevent further pathogen progression. Emerging
notion is that the cell wall integrity is sensed by plants and, when
compromised, it can activate intracellular events involving phyto-
hormone signaling cascades that can in turn activate defense
responses (Hamann, 2012). In addition, degradation of cell wall
constituents, particularly by necrotrophic pathogens, are sensed
by a plasmamembrane receptor(s), leading to activation of defense
signaling cascades and eventual mounting of inducible defense
responses (Fry et al., 1993; Monaghan and Zipfel, 2012).

The aim of the present review is to provide a brief summary of
the current state of our understanding regarding the interplay
between plant cell wall integrity and phytohormones in the con-
text of defense against necrotrophic pathogens. Plant pathogens
are often classified into two major classes: necrotrophic and bio-
trophic pathogens. Lifestyle, infection strategy, and host defense
responses vary greatly between the two classes. Necrotrophic
pathogens use a suite of cell wall degrading enzymes and toxins
to kill and macerate the host tissues to feed on; in contrast, bio-
trophic pathogens cause relatively minor damage on the host cell
wall and maintain host viability to acquire nutrients. Some plant
pathogens can manifest biotrophic-like strategies at earlier stages
of infection and then switch to necrotrophic-like strategies at later
stages; such pathogens are referred to as hemibiotrophic (Laluk
and Mengiste, 2010). The cell wall maceration and damages on
the host tissue by necrotrophic phytopathogens causes devastating
economic losses in agriculture (Williamson et al., 2007). In the
Botrytis cinerea genome, the large capacity for plant cell wall deg-
radation was illustrated by the identification of 118 genes unam-
biguously associated with plant cell wall degradation (Amselem
et al,, 2011). Plants defend against necrotrophic phytopathogens
through a complex interplay of phytohormone signaling and
defense responses, and this topic has been extensively reviewed
during the past few years (Cao et al., 2011; De Bruyne et al.,
2014; De Vleesschauwer et al., 2013; Grant and Jones, 2009;
Perez and Goossens, 2013; Pieterse et al., 2012). Thus plant-necro-
trophic pathogens interaction offers unique and valuable insights
into interplays between cell wall stress perception and phytohor-
mone signaling cascades that culminate to determine the necro-
trophic disease outcome. In this review we discuss (i) roles of
phytohormones, namely auxin, cytokinin, brassinosteroids (BR),
and abscisic acid (ABA), in defense against necrotrophic phytopath-
ogens, (ii) how these phytohormones modulate the cell wall prop-
erties, and (iii) how the cell wall can modulate the homeostasis of
these phytohormones signalings and impact pathogen resistance.
Although the main focus is on the interaction between the plant

cell wall and necrotrophic pathogens, evidence based on interac-
tion between plants and biotrophic pathogens are discussed where
relevant. Involvement of jasmonates (JA), ethylene (ET), and sali-
cylic acid (SA) in the cell wall-mediated defense has been exten-
sively discussed in recent years (Hamann, 2012; Malinovsky
et al.,, 2014) and will not be dealt with in this article.

2. Auxin
2.1. Roles of auxin in plant defense against necrotrophic pathogens

In plants, auxin can be found in the forms indole-3-acetic acid
(IAA), 4-chloroindole-3-acetic acid, phenylacetic acid, and indole-
3-butyric acid, however, IAA is the most potent auxin in plants
(Woodward and Bartel, 2005). The negative impact of auxin in
SA-mediated defense against biotrophic pathogens has recently
been demonstrated (Chen et al.,, 2007; Wang et al., 2007) and a
role(s) of auxin in defense against necrotrophic pathogens is also
emerging (Kazan and Manners, 2009; Korolev et al., 2008;
Llorente et al., 2008). Treatment of plants with the auxin transport
inhibitor, 2,3,5-trilodobenzoic acid, has been shown to lead to
increased necrotrophic infection by Plectosphaerella cucumerina
(Llorente et al., 2008). Furthermore, the aux1 mutant, which is
defective in auxin influx, cannot develop induced systemic resis-
tance against Botrytis cinerea (Korolev et al., 2008) and auxin sig-
naling mutants, axrl, axr2 and axr6, are more susceptible
towards B. cinerea and P. cucumerina than the wild type (Korolev
et al,, 2008; Llorente et al., 2008). The altered defense response
of auxin signaling mutants towards B. cinerea and P. cucumerina
does not appear to be due to altered activation of SA and JA/ethyl-
ene defensive pathways as the expression of marker genes PR1 and
PDF1.2 was not altered. These data suggest that auxin signaling is
required for full defense capacity towards B. cinerea and P. cucume-
rina in Arabidopsis. The authors speculated that the changes in dis-
ease outcome in response to exogenous IAA were not directly
caused by the hormone because IAA can induce ethylene and the
IAA-induced resistance was not observed in the ethylene insensi-
tive ein2 mutant (Savatin et al., 2011). In the case of enhanced sus-
ceptibility, it was suggested that conversion of IAA to IAA-Asp is
responsible (Gonzalez-Lamothe et al., 2012). The study showed
that the infection by B. cinerea increases the level of IAA-Asp in
Arabidopsis and exogenous application of IAA-Asp and IAA, but
not the synthetic auxin, 2,4D, enhanced susceptibility to B. cinerea
and Pseudomonas syringae. Conversely the gh3.2 mutant, defective
in an auxin-conjugating enzyme and as a result has a lower level
of IAA-Asp, exhibited enhanced resistance to B. cinerea and P. syrin-
gae. It was found that IAA-Asp promotes the expression of certain
virulence genes in the pathogens during infection of plants
(Gonzalez-Lamothe et al., 2012).

