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Jinyan Du,3 Julhash U. Kazi,5 Frédéric Luciano,6 Lars Rönnstrand,5 Andrew L. Kung,7 Jon C. Aster,8 Ilene Galinsky,9

Richard M. Stone,9 Daniel J. DeAngelo,9 Michael T. Hemann,2 and Kimberly Stegmaier1,3,*
1Department of Pediatric Oncology, Dana-Farber Cancer Institute and Boston Children’s Hospital, Harvard Medical School, Boston,
MA 02215, USA
2Koch Institute for Integrative Cancer Research at Massachusetts Institute of Technology, Massachusetts Institute of Technology,

Cambridge, MA 02139, USA
3The Broad Institute of Harvard University and Massachusetts Institute of Technology, Cambridge, MA 02139, USA
4Bioinformatics Graduate Program, Boston University, Boston, MA 02215, USA
5Experimental Clinical Chemistry, Department of Laboratory Medicine, Lund University, Medicon Village, 221 00 Lund, Sweden
6C3M/ INSERM U1065 Team Cell Death, Differentiation, Inflammation and Cancer, 06204 Nice, France
7Pediatric Department, Columbia University Medical Center, New York, NY 10032, USA
8Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02215, USA
9Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA

*Correspondence: kimberly_stegmaier@dfci.harvard.edu
http://dx.doi.org/10.1016/j.ccr.2014.01.022
SUMMARY
Cooperative dependencies between mutant oncoproteins and wild-type proteins are critical in cancer path-
ogenesis and therapy resistance. Although spleen tyrosine kinase (SYK) has been implicated in hematologic
malignancies, it is rarely mutated. We used kinase activity profiling to identify collaborators of SYK in acute
myeloid leukemia (AML) and determined that FMS-like tyrosine kinase 3 (FLT3) is transactivated by SYK via
direct binding. Highly activated SYK is predominantly found in FLT3-ITD positive AML and cooperates with
FLT3-ITD to activate MYC transcriptional programs. FLT3-ITD AML cells are more vulnerable to SYK
suppression than FLT3 wild-type counterparts. In a FLT3-ITD in vivo model, SYK is indispensable for myelo-
proliferative disease (MPD) development, and SYK overexpression promotes overt transformation to AML
and resistance to FLT3-ITD-targeted therapy.
INTRODUCTION

Sequencing of acute myeloid leukemia (AML) genomes has

revealed a heterogeneous disease characterized by mutations

altering proliferation, differentiation programs, and the epige-

netic landscape, resulting in an accumulation of immature

hematopoietic cells (Ley et al., 2013). Though these mutations

can result in exquisite dependency on mutant proteins, they

can also lead to aberrant dependency on nonmutant proteins.

For example, the histone 3 lysine 79 (H3K79) methyltransferase

DOT1L has been implicated in the development of leukemias

bearing translocations of the Mixed Lineage Leukemia (MLL)

gene, although DOT1L itself is not mutated. DOT1L small-mole-
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cule inhibitors have been demonstrated in preclinical studies to

selectively kill MLL-rearranged leukemia (Bernt et al., 2011;

Daigle et al., 2011). Similarly, a small hairpin RNA (shRNA) screen

targeting known chromatin regulators identified the transcrip-

tional regulator BET bromodomain BRD4 as an epigenetic

dependency in an MLL-AF9/NrasG12D AML mouse model (Zuber

et al., 2011). By recruiting the MLL-fusions into a transcription

elongation complex, BET bromodomain proteins appear to be

critical mediators for leukemogenesis involving MLL-fusion

proteins (Deshpande et al., 2012).

We previously used chemical genomic, proteomic, and shRNA

screening to identify SYK as a target in AML (Hahn et al., 2009).

SYK-targeting shRNA induced AML cell differentiation in vitro,
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and SYK inhibition was shown to have anti-leukemia activity

in AML mouse models. SYK is a cytoplasmic tyrosine kinase

critical in normal B cell development and hematopoietic

signaling (Mócsai et al., 2010) that was recently found to be

aberrantly activated through translocations in T cell lymphoma

(ITK-SYK) (Pechloff et al., 2010) and myelodysplastic syndrome

(MDS) (TEL-SYK) (Kuno et al., 2001). Thus far, however, next-

generation sequencing efforts have failed to identify frequent

mutational events in SYK in AML or in B cell malignancies, where

SYK dependency has also been demonstrated. In B cell malig-

nancies, signaling from the B cell receptor (BCR) through SYK

has been implicated in the pathogenesis of disease, and small

molecules inhibiting SYK have had promising early clinical activ-

ity (Friedberg et al., 2010). In AML, however, little is known about

the cooperative interactions of SYK in its contribution to the

disease.

RESULTS

FLT3 Is a Target of SYK in AML
To identify SYK interactors in AML, we used a bead-based

screening technology to profile the phosphorylation state of 80

receptor and nonreceptor tyrosine kinases, 18 tyrosine kinase

signaling adaptors/regulators, and 7 tyrosine kinase signaling-

linked serine/threonine kinases in the presence of activated

SYK. We generated four AML cell lines stably expressing a

SYK-TEL construct encoding a fusion protein with a constitu-

tively active SYK kinase due to the TEL moiety that promotes

homodimerization and intrinsic activation. Kinome activity in

the presence of activated SYK is depicted in Figure 1A. SYK

and two of its reported targets, PIK3R1 (Moon et al., 2005) and

SHC1 (Umehara et al., 1998), as well as ZAP70, a member of

the SYK kinase family possibly transphosphorylated by constitu-

tively active SYK, were identified among the most hyper-

activated proteins. Surprisingly, FLT3 receptor and two other

platelet-derived growth factor receptor (PDGFR) family recep-

tors, KIT and PDGFRa, also scored as top hits. Kinome activity

profiling in 12 AML cell lines was next used to establish the

tyrosine kinases or tyrosine kinase-regulated proteins whose

activation was most highly correlated (r R 0.5) with basal

SYK activation (Figure 1B). As in the prior screen, ZAP70,

PIK3R1, and SHC1 appeared in the top correlated hits, as did

FLT3 and KIT.

Our group previously demonstrated induction of myeloid

differentiation in AML cells upon SYK inhibition (Hahn et al.,

2009). To discover which of the PDGFR family receptors scoring

in our kinase activity profiling mediates differentiation, as seen

with SYK knockdown, we developed a flow-based assay to

measure CD11b+/CD14+ differentiation. We transduced a panel

of AML cell lines with shRNAs targeting either SYK or each of

the identified PDGFR family kinases. Only FLT3 knockdown

recapitulated the phenotypic consequence of SYK knockdown

despite high knockdown efficiency in each of the kinases evalu-

ated (Figure 1C and Figure S1 available online).

SYK Enhances FLT3 WT and Mutant Activation by
Phosphorylation of Residues Y768 and Y955
Based on the kinome activity profiling results, we evaluated the

phosphorylation status of the intracellular domain of the acti-
C

vated FLT3 receptor (GST-FLT3, 571–end) in the presence of

active GST-SYK and ATP [g-32P] (Figure 2A). We found FLT3

to be directly phosphorylated by SYK, as observed by increased

incorporation of g-32P.

