DISCRETE
MATHEMATICS

On the ultimate normalized chromatic difference sequence of a graph

Huishan Zhou*
Department of Mathematics and Computer Science, Georgia State University, University Plaza, Atlanta, GA 30303-3083, USA

Received 25 February 1992; revised 10 May 1994

Abstract

For graphs G and H, the Cartesian product $G \times H$ is defined as follows: the vertex set is $V(G) \times V(H)$, and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \times H$ if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$ or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$. Let G^{k} denote the Cartesian product of k copies of G. The chromatic difference sequence $\operatorname{cds}(G)$ is defined by $\operatorname{cds}(G)=\left(a_{1}, a_{2}-a_{1}, \ldots, a_{t}-\right.$ a_{t-1}, \ldots) where a_{t} denotes the maximum number of vertices of t-colorable subgraph of G. The normalized chromatic difference sequence $n c d s(G)$ is defined by $n c d s(G)=c d s(G) / / V(G)$. This paper studies the ultimate normalized chromatic difference sequence of a graph $\operatorname{NCDS}(G)$ which is equal to the limit of $n c d s\left(G^{k}\right)$ as k goes to infinity. We study $\operatorname{NCDS}(G)$ under the context of other graph theoretical properties: star chromatic number, hom-regularity, and graph homomorphism. We have provided new upper and lower bounds for $\operatorname{NCDS}(G)$. We have also proved, among others, that if there is a homomorphism from a graph G to a graph H, then $N C D S(G)$ dominates $N C D S(H)$.

1. Introduction

For a graph $G, \alpha_{t}(G)$ denotes the maximum number of vertices of t-colorable subgraph of $G, i_{t}(G)$ the t-coloring ratio of G (i.e., $i_{t}(G)=\alpha_{t}(G) /|V(G)|$), and $\chi=$ $\chi(G)$ the chromatic number of G. The chromatic difference sequence $c d s(G)$ [1] is defined by

$$
c d s(G)=\left(\alpha_{1}(G), \alpha_{2}(G)-\alpha_{1}(G), \ldots, \alpha_{t}(G)-\alpha_{t-1}(G), \ldots, \alpha_{x}(G)-\alpha_{\chi-1}(G)\right) .
$$

The normalized chromatic difference sequence $n c d s(G)$ is defined by

$$
\begin{aligned}
\operatorname{ncds}(G) & =c d s(G) /|V(G)| \\
& =\left(i_{1}(G), i_{2}(G)-i_{1}(G), \ldots, i_{t}(G)-i_{t-1}(G), \ldots, i_{\chi}(G)-i_{\chi-1}(G)\right) .
\end{aligned}
$$

[^0]The n-term sequence $\left(x_{k}\right)$ is said to dominate the n-term sequence $\left(y_{k}\right)$, written $\left(x_{k}\right) \geqslant\left(y_{k}\right)$ or $\left(y_{k}\right) \preccurlyeq\left(x_{k}\right)$, if:

$$
\begin{equation*}
\sum_{k=1}^{n} x_{k}=\sum_{k=1}^{n} y_{k}, \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{k=1}^{p} x_{k} \geqslant \sum_{k=1}^{p} y_{k} \quad \text { for } p=1,2, \ldots, n-1 \tag{2}
\end{equation*}
$$

The n-term sequence (y_{k}) is said to be between the n-term sequence $\left(x_{k}\right)$ and $\left(z_{k}\right)$ if either $\left(x_{k}\right) \geqslant\left(y_{k}\right) \geqslant\left(z_{k}\right)$ or $\left(x_{k}\right) \leqslant\left(y_{k}\right) \leqslant\left(z_{k}\right)$. For graphs G and H, the Cartesian product $G \times H$ is defined as follows: the vertex set is $V(G) \times V(H)$, and two vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent in $G \times H$ just if either $g=g^{\prime}$ and $h h^{\prime} \in E(H)$ or $h=h^{\prime}$ and $g g^{\prime} \in E(G)$. We use G^{k} to denote the Cartesian product of k copies of G. We are interested in the ultimate normalized chromatic difference sequence $N C D S(G)$ of a graph G, defined by

$$
\operatorname{NCDS}(G)=\lim _{k \rightarrow \infty} n c d s\left(G^{k}\right)
$$

If we denote $I_{t}(G)=\lim _{k \rightarrow \infty} i_{t}\left(G^{k}\right)$, then $\operatorname{NCDS}(G)=\left(I_{1}(G), I_{2}(G)-I_{1}(G), \ldots\right.$, $\left.I_{t}(G)-I_{t-1}(G), \ldots, 1-I_{\chi-1}(G)\right)$. We note that $n c d s(G \times H) \leqslant n c d s(G)(n c d s(H))$, $n c d s\left(G^{k}\right)$ is nonincreasing with respect to k in the sense of dominance, and so the limit $N C D S(G)$ always exists and lies between $n c d s(G)$ and the flat sequence $(1 / \chi(G))$ $(1,1, \ldots, 1)$, by Theorem 4.1, Corollary 4.2, and Corollary 4.3 of [11].