It is noteworthy that B. cinerea can synthesize auxin and secrete
it to the media when grown in vitro (Sharon et al., 2007), but the
exact function of the pathogen-derived IAA during infection and
in interaction with the plant host has not been elucidated. Follow-
ing infection of Arabidopsis by B. cinerea, a number of the host IAA
biosynthetic genes were upregulated (Windram et al., 2012) and
the concentration of IAA increased (Pan et al., 2008), further
supporting involvement of auxin in the response to necrotrophic
pathogens. Interestingly, in a meta-analysis of publically available
transcriptomic data it was found that many auxin signal-transduc-
tion related genes were downregulated upon infection with B. cine-
rea (Llorente et al., 2008). Given the importance of auxin signaling
genes for full defense capacity against this pathogen, it might sug-
gest that B. cinerea is manipulating the host to downregulate auxin
signaling, although at present this is merely a speculation.



M. Ndfisi et al./ Phytochemistry 112 (2015) 63-71 65

2.2. How does auxin impact the cell wall?

Auxin is involved in a number of growth and developmental
processes and has a prominent role in the acid growth during cell
expansion (McQueen-Mason et al., 1992; Woodward and Bartel,
2005; Zhao, 2010). Auxin lowers pH in the apoplast by activating
plasma membrane proton pumps and this is known to activate
expansins which causes the cell wall to relax (McQueen-Mason
et al., 1992). The exact mechanisms by which expansins mediate
creep of cell walls are not well understood (Cosgrove, 1998). They
do not alter the covalent linkages in the wall, instead their loosen-
ing effect is observed only while the wall is in tension (Cosgrove,
1998). Expression of expansins are also induced by ABA (Zhao
et al., 2012), BRs (Sun et al., 2005), gibberellins (Cho and Kende,
1997), cytokinins (Downes and Crowell, 1998), SA, JA and ethylene
(Cho and Cosgrove, 2002).

Auxin influences the expression and activity of cell wall modi-
fying enzymes. Auxin treatment induces expansins and pectin
methylesterase (PME) activity in roots (Bryan and Newcom,
1954; Laskowski et al., 2006; Yoda, 1958). The most abundant
enzymes among extracellular proteins are class Il peroxidases
(E.C1.11.1.7). They are key players in secondary cell wall remodel-
ing and have been proposed to act in the polymerization of
phenolic monomers into lignins and suberins and to mediate the
cross-linking between lignins, polysaccharides and proteins
(Passardi et al., 2004). Two classes of peroxidases were isolated
from the cell wall of pea roots: ionically bound peroxidases (iPOD)
and covalently-bound peroxidases (cPOD), which are hypothesized
to mediate cell elongation and cell wall stiffening, respectively
(Kukavica et al., 2012). Treatment of pea roots with IAA, which
inhibits root elongation, has led to decrease in the iPOD activity
and increase in the cPOD activity (Kukavica et al., 2012). While
in Catharanthus roseus cell suspension cultures the addition of
the synthetic auxin 2,4D, which is required for cell division and
growth, reduced the POD activity and enhanced the iPOD activity
(Limam et al., 1998).