Next, we used a phospho-mapping approach by mass

spectrometry to nominate sites on the FLT3 receptor directly

phosphorylated by SYK. Y726, Y768, Y842, Y899, and Y955,

located in the TK1-TK2 interdomain or in the tyrosine kinase

TK2 region of FLT3, were identified (Figure 2B, top). In contrast,

the phosphorylation level of residue Y969, located at the extreme

C-terminal region of FLT3, was not increased in the presence of

SYK. In cells, a similar phospho-mapping analysis identified the

same tyrosine sites to be regulated by SYK, with Y899 as

the only exception (Figure 2B, bottom). These results were

confirmed by an in vitro kinase assay using phosphospecific

antibodies; GST-SYK increased FLT3 phosphorylation at Y768,

Y842, and Y955 sites but not at site Y969 (Figure 2C). GST-

SYK also promoted hyperphosphorylation of the FLT3 Y591

site, a predictor of FLT3 activity (Griffith et al., 2004).

Although this phospho-mapping approach nominated candi-

date FLT3 sites phosphorylated by SYK, it was not adequate

to confirm direct SYK-targeted tyrosine residues because of

the fact that certain FLT3 tyrosine sites, such as Y591, are also

subject to autotransphosphorylation. To prevent transactivation

cascades, we created a cell-based system with a kinase dead

(KD; K644R) FLT3 receptor incapable of autotransphosphory-

lation. However, this FLT3 KD did require ‘‘prephosphorylation’’

to recapitulate the basal-activated state of the wild-type form of

FLT3. As shown in Figures S2A and S2B, a construct encoding

for V5-tagged kinase dead FLT3 [FLT3 KD (V5)] was first cotrans-

fected with a DDK-tagged FLT3 WT (FLT3-DDK) construct to

ensure the prephosphorylation of FLT3 KD (V5). The FLT3 KD

(V5) was then V5-tag immunoprecipitated to separate it from

the FLT3-DDK protein and incubated with GST-SYK in an

in vitro kinase assay. Because FLT3 KD (V5) was now activated

(phosphorylated) but unable to autotransphosphorylate, we

could discriminate between sites directly phosphorylated by

SYK and those autotransphosphorylated as an indirect effect

of SYK-mediated FLT3 activation.

This approach was validated by V5-tag immunoprecipitation

of FLT3 WT (V5) (Figure 2D). As expected, FLT3 WT was highly

phosphorylated in the presence of GST-SYK. In contrast,

the FLT3-KD (V5) mutant was poorly phosphorylated without

prephosphorylation by FLT3-DDK. After incubation with FLT3-

DDK, however, FLT3-KD (V5) was responsive to SYK phos-

phorylation, but because FLT3-KD (V5) was unable to autotran-

sphosphorylate, its phosphorylation level remained lower than

that of FLT3 WT (V5). This requirement for prephosphorylation

of FLT3 before SYK can activate FLT3 WT (V5) further was also

observed with FLT3-ITD (V5) (Figure S2C). In accordance with

these results, the mutant FLT3-KD YY589/591AA, nontran-

sphosphorylable by FLT3-DDK, was also resistant to SYK-

dependent phosphorylation. We next mutated all FLT3 tyrosine

residues identified by mass spectrometry into nonphosphorylat-

able alanines (FLT3-KD Y726A, Y768A, Y842A, Y899A, Y955A,

and Y969A) to identify sites directly phosphorylated by SYK.

Only two mutants, FLT3-KD (V5) Y768A and Y955A, were resis-

tant to SYK-mediated FLT3 phosphorylation, suggesting that

SYK directly phosphorylates FLT3 at sites Y768 and Y955
ancer Cell 25, 226–242, February 10, 2014 ª2014 Elsevier Inc. 227
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Figure 1. FLT3 Activation Correlates with SYK Activation in AML

(A) Lysates from AML cell lines stably transduced with either a constitutively activated form of SYK (SYK-TEL) or an empty vector (CT) were evaluated by kinase

activity profiling. The log2-transformed ratio (SYK-TEL versus CT) of tyrosine phosphorylation is depicted as a heatmap where each protein is ranked by its

phosphorylation level across the cell lines. FC, fold change.

(B) Spearman correlation between basal phosphorylation of SYK compared to all other detected candidates in the kinase activity profiling assay across 12 AML

cell lines. The most highly correlated hits (r R 0.5) are represented on the histogram.

(C) Heatmap showing level of CD14 and CD11b-positive myeloid differentiation in AML cell lines treated with ATRA or transduced with a control shRNA (shCT) or

KIT-, PDGFRa-, FLT3-, or SYK-targeting shRNAs. Normalized data are presented as a log2-ratio (shTarget versus shCT).

See also Figure S1.
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(Figure 2D). These two mutations completely abrogated SYK-

mediated FLT3 activation, with a consequent downregulation

of FLT3 activation at site Y591 (Figure 2E).

FLT3 mutations are the most common genetic alterations in

AML. Internal tandem duplication (ITD) mutations within the

FLT3 juxtamembrane domain occur in 20%–30%, and other

point mutations (i.e., D835Y or D835V) in the tyrosine-kinase

domain (FLT3-TKD) occur in an additional 7%–9% of AML

(Swords et al., 2012). By an in vitro kinase assay, we determined

that the well-described FLT3 mutants FLT3-ITD and D835Y

were also SYK phosphorylated (Figure 2F). WT and mutant

FLT3 showed increased SYK phosphorylation at Y768 and

Y955, which is strongly associated with increased FLT3 activa-
228 Cancer Cell 25, 226–242, February 10, 2014 ª2014 Elsevier Inc.
tion at Y591 as well as activation of known FLT3 targets STAT5

and ERK1/2 (Figure 2G). Of note, overexpression of inactive

SYK KD induced neither FLT3 phosphorylation nor the activation

of ERK1/2.

FLT3 Activation by SYK Depends on a Physical
Interaction
We used two approaches to investigate the effects of SYK on

FLT3 activation in a cellular context. First, using recently gener-

ated small-molecule inhibitors of SYK, PRT062607 (Spurgeon

et al., 2013) and Merck SYKi (Moy et al., 2013), we determined

both in AML cell lines and primary patient samples that SYK

inhibition diminished FLT3 activation in a few hours, as reflected
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by the downregulation of FLT3 phosphorylation at site Y591 and

at the SYK-phosphorylated sites Y768 and Y955. This was

accompanied by an inhibition of downstream STAT5 and

ERK1/2 signaling (Figures 3A, 3B and S3A). Next, to confirm

that this effect was on target for SYK, we used a doxycycline-

inducible microRNA (miRNA)-based short hairpin RNA (miR30-

shRNA) system to produce knockdown approximating that of a

null allele. Expression of two different miR30-shRNAs targeting

SYK (shSYK_4 and shSYK_5) induced a time-dependent down-

regulation of SYK expression, loss of FLT3 phosphorylation at

Y768, Y955, and Y591, and a decrease in STAT5 activation

(Figure 3C).