Pectins are highly methyl-esterified during biosynthesis but
after secretion into the cell wall they are de-esterified by PMEs
(Ridley et al., 2001). De-esterification makes pectin more suscepti-
ble to degradation by pathogen-secreted pectic enzymes (Limberg
et al.,, 2000; Lionetti et al., 2007; Raiola et al.,, 2011), such as
polygalacturonases (PGs) that can release elicitor active oligogalac-
turonides (OGs) as detailed below (Ferrari et al, 2013). A link
between auxin signaling and the PME activity modulating cell wall
physical properties at the shoot apical meristem was investigated
with atomic force microscopy (Braybrook and Peaucelle, 2013).
The study showed that local application of IAA led to demethyla-
tion of pectin and tissue softening, which in turn affected organ
formation.

The Arabidopsis WALLS ARE THIN 1 (wat1) mutant, which shows
enhanced resistance to Ralstonia solanacearum and other vascular
pathogens, has reduced secondary wall deposition in fibers and
reduced auxin content (Denance et al., 2012; Ranocha et al,
2010). The gene was found to encode an auxin vacuolar trans-
porter, which suggests that auxin has a role in promoting xylem
fiber development (Ranocha et al., 2013). However, it seems that
defense responses in wat1 are influenced by SA and not auxin, as
the watl mutant had a higher level of SA in roots compared to
the wild type and the enhanced resistance could be circumvented
by introduction of NahG, the bacterial SA-degrading salicylate
hydroxylase gene (Denance et al., 2012). In addition, it was shown
that the AUXIN BINDING PROTEIN 1 (ABP1) modulates the expres-
sion of cell wall related genes and remodeling of hemicellulose
xyloglucan side chain structure (Paque et al., 2014). These studies
highlight interplays between auxin signaling, cell wall biosynthesis
and remodeling.

2.3. Interplay between cell wall, auxin, and resistance to necrotrophic
pathogens

Necrotrophic pathogens secrete polygalacturonases and
degrade the pectic homogalacturonan, which results in release of
short fragments of OGs, effective in eliciting defense responses
and thus are known as a damage associated molecular pattern
(DAMP) (Cervone et al., 1989). OGs are also generated by the action
of endogenous polygalacturonases induced by mechanical damage
(Orozco-Cardenas and Ryan, 1999). These OGs can induce a
number of defense responses in plants such as accumulation of
phytoalexins (Davis et al, 1986), glucanase and chitinase
(Broekaert and Pneumas, 1988; Davis and Hahlbrock, 1987), depo-
sition of callose, production of reactive oxygen species
(Bellincampi et al., 2000; Galletti et al., 2008), and nitric oxide
(Rasul et al, 2012). Notably, exogenous application of OGs
enhances resistance to B. cinerea in leaves of grape, tobacco and
Arabidopsis (Aziz et al., 2004; Ferrari et al., 2007, 2008) and trans-
genic plants expressing a fungal PG exhibit constitutive activation
of defense responses and enhanced resistance to B. cinerea (Ferrari
et al.,, 2008). The optimal size of OGs for induction of defense
responses is a degree of polymerization between 10 and 15
whereas OGs with a degree of polymerization between 3 and 6
cause developmental impact (Ferrari et al., 2013). Interestingly,
the actions of OGs are antagonized by auxin and vice versa. It
was shown that OGs inhibit auxin-induced elongation in pea stem
segments (Branca et al., 1988), rooting of tobacco explants
(Bellincampi et al., 1993), and IAA-induced DR5 expression and
up-regulation of early IAA response genes (Savatin et al., 2011).
Conversely, enhanced resistance to B. cinerea of tobacco plants
expressing a fungal endo-PG, which is likely mediated by constitu-
tive generation of OGs, could be abolished by auxin (Ferrari et al.,
2008). However, exogenous application of OGs does not alter the
level of auxins, thus the mechanisms of OG-auxin antagonisms
are still unknown (Savatin et al., 2011; Ferrari et al., 2013).

Plants express PG inhibiting proteins (PGIPs) that slow down
the catalytic activity of pathogen$ PGs and limit the degradation
of homogalacturonan, leading to generation of the elicitor-active
OGs (Ferrari et al, 2013). Plants overexpressing PGIPs show
enhanced resistance to B. cinerea (Agiiero et al., 2005; Ferrari
et al., 2003; Joubert et al., 2006; Powell et al., 2000). Interestingly,
tobacco plants (Nicotiana tabacum SR1) overexpressing a grapevine
PGIP (Vvpgipl) has an increased level of IAA and a slightly
decreased level of SA (Alexandersson et al., 2011). Microarray stud-
ies revealed that 219 probes showed downregulation whereas 58
probes showed upregulation in the Vvpgipl overexpressing line
as compared to the wild type, with marked changes in the expres-
sion of genes in the following categories: cell wall biogenesis and
organization, carbon metabolism, photosynthesis and stress
defense signaling (Alexandersson et al., 2011). The transgenic plant
had a higher content of lignins and a decreased level of xyloglucan
endotransglycosylase activity. A detailed cell wall analysis by
carbohydrate microarray polymer profiling revealed that overex-
pression of Vvpgip1 leads to constitutive compositional changes
in the leaf arabinoxyloglucan network (Nguema-Ona et al., 2013).
These data suggest that PGIP-induced initial changes in the cell
wall lead to altered auxin accumulation and altered stress
responses, leading to additional structural and compositional
changes in the cell wall.