To further validate these results, we overexpressed a constitu-

tively activated SYK (SYK-TEL) to assess its effects on FLT3

activation and its downstream effectors (Figure S3B). We also

generated a TEL-SYK chimera, a fusion between a truncated

form of SYK lacking its SH2 domains (SH2 Nter + SH2 Cter)

and a TEL sequence substituting for these SH2 domains (Kuno

et al., 2001). Transduction of wild-type SYK (SYK WT) into two

AML cell lines with low basal levels of SYK activation, THP-1

and NOMO-1, enabled expression of moderately activated

SYK, whereas the SYK-TEL construct encoded for a highly acti-

vated form (Figure 3D). When these two constructs were ex-

pressed, FLT3 phosphorylation at Y768 and Y955 increased,

and FLT3 activation was enhanced, as demonstrated by Y591

phosphorylation and hyperactivation of the downstream

STAT5, AKT, and ERK1/2 pathways. FLT3 phosphorylation

was even more pronounced with SYK-TEL than SYKWT expres-

sion, an effect that was abrogated in the presence of KD (K402R)

mutants. These results were confirmed in 293E cells transfected

with SYK WT and SYK-TEL constructs. Surprisingly, however,

TEL-SYK, which, like SYK-TEL, enabled overexpression of a

constitutive active SYK, did not fully recapitulate the effects of

SYK-TEL on FLT3 activation (Figure 3E).

We thus hypothesized that the SH2-binding region expressed

on SYK-TEL but absent on TEL-SYK supports an essential inter-

action between SYK and FLT3 needed for phosphorylation of

FLT3 by SYK. To test this, we coexpressed V5-tagged FLT3

WT with either SYK WT or the chimeric proteins TEL-SYK and

SYK-TEL WT or KD in 293E cells (Figure 3F). We determined

that the SYK WT, SYK-TEL WT, and KD expressed proteins,

along with a SYK mutant (Y130E) reported to be activated in

the presence of BCR (Keshvara et al., 1997), coimmunopreci-

pitated with FLT3, whereas the TEL-SYK fusion protein did not.

However, as confirmed in Figure S3C, the TEL moiety did not

markedly alter the binding capacity to FLT3 WT or mutant. To

confirm that SYK interacted with FLT3 through its SH2-binding

region, we generated several SYK mutants by deleting the

SH2 N-terminal, C-terminal, or both domains (DSH2 Nter,

DSH2 Cter, and DSH2 Nter + Cter) or by inactivation of these

domains by point mutation (SH2 Ntermut (42RQS > GGI), SH2

Ctermut (195RAR > GAL) and SH2 Nter + Ctermut) (Figure 3G). Only

SYK mutants lacking the SH2 Cter domain or mutated in the

SH2 Cter domain failed to coimmunoprecipitate with FLT3,

demonstrating that the SYK SH2 C-terminal domain is involved

in FLT3 binding. Notably, cytoplasmic sequestration of a SYK

mutant with deletion of the nuclear localization sequence

(SYK DNLS) enhanced the association of that mutant with

FLT3.Mutagenesis of FLT3 revealed a tetrad of tyrosine residues
C

Y589, Y591, Y597, and Y599 located in the juxtamembrane re-

gion of FLT3 as essential for this physical interaction (Figures

S3D and S3E). To see if SYK interacted more avidly with FLT3-

ITD than WT, we immunoprecipitated SYK in cells expressing

isogenic pairs of FLT3 constructs. As observed in Figure 3H,

SYK showed greater affinity for FLT3-ITD than FLT3 WT. Finally,

we validated the endogenous interaction between SYK and

FLT3 in a panel of 12 AML cell lines expressing various levels

of either FLT3WT or ITD (Figure 3I). A fraction of SYK associated

with FLT3 is activated, as shown by phosphorylation of SYK

at Y525/Y526. Using confocal microscopy on primary AML

patient samples, we identified that the proteins interacted pre-

dominantly at the cellular membrane, suggesting that FLT3

(APC) trapped SYK (FITC) at FLT30s primary site of localization

(Figure 3J).

SYK Is Required for FLT3-ITD-Induced Myeloid Disease
We next investigated whether SYK was required for FLT3-ITD-

dependent myeloproliferative disease (MPD). We used miR30-

shRNA to stably and efficiently knockdown Sykb (homologous

to human SYK) in murine myeloid progenitors. As depicted in

Figure 4A, murine myeloid progenitors (common myeloid pro-

genitor [CMP] and granulocyte/monocyte progenitor [GMP]

cells) expressed high levels of Sykb compared tomore immature

LSK cells. The Sca-1�/c-KIT+ myeloid progenitor fraction from

donor mice whole bone marrow was transduced first with one

nontargeting control (CT) miR30-shRNA or the two most

effective hairpins directed against Sykb (miR30-shSykb1 and

miR30-shSykb4) before sorting and transduction with the

MSCV-EGFP empty (MIG) or FLT3-ITD vector (Figure S4A).

Transduction efficiency was analyzed by flow cytometry to

confirm that GFP expression occurred only in the tomato-

positive cell fraction (Figure S4B) and knockdown confirmed

by western blot (Figure S4C).

Animals receiving miR30-shCT + FLT3-ITD developedmarked

splenomegaly, with spleens two to seven times larger than those

of the miR30-shCT + MIG mice (Figure 4B). These mice also

developed a striking leukocytosis and an approximately 2-fold

decrease in both hematocrit (HCT) and platelet (PLT) count

compared to miR30-shCT + MIG-transplanted mice, an effect

abrogated with Sykb knockdown (Figures 4B and S4D). Simi-

larly, miR30-shCT + FLT3-ITD mice developed a lethal hemato-

poietic disease with a median latency of approximately 75 days,

whereas animals transplanted with FLT3-ITD and either miR30-

shSykb1 or miR30-shSykb4 cells exhibited almost normal over-

all survival at 150-day follow up (Figure 4C).

In FLT3-ITD + miR30-shCT spleen and blood, flow cytometric

analysis showed a marked increase in cells positive for the late

myeloid markers GR-1 and Mac-1, respectively, indicative of

granulocytes (GR-1+/Mac-1+) and monocytes (GR-1�/Mac-1+),

compared to the spleen and blood cells of control mice

(Figure 4D). The majority of these mature myeloid cells were

both tomato and GFP positive, demonstrating that they arose

from FLT3-ITD + miR30-shCT-transduced marrow. In contrast,

the Sykb-depleted FLT3-ITD mice displayed a minimal increase

in granulocytes in blood and spleen, largely tomato and GFP

negative. Finally, FLT3-ITD-mediated myeloid expansion was

accompanied by a reduction in lymphoid maturation, as as-

sessed by a decrease in the number of B220 or CD3-positive
ancer Cell 25, 226–242, February 10, 2014 ª2014 Elsevier Inc. 229
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cells in spleen and blood from FLT3-ITD + shCT mice. As ex-

pected, Sykb knockdown restored a normal proportion of these

lymphoid cells (Figure S4E).

Finally, we detected by fragment analyzer the presence of

FLT3-ITD sequence in genomic DNA extracted from bone

marrow and spleen cells to ensure stable insertion of the muta-

tion (Figure S4F). Although the FLT3-ITD sequence was highly

represented in the bonemarrow and spleen of mice transplanted

with miR30-shCT infected cells, its abundance was strongly

decreased in Sykb-depleted counterparts, suggesting suppres-

sion of FLT3-ITD positive cells.

To rule out the possibility that this phenotype resulted from

failed engraftment of FLT3-ITD-positive cells, we used a comple-

mentary approach: doxycycline-induction of Sykb knockdown in

murine myeloid cells already transformed by FLT3-ITD (Fig-

ure S4G). From the TRMPVIR doxycycline-inducible vector, we

engineered a TRMPCIR vector by substitution of the yellow-

green Venus reporter for a far-red fluorescent Crimson sequence

suitable for cotransduction with the FLT3-ITD GFP vector

(Figure S4H). Transduction efficiency was analyzed by flow

cytometry to confirm that GFP expression occurred only in

crimson-positive cells (Figure S4I). The normalization of thewhite

blood cell (WBC) count and amarked decrease in FLT3-ITD-pos-

itive cells were observed following induction of Sykb knockdown

at the onset of disease, an effect sustained after doxycycline

withdrawal (Figures 4E and 4F). This resulted in a significant

improvement in the overall survival of FLT3-ITD + miR30-

shSykb1 and FLT3-ITD + miR30-shSykb4 mice in comparison

to FLT3-ITD + miR30-shCT mice (Figure 4G). In vitro, we

confirmed that doxycycline-induced suppression of Sykb

decreased FLT3 activity at Y591 and profoundly altered growth

of the FLT3-ITD-transducedmyeloid cells from 5 to 12 days after

doxycycline (Figures 4H and 4I). Finally, to investigate whether

FLT3-ITD AML cells are more vulnerable to SYK inhibition than

FLT3 WT AML, we screened several genetically defined AML

cell lines (Figures 4J and 4K) and patient AML samples (Figures

4L and 4M) for sensitivity to doxycycline-mediated SYK knock-

down or SYK-specific inhibitors PRT062607 and Merck SYKi.

FLT3-ITD positive AML cell lines and patient primary cells were

strikingly more sensitive to SYK targeting by shRNA or small-

molecule inhibitors than were their FLT3 WT counterparts (Fig-

ures 4J–4M).
Figure 2. SYK Phosphorylates FLT3 WT and Mutants at Sites Y768 and

(A) In vitro kinase assay showing incorporation of g-32P in response to the incu

universal substrate peptide is used to validate FLT3 and SYK kinase activity.

(B) FLT3 phosphorylation state from an in vitro kinase assay performed with active

V5 and SYKWT (bottom) was analyzed by targeted mass spectrometry and phosp

showing the level of tyrosine phosphorylation of three biological replicates. Fold

(C) In vitro kinase assay performed by incubating active GST-FLT3 (571–end) wi

antibodies.

(D) V5-tagged FLT3 WT [FLT3 WT (V5)] or kinase dead [FLT3-KD (V5)] with tyros

along with a DDK-tagged FLT3 WT (FLT3-DDK) vector. V5-tagged constructs we

incubation with GST-SYK for an in vitro kinase assay. Global FLT3 phosphorylat

antibody.

(E) Western blot for FLT3 specific phosphosites from 293E cells coexpressing FL

(F) FLT3WT, D835Y, and ITD immunoprecipitated from 293E cells expressing eac

Detection of global FLT3 phosphorylation level using anti-phospho-tyrosine (P-T

(G) Western blot for FLT3 specific phosphosites from 293E cells coexpressing F

See also Figure S2.

C

Highly Activated SYK Cooperates with FLT3-ITD in
Primary Patient AML
To assess the representation of highly versusminimally activated

SYK across cohorts of patient samples, we profiled three

AML cell lines transduced with either control or SYK-targeting

shRNAs using genome-wide transcriptional profiling. SYK

knockdown prompted a dynamic change in transcription, with

115 genes significantly upregulated and 95 genes significantly

downregulated based on permutation p < 0.05 and FDR < 0.05

for signal-to-noise ratio (SNR). The top differentially 45 upregu-

lated and 36 downregulated genes are depicted in Figure 5A.

The full list is reported in Table S1. As expected, SYK expression

was significantly downregulated across all AML cell lines in

response to the two SYK-targeting shRNAs (Figure S5A). Next,

we used this complete SYKgene set (Table S1) to query by single

sample gene set enrichment analysis (ssGSEA) three cohorts of

AML patient samples (GSE14468, GSE10358, and TCGA LAML),

revealing that patients with a SYK-high signature were predom-

inantly present in French-American-British (FAB) classification

M1, whereas FAB M4 AML was enriched in patients with the

SYK-low signature (Figure S5B). An analogous investigation

applied to the two largest cohorts of FLT3-ITD AMLs,

GSE14468 and TCGA LAML, showed that the SYK-high signa-

ture frequency is significantly higher in the ITD mutant than in

the wild-type FLT3 subgroup (Figure 5B). An extension of this

analysis to other known mutations in AML (NPM1, DNMT3A,

IDH1/2, RUNX1, TET2, TP53, KRAS, NRAS, CEBPA, WT1, and

KIT; data not shown) revealed no significant positive correlation

between the SYK-high signature and any of these mutations.

However, in the GSE14468 and GSE10358 cohorts, the fre-

quency of patients with the SYK-low signature is higher in

NPM1mutants than in the wild-type NPM1 subgroup. This trend

was also observed in patients with double FLT3-ITD and NPM1

mutations (Figure S5C).

We then used a complementary flow cytometry approach to

assess an independent group of primary patient AML samples

with either wild-type FLT3 (n = 25) or FLT3-ITD (n = 23) for SYK

and FLT3 activation levels using P-SYK (Y525/526) or P-FLT3

(Y591) directed antibodies (Figures 5C and 5D). As observed

when using SYK transcriptional signatures as surrogates for

SYK activation, primary patient AML samples with high P-SYK

levels appeared more frequently in the ITD than in the wild-type
Y955

bation of active GST-FLT3 (571–end) with active GST-SYK. The poly Glu-Tyr

GST-SYK (top) or immunoprecipitated from 293E cells transfected with FLT3-

horylation ratios determined from chromatographic peak intensities. Heatmap

change (FC) is presented as a log2 ratio [exp(FLT3+SYK)/exp(FLT3)].

th active GST-SYK and immunoblotted using phosphospecific FLT3 and SYK

ines either wild-type or mutated to alanine were cotransfected into 293E cells

re then V5-tag immunoprecipitated to purify out the FLT3-DDK protein before

ion level was detected by immunoblot using an anti-phospho-tyrosine (P-Tyr)

T3 WT or FLT3 Y768A, Y955A and YY768/955AA mutants, and SYK WT.

h of these constructs and incubated with GST-SYK for an in vitro kinase assay.

yr) antibody.

LT3 WT, D835Y or ITD, and SYK WT or kinase dead (KD).
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FLT3 subgroup (Figure 5C). To further characterize this

association, each subgroup of patients was scaled on X-Y

graphs based on their P-SYK/SYK and P-FLT3/FLT3 Z scores

(Figures 5D and S5D). As expected, FLT3 was more highly

activated in patients with FLT3-ITD, and P-SYK and P-FLT3

activation levels were more strikingly correlated in patients with

FLT3-ITD (r score = 0.7) than with wild-type FLT3 (r score =

0.5). Interestingly, SYK and FLT3 activation were most highly

correlated in patients with relapsed AML expressing the FLT3-

ITD mutation (r score = 0.8).