As described above, auxin modulates the expression of cell-wall
modifying enzymes including peroxidases and PMEs. Arabidopsis
PME3 is induced upon fungal infection and is necessary for initial
colonization by necrotrophic fungi (Raiola et al., 2011). Importance
of the pectin methylesterification status in plant resistance was
supported by a recent study that showed the level of pectin
methylation decreased upon infection by P. syringae or Alternaria
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brassicicola due to the action of PMEs and several pme mutants had
enhanced susceptibility to P. syringae whereas resistance to A. bras-
sicicola was unchanged (Bethke et al., 2014). Aside from PMEs,
plant genomes also encode PME inhibiting proteins (PMEIs) to reg-
ulate pectin methylesterification. For instance, the Arabidopsis
genome encodes two PMEIs, AtPMEI-1 and AtPMEI-2 (Raiola et al.,
2004) and constitutive expression of AtPMEI-1 or AtPMEI-2 in Ara-
bidopsis increases pectin methylesterification and enhanced resis-
tance towards B. cinerea, possibly through decreased ability of the
fungus to degrade the plant cell wall (Lionetti et al., 2007).

Auxin exerts an impact on the action of nitric oxide (NO). NO is
an important signal in plants, it is generated in response to biotic
and abiotic stresses and is emerging as an important player in
plant-pathogen interaction and signaling (Crawford and Guo,
2005; Mur et al., 2013). Notably, NO has been implicated in the
regulation of the cell wall structure and composition (Pacoda
et al., 2004). High and low NO concentration inhibit or promote
cellulose synthesis, respectively (Correa-Aragunde et al., 2008),
and NO application has been found to alleviate cadmium and alu-
minum stress by altering cell wall composition (Xiong et al., 2009;
Zhang et al., 2011). Generation and signaling of NO is modulated by
phytohormones; for instance, a synergistic effect between NO and
auxin have been observed in a number of developmental and mor-
phological plant responses whereas the interaction between NO
and cytokinin is complex and the outcome seems to depend on tis-
sue type and plant species (Freschi, 2013).

3. Cytokinin

In plants, cytokinin can be found in the form of kinetin, zeatin
and 6-benzylaminopurine and is involved in cell growth and differ-
entiation (Hwang et al., 2012). Recently, cytokinins have been
shown to be involved in nutrient assimilation and defense against
pathogens.

3.1. How does cytokinin impact disease resistance?

The fungal pathogen Plasmodiophora brassicae, the causal agent
of the Brassicaceae clubroot disease, has been shown to downregu-
late the cytokinin degradation pathway during infection of Arabid-
opsis, and transgenic overexpression of cytokinin oxidases/
dehydrogenases suppressed clubroot development, indicating the
importance of cytokinin in the pathogenicity of P. brassicae
(Siemens et al., 2006). Transgenic plants with increased cytokinin
levels exhibited delayed leaf senescence and enhanced resistance
to B. cinerea infection in tomato (Swartzberg et al., 2008) and
enhanced resistance to A. brassicicola KACC40036 in Arabidopsis
(Choi et al., 2010), whereas in tobacco, increased cytokinin levels
had no effect on resistance to Schlerotinia schlerotiorum and even
enhanced susceptibility to B. cinerea (Grosskinsky et al., 2011). It
appears that the role of cytokinin varies in different pathosystems,
reflecting the outcome of coevolutionary interactions between
pathogens and their host plants.

3.2. How does cytokinin impact the cell wall?

Application of cytokinin to plants or plant cell cultures induces
expression of many cell wall-related genes such as cell wall loosen-
ing expansins (13 expansins, 4 laccases, 6 pectin-modifying
enzymes) as well as reactive oxygen species (ROS) producers and
scavengers and antioxidants (Brenner et al., 2012). One of the most
frequently listed genes in a meta-analysis of cytokinin-induced
genes was EXPANSIN 1 (Brenner et al., 2012). Twelve other expan-
sin genes were found in at least two microarray studies along with
18 other cell wall-related genes (Brenner et al., 2012). Previously,

cytokinin was found to regulate an expansin in soy bean
(Downes and Crowell, 1998) and a cytokinin-induced change of
wall extensibility has also been directly measured (Thomas et al.,
1981), whereas a negative influence of cytokinin signaling on cell
wall thickness has been reported (Jung et al., 2008). Cytokinin-
induced stress genes are suppressed by auxin secreted from
Agrobacterium tumefaciens (Lee et al., 2009), suggesting that
pathogen-derived auxin can specifically suppresses the cytoki-
nin-induced defense response during infection (Choi et al., 2011).