We divided FLT3-ITD patient samples from three AML data

sets into two groups based on SYK signature (high versus low)

and interrogated the data with published, validated gene signa-

tures (available from Molecular Signature Data Base [MSig] and

Differentiation Map [DMAP]) for enrichment by ssGSEA. As

shown in Figures 5E and S5E and Tables S2 and S3, gene sets

associated with hematopoietic progenitor maintenance and

MYC-dependent transcriptional programs were significantly

enriched in the FLT3-ITD samples displaying a high SYK signa-

ture and depleted in those displaying a low SYK signature.

High P-SYK activation combined with FLT3-ITD mutation is

associated with overexpression of MYC at both mRNA and

protein levels (Figures 5F and 5G). Finally, using top genes

from human and murine MYC target-related gene sets, we

designed aMYC consensus transcriptional targetmini signature.

We used quantitative RT-PCR (qRT-PCR) to assess alteration of

these signature genes in Ba/F3 or U937 cells coexpressing

FLT3-ITD and SYK or SYK-TEL constructs (Figure 5H). These

results suggest that a pro-leukemogenic, cooperative interaction

between FLT3-ITD and SYK may select for higher levels of

SYK activation in FLT3-driven disease and that SYK may pro-

mote MYC expression and activation as a mechanism of

leukemogenesis.

SYK Activation Promotes Progression of FLT3-ITD-MPD
to AML
We generated a second bone marrow transplantation

model using sorted myeloid progenitors cotransduced with

MSCV-EGFP-FLT3-ITD in combination with MSCV-tomato vec-

tors (MIT) encoding for either wild-type SYK (SYK WT), a consti-

tutively activated SYK-TEL, or TEL-SYK (Figure S6A). Before re-
Figure 3. Activation of FLT3 and Its Downstream Effectors Is Depende

(A) Western blot for indicated proteins fromMOLM-14 andMV4-11 cells treated w

on FLT3 total immunoprecipitate.

(B) Western blot for indicated proteins from FLT3-ITD positive primary patient AM

(C)Western blot for SYK and FLT3 specific phosphosites fromMOLM-14 cells sta

miR30-shRNAs and treated with doxycycline for 1, 3, or 5 days. The phosphosit

(D) Western blot for indicated proteins from NOMO-1 and THP-1 AML cells expres

immunoprecipitate.

(E) Western blot for FLT3, STAT5, and ERK specific phosphosites from 293E cel

(F) Using anti-V5 antibody, FLT3 immunoprecipitation from 293E cells coexpress

antibody.

(G) Using anti-V5 antibody, immunoprecipitation of several truncated and mutate

FLT3 WT and western blot using anti-FLT3 antibody.

(H) Using anti-SYK antibody, immunoprecipitation of SYK from 293E cells coexp

anti-SYK, anti-V5, and anti-DDK antibodies.

(I) FLT3 immunoprecipitation from 12 AML cell lines expressing low levels of FLT3W

anti-SYK and anti-P-SYK (Y525/526) antibodies. Anti-IgG antibody was used as

(J) Staining for SYK (green), FLT3 (red), and DAPI (blue) in blast cells from two FL

See also Figure S3.
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injection, transduction efficiency was analyzed by flow

cytometry to confirm that GFP expression occurred in the to-

mato-positive cell fraction (Figure S6B).

Although mice that received myeloid cells cotransduced with

FLT3-ITD and MIT developed a lethal disease (median latency

73 days) (Figure 6A), mice transplanted with cells expressing

FLT3-ITD and either SYK or SYK-TEL constructs developed a

disease with a more rapid onset and a reduced median latency

(64 and 43 days, respectively) (Figure 6A). However, animals

injected with cells expressing both FLT3-ITD and TEL-SYK

constructs did not show signs of more accelerated disease,

suggesting that both the level of SYK activation and the capacity

for binding and transactivation of FLT3 are essential to modulate

FLT3-ITD disease progression. Importantly, groups receiving

SYK-TEL- or TEL-SYK-expressing cells contracted a lethal dis-

ease by 180 days posttransplantation, as compared to control

mice showing no lethality for up to 220 days (data not shown).

The decreased overall survival of mice injected with cells

coexpressing either SYK or SYK-TEL and FLT3-ITD was asso-

ciated with marked splenomegaly, as compared to mice trans-

duced only with FLT3-ITD (Figure 6B). These mice also exhibited

elevated WBC counts, anemia, and thrombocytopenia (Fig-

ure S6C). FLT3-ITD sequence levels were more elevated in

spleens of mice coexpressing SYK and SYK-TEL based on frag-

ment analyzer (Figure S6D). In addition, qRT-PCR using primers

specific for a common region of SYK, SYK-TEL, and TEL-SYK

confirmed homogeneous expression of each construct on an

equivalent number of infected spleen-sorted cells (Figure S6E).

Consistent with the myeloproliferative phenotype described

earlier, an increase in a myeloid cell population positive for

GR-1 and Mac-1 was observed in spleen cells from FLT3-

ITD + MIT mice compared to those from control MIT + MIG

mice (Figure 6C). However, this cell fraction was more highly

represented in the spleens of mice transplanted with either

SYK or SYK-TEL constructs combined with FLT3-ITD than in

those injected with cells coexpressing TEL-SYK and FLT3-ITD.

H&E staining of FLT3-ITD + MIT spleen and bone marrow

showed a marked predominance of maturing myeloid lineage

cells, consistent with MPD, whereas spleens and bone marrow

harvested from mice expressing either SYK or SYK-TEL con-

structs combined with FLT3-ITD showed extensive infiltration
nt on a Physical Interaction with SYK.

ith 3 mMPRT062607 or 5 mMMerck SYKi. The phosphosite Y768 was detected

L cells treated for 6 hr with 3 mM PRT062607.

bly transduced with either a control or two SYK-targeting doxycycline-inducible

e Y768 was detected on FLT3 total immunoprecipitate.

sing different forms of SYK. The phosphosite Y768 was detected on FLT3 total

ls expressing FLT3 WT and different forms of SYK.

ing FLT3 and different forms of untagged SYK and western blot using anti-SYK

d forms of SYK from 293E cells coexpressing these constructs and untagged

ressing isogenic pairs of FLT3 WT and ITD constructs and western blot using

T (0) and various levels of FLT3WT (N) or mutated (ITD) andwestern blot using

a control.

T3-ITD positive primary patient AML samples.
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by sheets of immature myeloid blasts, consistent with AML, in

about 65% to 75% of cases, respectively (Figure 6D). Further-

more, a population of tomato- and GFP-positive cells positive

for the hematopoietic progenitor marker c-KIT was also found

in spleens from all FLT3-ITD + SYK and FLT3-ITD + SYK-TEL

moribund animals, but not in spleens of other FLT3-ITD groups

(Figure 6E). These results suggest that the MPD observed with

FLT3-ITD alone has a more immature phenotype when FLT3-

ITD is combined with SYK or SYK-TEL activation consistent

with AML.

Several FLT3-ITD + SYK or SYK-TEL moribund animals

showed a recurrent expansion of the LinLow/Sca-1�/c-KIT+/
CD16/32+/CD34+ GMP compartment (n = 5/7 and n = 4/6,

respectively; representative examples in Figure 6F). Whereas

FLT3-ITD alone enhanced the expansion of the GMP population

by 1.5-fold, the proportion of GMP cells expressing either FLT3-

ITD + SYK or FLT3-ITD + SYK-TEL was increased by 2.5- and

4.5-fold, respectively. Simultaneous expression of FLT3-ITD

and either SYK or SYK-TEL results in a growth advantage of

this fraction at the expense of megakaryocyte/erythrocyte

progenitor (MEP) and CMP fractions, because, in both cases,

double tomato/GFP-positive GMP clones emerged from the

whole GMP population. Finally, SYK and, even more dramati-

cally, SYK-TEL expression enhanced the growth capacity of

FLT3-ITD-expressing tomato+/GFP+ myeloid cells in vitro over

9 days (Figure 6G). We also assessed the effect of SYK and

FLT3-ITD cooperation on the clonogenic potential of normal

purified CD34+ human cells. As shown in Figure 6H, the number

of CD34+ colonies significantly increased with cotransduction of

FLT3-ITD and either SYKWTorSYK-TEL in comparison to FLT3-

ITD only controls. This increase relies on SYK activity, because it

was not observed in the presence of the KD mutant of SYK-TEL

(SYK-TEL KD). Further mutation of FLT3-ITD’s SYK phos-

phorylation sites, Y768 and Y955, into alanines undermined the

cooperation of SYKwith FLT3-ITD in promoting colony formation

(Figure 6I). An analogous experiment was conducted in vivo

(Figure 6J). Unfortunately, YY768/955AA and Y768A mutants
Figure 4. SYK Knockdown Impairs Development of FLT3-ITD-Driven M

(A) qRT-PCR showing relative expression levels of Sykb in purified progenitor he

(B) Spleen size measurement by microtomography of five mice per group. One

calculated using a Mann-Whitney test. Error bars represent mean ± SEM.

(C) Kaplan-Meier curves showing overall survival of mice (n = 6) transplanted w

vectors. Statistical significance determined by log-rank (Mantel-Cox) test.

(D) FACS analysis of Mac-1 and GR-1 expressing populations in spleen and bloo

(E) WBC count in the blood harvested from three mice per group. The p value wa

doxycycline treatment. Error bars represent mean ± SEM.

(F) FACS analysis of GFP/dsRed-positive cells in bone marrow with error bars re

(G) Kaplan-Meier curves showing overall survival of mice (n = 4 for MIG and FLT

myeloid cells expressing each combination of MSCV and doxycycline-inducible ve

test. *p = 0.02 and #p = 0.003 by comparison with FLT3-ITD + shCT group. Arro

(H) Western blot indicating the expression level of SYK and FLT3 activity over 7

(I) Growth after treatment with doxycycline is shown relative to day 0 (time of see

(J) AML cell lines were infected with two SYK-directed shRNAs. Growth after doxy

seeding), with error bars representing the mean ± SD.

(K and L) Distribution of IC50 for FLT3 wild-type versus FLT3-ITD AML cell lines (K

SYKi. The p value was calculated using nonparametric Mann-Whitney test.

(M) CD34+ primary cells from FLT3WT (n = 4) or ITD (n = 5) patients with AML were

was evaluated after MTT staining. **p < 0.01, *p % 0.05 calculated using a Mann

Error bars represent mean ± SEM (K–M).

See also Figure S4.
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impeded FLT3-ITD‘s ability to induce a lethal MPD. However,

although the FLT3-ITD Y955mutant generated a low-penetrance

lethal disease, it did block acceleration of the disease induced by

SYK-TEL coexpression.

To determine the degree to which a potentially promiscuous

kinase such as SYKwould have a similar effect on other mutated

tyrosine kinase oncogenes, we evaluated a BCR-ABL-driven

leukemia model. By kinome profiling and in vitro kinase assay,

we determined that ABL was neither an indirect nor a direct

target of SYK (data not shown and Figure S6F). We used an

acute lymphocytic leukemia model of murine p19Arf �/� pre-B

cells driven by Bcr-Abl transplantable into immune-competent

syngeneic C57/BL6mice (Williams et al., 2006). As shown in Fig-

ures S6G and S6H, SYK-TEL overexpression neither amplified

growth of BCR-ABL-positive cells in bone marrow or spleen

nor influenced survival. Furthermore, SYK-TEL overexpression

did not significantly enhance the number of colonies of either

CD34+ cells transduced with BCR-ABL or CD34+ BCR-ABL

positive cells purified from a patient with chronic myeloid leuke-

mia (CML) (Figures S6I and S6J). These results suggest that

activated SYK does not exert the same pro-oncogenic effect

on other tyrosine kinase oncogenes, such as BCR-ABL, as it

does on FLT3-ITD.

SYKActivation PromotesResistance to TargetedKinase
Inhibitors
We next asked whether the FLT3-ITD/SYK models could be

transplanted into secondary recipients. Tomato+/GFP+ myeloid

cells expressing FLT3-ITD in combination with MIT empty, SYK

WT, or SYK-TEL were sorted from spleens of moribund donor

mice and reinjected into sublethally irradiated recipient mice.

Although FLT3-ITD + MIT-expressing cells did not alter mice

survival, purified FLT3-ITD + SYK or SYK-TEL cells generated

a lethal disease in secondary recipients with median latencies

of 64 and 19–28 days, respectively (Figure 7A) and induced pre-

viously observed features, including increased WBC, decreased

PLT count and HCT, and marked splenomegaly (Figures
yeloid Disease

matopoietic stem and progenitor subsets. Error bars represent mean ± SD.

representative picture is shown for one mouse per indicated group. p < 0.01

ith myeloid cells expressing each combination of MSCV and miR30-shRNA

d. A representative FACS plot from each group is shown.

s calculated using a Mann-Whitney test. Arrow indicates beginning and end of

presenting the mean ± SEM of three bleedings per time point.

3-ITD + shCT groups; n = 6 for FLT3-ITD + shSykb groups) transplanted with

ctors (TRMPCIR). Statistical significance determined by log-rank (Mantel-Cox)

w indicates beginning of doxycycline treatment.

days after doxycycline.

ding), with error bars representing the mean ± SD.

cycline is normalized to the control shRNA and shown relative to day 0 (time of

) or patient primary cells (L) in response to treatment with PRT062607 or Merck

purified and infected with shCT or two SYK-targeting shRNAs. Colony number

-Whitney test. n.s, non significant (p > 0.05).
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(A) Heatmap of the top down and upregulated genes following transduction of AML cell lines with CT or two SYK-targeting shRNAs based on an SNR score and

p < 0.05. Data are presented as row normalized.
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S7A–S7D). Finally, H&E staining confirmed that these cells infil-

trated the bone marrow and other sites (e.g, liver) (Figure 7B).

We used these secondary transplantable cells to explore the

impact of activated SYK on resistance to FLT3 inhibition with

the FLT3 inhibitor AC220 (Quizartinib). Although FLT3-ITD-

expressing cells were highly sensitive to AC220, those express-

ing either SYK or SYK-TEL as well as FLT3-ITD showed

increased resistance (Figure 7C). This effect was also observed

in Ba/F3 cells coexpressing both FLT3-ITD and SYK or SYK-

TEL. Interestingly, in vitro and in vivo, these cells were also

more resistant to the dual SYK/FLT3 inhibitor, R406, reported

to have 5-fold greater potency for SYK than FLT3 (Braselmann

et al., 2006) (Figures 7D–7I). AC220 resistance was confirmed

in the AML cell lines MOLM-14 and MV4-11 expressing either

SYK WT or SYK-TEL and was associated with sustained FLT3

phosphorylation, even in the presence of an otherwise active

dose of AC220 (Figures S7E and S7F). Resistance was not

observed in vitro with coexpression of FLT3-ITD and the nonin-

teracting partner TEL-SYK, SH2 domain-deleted SYK, KD SYK

or SYK-TEL mutants (Figure 7D). These results indicate that

the level of SYK activation is correlated with resistance to both

molecules and that the physical interaction between SYK and

FLT3 is necessary for resistance to the dual inhibitor.