To date, little is known about how alterations in the cell wall
affect the cytokinin level in plants. OGs promote cytokinin (benzy-
ladenine, BA)-induced vegetative shoot formation (Falasca et al.,
2008). The level of cytokinin was enhanced in alfalfa mutants with
lower lignin and constitutive defense responses, but also the levels
of SA and JA were enhanced, pointing to an overall deregulation of
hormone pathways in this mutants (Gallego-Giraldo et al., 2011).

4. Brassinosteroids

Brassinosteroids (BRs) comprise a class of functionally related
steroid hormones where more than 40 variants have been isolated
(Khripach et al, 2000). BRs are important for several plant
processes such as stimulation of seedling development, second
organogenesis and reproductive processes (Ryu and Hwang,
2013). They have been used as growth hormones in fields for many
years and several encouraging outcomes have been reported,
including improvement of crop yield and quality, resistance to
environmental stresses, and in phytoremediation owing to the
ability to interfere with plant ion homeostasis (Khripach et al.,
2000).

4.1. How do BRs impact disease resistance?

BRs can interfere with pathogen responses mediated by JA, eth-
ylene, SA, auxin, ABA, cytokinin, and gibberellic acid (Choudhary
et al., 2012; Nakashita et al., 2003). During virus infection, BR pre-
cursors were found to accumulate (Nakashita et al., 2003). Effects
of brassinolide, the most biologically active BR, have been studied
on defense responses in tobacco and rice during infection with
tobacco mosaic virus, P. syringae pv. tabaci and powdery mildew
(Nakashita et al., 2003). Exogenous application of brassinolide
increased plant resistance but did not affect the accumulation of
the PR1, PR2 and PR5 transcripts, indicating that the effect was
not mediated by SA signaling. Similarly, exogenous application of
brassinolide was found to increase the resistance of cotton towards
the necrotrophic fungal pathogen Verticillium dahlia (Gao et al.,
2013) as well as reducing the virulence of Xanthomonas oryzae
pv. oryzae and Magnaporthe grisea in rice, demonstrating a protec-
tive effect of BRs extends to monocot (Nakashita et al., 2003).

A higher resistance against B. cinerea was observed in Arabidop-
sis plants overexpressing 3-hydroxy-3-methylglutaryl-CoA
synthase, an enzyme involved in the cytosolic mevalonate pathway
that is important for providing precursors of several isoprenoids
including BRs (Wang et al., 2012). The transgenic overexpression
line exhibited a higher sterol content in leaves, higher expression
of the last enzyme in the BR biosynthetic pathway (BR60X2),
higher resistance to B. cinerea, and reduced occurrence of cell death
induced by hydrogen peroxide. The authors hypothesized that the
higher resistance was due to activation of SA signaling pathway
since SA-dependent genes (PR1, PR2 and PR5) were upregulated.
JA responsible genes were concomitantly upregulated, suggesting
that BR-induced protection may also be mediated by JA. Notably,
when the negative regulators of BR signaling, GBL4-3-3c and
GBL4-3-3d, were downregulated by virus-induced gene silencing,
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the transgenic cotton were found to be more resistant to the path-
ogen, underpinning the importance of BRs in plant resistance.

Direct alteration of MAMP-triggered immunity (MTI) by BRs has
been investigated. Briefly, in the brassinosteroid perception and
signaling pathway, BRs bind the BR receptor BRI1 (BRASSINOST-
ROID INSENSITIVE 1) in the plasmamembrane (Kinoshita et al.,
2005) and trigger dissociation of BRI1-inhibitory protein (BKI1),
allowing the complex formation with BAK1 (BRI1-ASSOCIATED
RECEPTOR KINASE1), a coreceptor of BRI1 (Hao et al, 2013;
Wang et al., 2008). Phosphorylation between BRI1 and BAK1 fully
activates the BRI1 kinase activity, which, through a signal trans-
duction cascade, ultimately leads to activation of two transcrip-
tional factors, BES1 and BZR1, that control the expression of BR
responsible genes (Wang et al., 2008). Apart from the BR signaling
pathway, BAK1 is also involved in MTI through protein complex
formation with FLS2 (FLAGELLIN-SENSING 2) and BIK1 (BOTRY-
TIS-INDUCED KINASE 1) (Belkhadir et al., 2012). It was shown that
overexpression of BRI1 in Arabidopsis can inhibit MTI by titrating
BAK1 away from forming the complex with FLS2 and BIK1. How-
ever, increased signaling in the BR pathway triggered by the hyper-
active allele BRI1*" did not suppress MTI, rather it enhanced MTI
as compared to the wild type plants. Interestingly, the BRI1°"¢
enhancement of MTI defenses was BAK1 dependent, suggesting
that BAK1 may mediate the positive effect of BR signaling on plant
immunity (Belkhadir et al., 2012). The exact molecular mechanism
by which BR signaling enhances MTI in a BAK1 dependent manner
remains to be elucidated. To add more complexity to the interac-
tion between BR signaling and MT], it was found that brassinolide
treatment hindered MTI in a loss of function bak1-4 background
(Albrecht et al., 2012). This outcome suggested that modulation
of MTI caused by BR signaling may also be BAK1-independent or
further downstream in the pathway.

4.2. How do BRs impact the cell wall?

BRs have been shown to exert notable impacts on cell wall
properties. Transcriptomic analysis revealed that, in Arabidopsis,
BR treatment upregulated a variety of genes involved in cell wall
elongation and remodeling including xyloglucan endotransglycos-
ylases, PMEs, putative expansins, putative pectin acetylesterases,
endo-xylanases and others (Goda et al., 2002). Together with other
microarray data (Mussig et al., 2002; Yin et al., 2002), these discov-
eries underpin the impacts of BRs on plant cell walls. It was found
that BR-deficient or BR-perception deficient mutants contain less
cellulose than the wild type (Xie et al., 2011). The expression of
CESA genes, especially those involved in the primary cell wall syn-
thesis, was reduced in det2-1 and bri1-301, which was restored by
application of BRs. Chromatin immunoprecipitation experiments
showed that the BR-activated transcription factor BES1 can
associate with upstream elements of the CESA genes involved in
the primary cell wall synthesis. Furthermore, it was found that
BIL2, a protein involved in BR signaling and BR gene expression,
is required for cell elongation, and overexpression of BIL2 resulted
in cell elongation even in the presence of BR biosynthesis
inhibitors, suggesting that BIL2 functions downstream of BR
reception (Bethke et al., 2014). BIL2 was found to be a
mitochondria-localized Dan/Heat shock protein 40 (DnaJ/Hsp40)
family protein involved in protein folding (Bekh-Ochir et al,,
2013). It is speculated that BIL2 is required for proper folding of
ATPase in mitochondria, while how this impacts the cell wall gene
expression remains unknown.

4.3. How does altering cell wall impact BRs and defense capacity?

A direct impact of cell wall modification in BR synthesis or sig-
naling is emerging (Wolf et al., 2012). It was recently found that

alteration of Arabidopsis cell wall architecture by increasing the
pectin methylesterification state either genetically (PMEI5 ectopic
overexpression) or pharmacologically results in a number of
growth phenotypes including cell swelling, root waving and
twisted organs. Through a forward genetic screen, Hofte and col-
leagues identified that a mutation in the brassinosteroid receptor
(BRI1) was responsible for suppressing the growth phenotypes
caused by the altered cell wall methylesterification. As the pectin
methylesterification level reached abnormally high levels, the stiff-
ness of the cell wall increased due to the higher Ca?* cross-links
and root tissue exhibited loss of cell wall integrity. The assumption
is that this triggers the BR signaling system leading to the BR-med-
iated expression of cell wall loosening genes and at least two PMEs
in order to re-establish optimal cell wall architecture (Wolf et al.,
2012).

Current evidence clearly indicates that the pectin methylesteri-
fication status is linked to the intracellular BR signaling cascade
and that BR signaling homeostasis has a profound impact on cell
wall biosynthesis, e.g. cellulose, and resistance against pathogens
in a range of host-pathogen systems. Given the existing data, it is
to be expected that the PMEI5 overexpressing Arabidopsis is to
exhibit a higher resistance against at least B. cinerea, because of
lower digestibility of the cell wall and elevation of the BR signaling,
and possibly, increased cellulose deposition that may hinder the
pathogen progress, although this assumption remains to be tested.