To assess a combination strategy, AC220 and PRT062607

were combined across a range of concentrations and synergy

and assessed in vitro using excess over Bliss additive synergy

analysis (Figures S7G and S7H). Both compounds synergized

to impair the viability of the two cell types as observed by a

high excess over Bliss additive. In vivo, in both the SYK WT

and SYK-TEL cooperative models with FLT3-ITD, the combina-

tion of PRT062607 and AC220 significantly increased survival of

mice developing AML (Figures 7E and 7F) and resulted in a

marked reduction of leukocytosis, decrease of double GFP/

tomato-positive leukemic blasts and profound inhibition of

FLT3-ITD and SYK activation (Figures 7G–7I).

DISCUSSION

FLT3-ITD mutations occur in approximately 20% of patients

with AML and result in a blockade of differentiation and hyper-

proliferation of hematopoietic cells (Patel et al., 2012). Early

single agent trials were notable for some clinical activity (DeAn-

gelo et al., 2006; Fischer et al., 2010; Knapper et al., 2006; Pratz

et al., 2009), but the low complete remission rate as well as the
(B) Bar graph showing the frequency of primary patient AML samples with FLT3

GSE14468 (n = 526) and TCGA LAML (n = 179). The p value was calculated usin

(C) Bar graph showing the frequency of primary patient AML samples with FLT3W

(Z score % �1) level of (P-SYK/SYK) evaluated by phospho-flow cytometry on C

(D) Spearman correlation (r-score) between (P-SYK/SYK) and (P-FLT3/FLT3) follo

Highlighted in red are samples from patients at time of relapse.

(E) Quantitative comparison of gene sets available from the MSig and DMAP dat

cohorts (GSE 14468, 10358, and TCGA LAML) displaying a SYK high versus low

progenitors, and gray for all other available gene sets.

(F) Comparison of MYC expression levels for patient samples with FLT3-ITD from

high versus low signature. The p value was calculated using Fisher exact test. E

(G) MYC protein level evaluated by intracellular flow cytometry on a cohort of FLT3

R 1) or medium to low (Z score [P-SYK/SYK] < 1) SYK activation. The p value w

(H) Heatmap showing expression level of MYC transcriptional target genes evalu

See also Figure S5 and Tables S1, S2, and S3.
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development of progressive disease despite an initial clinical

response dampened enthusiasm for using FLT3 inhibitors as a

single agent in AML (Weisberg et al., 2010). Newer agents with

greater potency and sustained inhibition have been developed

with exciting results in recent clinical trials, including the obser-

vation of terminal differentiation of AML blasts in patients treated

with AC220 (Sexauer et al., 2012). Moreover, mutations within

the kinase domain of FLT3-ITD, conferring AC220 acquired

clinical resistance, were recently reported (Smith et al., 2012),

providing additional validation that FLT3-ITD is an important

oncogenic driver of AML.

In this study, we identify an unexpected functional role for SYK

in modulating FLT3 activation and demonstrate FLT3-ITD

dependency on SYK for driving myeloid neoplasia in mice

despite the constitutive activation of the FLT3 receptor. A role

for the SYK-FLT3 collaboration is also highlighted by our

in silico and flow-based analysis showing that FLT3-ITD-positive

patient AML blasts exhibit higher levels of SYK activation than

FLT3-wild-type patient AML blasts. Although our data reveal

the activation of FLT3 by SYK, the mechanism of SYK activation

in FLT3-ITD-positive AML remains uncertain. Neither mutation of

SYK (with the exception of a case report of a TEL-SYK rearrange-

ment in a patient with MDS) (Kuno et al., 2001) nor association of

SYK activation with other known mutations has previously been

described in myeloid neoplasms. Recent manuscripts describe

a link between SYK activation and both integrin b2 and b3

signaling (Miller et al., 2013; Oellerich et al., 2013), suggesting

two potential mechanisms for SYK activation. Crosstalk be-

tween integrin b1 signaling, PYK2, and FLT3-ITD has also been

reported (Katsumi et al., 2011), perhaps pointing toward possible

feedback of FLT3-ITD on SYK activation.

We engineered a tractable myeloid transplantation model to

delineate the effects of various levels of SYK activation on

FLT3-ITD-induced disease. This model revealed a link between

SYK activation and FLT3-ITD disease progression, with SYK

activation leading to acceleration of disease development and

transformation from MPD to AML. This is likely dependent on

the FLT3-ITD and SYK partnership, rather than exclusively a

FLT3-independent effect of SYK, because both the level of

SYK activation and the capacity for FLT3 transactivation are

essential for the observed effects. The stratification of the

FLT3-ITD+ patient group based on high versus low SYK activa-

tion highlighted a MYC-driven transcriptional program in the

cooperation of SYK with FLT3. In light of this observation, and
WT versus FLT3-ITD displaying SYK high versus low signatures in two cohorts

g Fisher exact test.

T (n = 25) versus FLT3-ITD (n = 23) exhibiting a high (Z score R 1) versus low

D13/33-gated population. The p value was calculated using Fisher exact test.

wing Z score normalization across two subgroups of FLT3WTand ITD patients.

abase by ssGSEA for patient AML samples with FLT3-ITD from three different

signature. Red dots indicate sets for MYC, black triangles for hematopoietic

three different cohorts (GSE 14468, 10358, and TCGA LAML) displaying a SYK

rror bars represent mean ± SD.

WT or ITD patient samples (n = 25) exhibiting either high (Z score [P-SYK/SYK]

as calculated using a Mann-Whitney test. Error bars represent mean ± SEM.

ated by qRT-PCR. Normalized data are presented as a log2-ratio versus MIT.
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because the overexpression of this transcription factor has the

capacity to induce AML (Luo et al., 2005), MYC has been nomi-

nated as one candidate for explaining the mechanism for the

transition from MPD to an AML-like disease emerging from the

SYK-FLT3 synergistic signal.

Our study has important clinical implications. First, we identify

an increased sensitivity to SYK inhibition in the specific FLT3-

ITD-positive AML subtype, suggesting the testing of SYK inhib-

itors in this patient population. We also identified a strong

positive correlation between SYK and FLT3 activation in a

subgroup of relapsed FLT3-ITD patient samples, nominating

the SYK/FLT3-ITD cooperation as a potential mechanism of

chemoresistance and inviting further study of the relationship

between SYK activation and prognosis in FLT3 mutated AML.