5. Abscisic acid (ABA)

Abscisic acid (ABA) is a plant hormone that plays important
roles in regulating drought, cold stress and osmotic stress
responses. Moreover, it plays a role in promoting seed dormancy
while antagonizing the growth-inducing effects of phytohormones
like gibberellin (Ng et al., 2014). As described below, several stud-
ies have demonstrated a negative role of ABA in plant resistance
against necrotrophic pathogens. As in the case of BRs, ABA inter-
feres with the other hormone signaling pathways.

5.1. How does ABA impact disease resistance?

Currently roles of ABA in plant resistance towards pathogens
are better understood in the context of biotrophic interactions than
necrotrophic interactions. ABA can promote resistance through its
ability to induce stomata closure, thus interfering with pathogen
entry (Lopez et al., 2008). On the other hand, ABA may promote
pathogen virulence as increasing ABA signaling or exogenous
ABA application enhanced P. syringae growth and vice versa (de
Torres-Zabala et al., 2007). It was suggested that P. syringae effec-
tors are able to modulate ABA signaling, leading to a favorable
environment for infection. Callose deposition is a hallmark of
inducible cell wall fortification upon pathogen infection
(Huckelhoven, 2007; Ton and Mauch-Mani, 2004). ABA promotes
the callose formation through repression of a callase gene, PR2.
Overexpression of PR2 in the pad3 mutant background of
Arabidopsis reduced the callose content and further enhanced
susceptibility towards B. cinerea, A. brassica, and hemibiotrophic
Leptosphaeria maculans as compared to the pad3 mutant (Oide
et al., 2013). The effect of ABA on plant interaction against necro-
trophic pathogens appears to be complex. Upon ABA treatment
enhanced resistance of Arabidopsis was observed against the nec-
rotrophic pathogens A. brassicicola and P. cucumerina (Ton and
Mauch-Mani, 2004). It was suggested that the increased resistance
was mediated by enhanced callose production. While sitiens, an
ABA deficient mutant of tomato, is more resistant to B. cinerea
(Asselbergh et al.,, 2007; Audenaert et al., 2002; Curvers et al.,
2010) and exogenous application of ABA increased susceptibility
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towards the fungus (Audenaert et al., 2002). It was suggested that
the more permeable cell wall and cutin layer in sitiens may lead to
faster diffusion of DAMPs or MAMPs and faster defense activation
(Curvers et al., 2010). The same study also showed the differential
methylesterification state of the cell wall in sitiens as compared to
the wild type and that incubation of B. cinerea inoculation droplets
on the leaves of the wild type and sitiens led to the release of oligo-
saccharides with different profiles, which may suggest that sitiens
generates more bioactive OGs. In Arabidopsis, interplay between
ABA, cuticle permeability and ROS has been also found to affect
resistance against B. cinerea (L'Haridon et al., 2011). ABA biosyn-
thesis mutants (aba2 and aba3) were more resistant to B. cinereaq,
had higher cuticle permeability as well as higher ROS accumula-
tion. Higher resistance against B. cinerea was also observed in
cuticular mutants with enhanced surface permeability (L'Haridon
et al., 2011). This outcome was explained as higher cuticle perme-
ability in ABA mutants facilitates sensing of elicitors and therefore
triggers faster ROS production.

Arabidopsis mutants defective in ABA synthesis or signaling
were more resistant to the necrotrophic pathogen P. cucumerina
but were more susceptible to R. solanacearum (Hernandez-
Blanco et al., 2007; Sanchez-Vallet et al., 2012). Disrupting ABA
synthesis or signaling has led to upregulation of defense marker
genes (PDF1.2, PR1, PR4, and ORA59). Moreover, genetic upregula-
tion of ABA signaling in the triple hab1-1 abil-2 abi2-2 mutant
increased susceptibility of Arabidopsis towards P. cucumerina
(Rubio et al.,, 2009). Interestingly, no correlation between the
ABA mutants and ROS levels were observed (Sanchez-Vallet
et al., 2012). The increased resistance to P. cucumerina was partly
mediated by ethylene, SA and JA since mutations in these
signaling pathways reverted the resistant phenotype of the ABA
biosynthetic mutant.

5.2. How does ABA impact the cell wall?

A number of reports have described the roles of ABA in alter-
ing cell wall properties and compositions. ABA treatment was
shown to induce expression of the cell wall loosening gene
EXPANSIN-LIKE A2 in Arabidopsis (Abugamar et al., 2013). Muta-
tions in this gene increased resistance to B. cinerea and oxidative
stress, suggesting a link between ABA, the cell wall, and resis-
tance towards B. cinerea in Arabidopsis (Abugamar et al., 2013).
Exogenously applied ABA induced enhanced accumulation of pec-
tic arabinan in root meristem of Arabidopsis (Talboys et al., 2011).
Because arabinan is involved in the cell-to-cell adhesion (Iwai
et al, 2001), mechanical property of the cell wall (Ulvskov
et al., 2005; Verhertbruggen et al., 2013), and that endo-arabinan-
ase activity is required for the full virulence of B. cinerea (Nafisi
et al., 2014), it is plausible that ABA-mediated change in arabinan
too may have a role in influence the outcome of necrotrophic
infection. ABA deficient tomato mutant, sitiens, exhibits several
notable changes related to the cell wall: an elevated crosslinking
in the cell wall as a result of a faster induction and enhanced
level of ROS burst during infection with B. cinerea, and altered
expression of cell wall modifications genes including pectin ester-
ase and xyloglucan endotransglycosylase (Asselbergh et al., 2007).
In addition, Curvers et al. (2010) observed that the sitiens has an
abnormal cuticle and cell wall deposition and its leaves are more
resistant to pectinase treatment. Sanchez-Vallet et al. (2012)
found that the abal-6 mutant of Arabidopsis with impaired ABA
biosynthesis displays an alteration in cell wall structure and com-
position by Fourier transform infrared spectroscopy. Interestingly,
however, mutants with disrupted ABA signaling did not display
the same differences in cell wall structure or composition. In con-
trast, an ABA signaling mutant, abi8, identified through a genetic
screening exhibited stunted growth and was found to be allelic to

kobito1 (Pagant et al., 2002) and elongation defective 1 (Cheng
et al., 2000), which are impaired in cellulose synthesis cell elon-
gation, respectively (Brocard-Gifford et al., 2004).

5.3. How does altering cell wall impact ABA and pathogen resistance?

In a forward genetic screen, a mutant of Arabidopsis, leaf wilting
2 (lew2) that exhibits higher drought and salt tolerance than the
wild type was identified (Chen et al., 2005). lew2 was found to be
allelic to irx1/cesA8 (IRREGULAR XYLEMI1) and retained the
collapsed xylems phenotype characteristics of irx mutants
(Turner and Somerville, 1997). These irx mutants are defective in
secondary cell wall biosynthesis and exhibit collapsed xylems
because their thinner cell walls are not able to cope with the neg-
ative pressure generated by water transport in the xylem. lew2/
irx1/cesA8 was shown to overaccumulate ABA and soluble sugars,
which permitted higher fitness with respect to abiotic stresses.
Despite these observations, it is unclear whether the increased
ABA accumulation is due to a direct effect of cell wall alteration
or due to the triggering of drought stress responses caused by
the impaired water transport though the xylem.

A link between the secondary cell wall cellulose synthesis,
ABA, and pathogen resistance has been identified (Hernandez-
Blanco et al., 2007). Mutations in the secondary cell wall cellu-
lose synthases, CESA4/IRX5, CESA7/IRX3, and CESAS8/IRX1,
resulted in increased resistance against R. solanacearum and P.
cucumerina. Transcriptomics analysis of the mutants indicated
upregulation of several genes involved in ABA signaling as well
as defense-related genes (e.g. antimicrobial compounds and PR
proteins). Mutants defective in ABA signaling (abil-1, abi2-1)
and biosynthesis (abal-6) showed increased susceptibility to R.
solanacearum and enhanced resistance to P. cucumerina. It was
proposed that the increased resistance observed for the cesA4/
irx4, cesA7/irx3, and cesAl/irx8/lew2 mutants against the patho-
gens was due to possible accumulation of the secondary metab-
olites glucosinolates and camalexin based on the transcriptional
upregulation of CYP79B2 and CYP79B3 involved in the biosynthe-
sis of these compounds.

6. Conclusions

Based on the mounting evidence it is unmistakable that phy-
tohormones and cell wall integrity are highly interconnected
and control plant growth and development. Degradation of
plant cell walls by necrotrophic phytopathogens is sensed by
the host through DAMP recognition and likely through the cell
wall integrity sensory systems. These events lead to activation
of signaling cascades involving phytohormones crosstalks and
consequently activate expression of defense related genes.
Moreover, phytohormones exert a considerable impact on the
cell wall composition and structure, altering not only the ability
of necrotrophic phytopathogens to digest the cell wall but also
the capacity of the cell wall to generate DAMP and possibly to
activate the cell wall integrity sensory systems. These processes
are highly integrated and likely to form a cell wall-phytohor-
mone homeostasis that plays an important role in plant-necro-
trophic pathogen interaction.
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