Moreover, our study reveals that the secondary transplantable

AML, driven by the coexpression of highly activated SYK and

FLT3-ITD, exhibits moderate resistance to the single FLT3 inhib-

itor AC220 and strong resistance to the dual SYK/FLT3 inhibitor

fostamatinib (R406). Among the possible mechanisms to explain

this surprising resistance to fostamatinib are inadequate phar-

macokinetics with a failure to sufficiently inhibit SYK and FLT3

or an altered binding/inhibiting capacity of the compound due

to the physical association between SYK and FLT3. A similar

observation has been made in CML where another tyrosine

kinase, LYN, can cooperate with BCR-ABL to overcome BCR-

ABL small-molecule inhibition by mediating BCR-ABL phos-

phorylation even in the presence of inhibitor (Wu et al., 2008).

The finding that the SYK mutant lacking the ability to transacti-

vate FLT3 failed to promote resistance supports a similar mech-

anism of action for SYK-mediated FLT3 resistance. In this

context, whereas SYK or FLT3 inhibition alone had some activity

in vivo, the combined treatment with the SYK and FLT3 specific

inhibitors was highly efficacious, suggesting this combination for

clinical testing.

In summary, we report that the level of SYK activation is critical

for outcome in mice developing a FLT3-ITD-driven myeloid

neoplasia, illustrating the notion that additional interacting

partners are essential in the oncogenic effects of FLT3 in pro-
Figure 6. High SYK Activation Synergizes with FLT3-ITD to Promote P

(A) Kaplan-Meier curves showing overall survival of mice (n = 7 for each group exc

cells expressing each combination of indicated constructs. Statistical significa

comparison with FLT3-ITD + MIT group.

(B) Spleen size measurement by microtomography of six mice per group when FL

Mann-Whitney test. Error bars represent mean ± SEM.

(C) FACS analysis of Mac-1 and GR-1 expressing populations in spleen. A repre

FLT3-ITD + SYK-TEL mice became moribund.

(D) H&E staining of bone marrow and spleen of a representative moribund mous

(E) FACS analysis of c-KIT expressing cells in spleen after 5 days in culture. One

(F) Proportion of CMP (CD16/32�/CD34+), GMP (CD16/32+/CD34+), and MEP

progenitors. Tomato and GFP expression were evaluated on each GMP cell pop

(G) Double tomato and GFP positive LinLow/Sca-1�/c-KIT+ myeloid cells were so

with each combination of FLT3-ITD and SYK vectors. Growth after sorting is show

mean ± SD.

(H and I) Purified normal CD34+ human primary cells were infected with FLT3-IT

SYK-TEL, or inactive SYK-TEL KD) (H) or SYK-TEL in combination with either FLT

evaluated after MTT staining. p < 0.01 and p < 0.05, calculated using a Mann-W

(J) Kaplan-Meier curves showing overall survival of mice (n = 5 for each group) tran

or FLT3-ITD mutants (Y > A) in combination with SYK-TEL. Statistical significan

FLT3-ITD group.

See also Figure S6.

C

moting disease. This study also reveals the important clinical

translational finding that FLT3-ITD AML cells have increased

sensitivity to SYK suppression, raises the possibility that SYK

hyperactivation may attenuate the response to FLT3 inhibitors,

and supports the testing of FLT3 inhibitors in combination with

SYK inhibitors in patients with FLT3 mutant AML.
EXPERIMENTAL PROCEDURES

See Supplemental Experimental Procedures for detailed methods.
High-Throughput Kinase Activity Profiling

A Luminex immunosandwich assay was performed in AML cells stably trans-

duced with a pWZL empty or SYK-TEL vector encoding for a constitutively

activated form of SYK. One hundred micrograms of whole-cell lysates from

each cell line and positive control lysates were quantified, and equal concen-

trations of protein were incubated with amixture of antibody-coupled Luminex

beads directed against 105 protein candidates and then with a secondary anti-

phospho-tyrosine biotin-labeled 4G10 antibody (Millipore).
Growth Measurement

Cells were plated in 384-well plates. ATP content was measured using

CellTiter Glo (Promega) per the manufacturer’s instructions.
Flow-Based Myeloid Differentiation Screening

U937, MOLM-14, THP-1, and KBM-3 cells were arrayed in two series of three

replicates per shRNA in round bottom 96-well tissue culture plates. The next

day, cells were infected, incubated for 5 days, and stained. Heatmap projec-

tions on differentially expressed CD11b and CD14 across each hairpin-trans-

duced cell line were created based on the GENE-E software (http://www.

broadinstitute.org/cancer/software/GENE-E/).
In Vivo Transplantation

The Massachusetts Institute of Technology Committee on Animal Care re-

viewed and approved all mouse experiments. The 4-week-old BALB/c male

donor mice were primed with an intraperitoneal injection of 50-fluorouracil
(150 mg/kg) and sacrificed after 6 days. Bone marrow was harvested from

the femur, tibia, and humerus, and red blood cells were lysed (RBCL buffer,

Sigma). Myeloid cells were sorted and infected with the different combination

of vectors and reinjected into recipient irradiated mice.
rogression to AML

ept for FLT3-ITD + SYK-TEL group, for which n = 6) transplanted with myeloid

nce determined by log-rank (Mantel-Cox) test. *p = 0.05 and #p < 0.01 by

T3-ITD + SYK-TELmice becamemoribund. The p value was calculated using a

sentative FACS plot from each group is shown. Analysis was performed after

e from each indicated group.

representative moribund mouse from each indicated group is shown.

(CD16/32�/CD34�) cell populations on gated LinLow/Sca-1�/c-KIT+ myeloid

ulation. One representative moribund mouse from each group is shown.

rted from the whole bone marrow harvested from moribund mice transplanted

n relative to the day 0 (time of seeding) values, with error bars representing the

D in combination with different forms of SYK (wild-type, constitutively active

3-ITD or the two mutants FLT3-ITD Y768A and Y955A (I). Colony number was

hitney test. Error bars represent mean ± SD.

splantedwithmyeloid cells expressing each indicated combination of FLT3-ITD

ce determined by log-rank (Mantel-Cox) test. *p = 0.05 by comparison with
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Figure 7. High SYK Activation Impairs the Targeting of FLT3-ITD-Driven AML with Small-Molecule Inhibitors In Vitro and In Vivo

(A) Kaplan-Meier curves showing overall survival of mice (n = 4) secondary transplanted with double tomato and GFP-positive myeloid cells expressing FLT3-ITD

in combination with MIT empty, SYK WT, or SYK-TEL (clones from two different donor mice). Statistical significance determined by log-rank (Mantel-Cox) test.

(B) H&E staining of the bone marrow and liver of a representative moribund mouse from each indicated group.

(C and D) Growth inhibition of secondary transplantable murine primary and Ba/F3 cells coexpressing FLT3-ITD and indicated SYK constructs and treated with

increasing doses of either AC220 (C) or R406 (D). Values are shown relative to day 0 (time of seeding), with error bars representing the mean ± SD.

(legend continued on next page)
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Primary Cell Studies

Normal purified CD34+ human cells were obtained from Lonza. Use of these

materials is considered exempt as Human Subjects by the Dana-Farber

Cancer Institute Internal Review Board. Primary patient AML blasts were

collected after obtaining patient informed consent under Dana-Farber Cancer

Institute Internal Review Board-approved protocols.
ACCESSION NUMBERS

The Gene Expression Omnibus (GEO) accession number for the genome-wide

expression analysis reported in this paper is GSE54065.
SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and three tables and can be found with this article online at

http://dx.doi.org/10.1016/j.ccr.2014.01.022.
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