A homomorphism of G to H is a mapping $f: V(G) \rightarrow V(H)$ such that $g g^{\prime} \in E(G)$ implies $f(g) f\left(g^{\prime}\right) \in E(H)$. We write $G \rightarrow H$ to denote that there is a homomorphism of G to H. A homomorphism is a useful tool in studying the NCDS as well as the $n c d s$, see also [12].

The study of the ultimate normalized chromatic difference sequence can be viewed in the spirit of investigating the limiting behaviour of graph parameters under graph products. The work in [4, 5, 7-9] deal with other graph theoretical parameters of other types of graph products.

We have some partial results in [11], and will contribute more results in this paper, in which the limit $N C D S$ can be evaluated. In all our results, both in [11] and in this paper, the limit is actually equal to either the upper or the lower bound. In [11], we work on the classes of graphs whose $c d s$ can be calculated. In this paper, we work mainly on the sufficient conditions of the graphs whose ncds is stable, i.e., $N C D S=$ $n c d s$, see Theorems 7 and 9 . We also obtain a sufficient condition under which NCDS reaches the lower bound mentioned above, see Corollary 14. We obtain new lower and upper bounds for $N C D S$ in the sense of dominance: see Theorem 1 which gives the lower bound in terms of star chromatic number and chromatic number; see Corollary 13 which gives the upper bound in terms of maximum clique number. Both Corollaries 13 and 14 are derived from the main theorem of this paper: Theorem 10, i.e., if there is
a homomorphism from a graph G to a graph H, then $\operatorname{NCDS}(G)$ dominates $\operatorname{NCDS}(H)$. Our main ideas originate from $[4,6,13]$ which concentrated on the first term of NCDS.

2. NCDS and star chromatic numbers

We start with the definition of the star chromatic number of a graph [3,10]. Let k and d be positive integers such that $k \geqslant 2 d$. Set $[k]=\{0,1, \ldots, k-1\}$. A (k, d) coloring of a graph $G=(V, E)$ is a mapping $c: V \rightarrow[k]$ such that, for each edge $(u, v) \in E, d \leqslant|c(u)-c(v)| \leqslant k-d$. The star chromatic number $\chi^{*}(G)$ of G is defined by $\chi^{*}(G)=\inf \{k / d: G$ has a (k, d)-coloring $\}$, and can be calculated by

$$
\chi^{*}(G)=\min \{k / d: G \text { has a }(k, d) \text {-coloring for } 2 d \leqslant k \leqslant|V(G)|\} .
$$

It has been proved that $\chi(G)-1<\chi^{*}(G) \leqslant \chi(G)$. It has been further proved that a graph G is (k, d)-colorable if and only if there is a homomorphism from G to G_{k}^{d}, where G_{k}^{d} has vertex set $\{0,1, \ldots, k-1\}$ and edge set $\{(i, j): d \leqslant|i-j| \leqslant k-d$ for $i, j \in[k]\}$. See $[3,10]$ for details. Since $\operatorname{NCDS}(G)=n c d s(G)$ for any circulant graph G [11] it follows that

$$
\operatorname{NCDS}\left(G_{k}^{d}\right)=n c d s\left(G_{k}^{d}\right)=\left(\frac{d}{k}, \frac{d}{k}, \ldots, \frac{d}{k}, \frac{k-\left\lfloor\frac{k}{d}\right\rfloor d}{k}\right) .
$$

Therefore, we can apply a result of Albertson and Collins [2], i.e., if H is vertex transitive and $G \rightarrow H$, then $n c d s(G) \geqslant n c d s(H)$, to obtain a new lower bound for the $N C D S$ in the sense of dominance.

Theorem 1. For any graph G,

$$
\operatorname{NCDS}(G) \geqslant\left(\frac{1}{\chi^{*}}, \frac{1}{\chi^{*}}, \ldots, \frac{1}{\chi^{*}}, 1-\frac{\chi-1}{\chi^{*}}\right),
$$

where $\chi=\chi(G)$ and $\chi^{*}=\chi^{*}(G)$.
As corollaries, we get Theorem 1 of [13], i.e., $I_{1}(G) \geqslant 1 / \chi^{*}(G)$ for any graph G, and that $\chi(G)=\chi^{*}(G)$ provided $I_{1}(G)=1 / \chi(G)$.

3. NCDS and hom-regular graphs

For graphs G and H, a t-colorable subgraph cover of G with respect to H is a family $\left\{S_{h}: h \in V(H)\right\}$ such that
(i) each S_{h} is a maximum t-colorable subgraph in G,
(ii) $\bigcap_{h \in V\left(H^{\prime}\right)} S_{h}=\emptyset$ for any $(t+1)$-chromatic subgraph H^{\prime} of H, and
(iii) for each $S_{h}, h \in V(H)$, there exists a t-coloring $c_{S_{h}}$ of S_{h} such that for any subgraph H^{\prime} of H with $\chi\left(H^{\prime}\right) \leqslant t$, any $v \in \bigcap_{h \in V\left(H^{\prime}\right)} S_{h}$, there exists a proper coloring $c_{H^{\prime}}$ of H^{\prime} such that $c_{S_{h}}(v)=c_{H^{\prime}}(h)$ for any $h \in H^{\prime}$.

It is not hard to check that the conditions (i) and (ii) are equivalent to the condition (iv):
(iv) For each $S_{h}, h \in V(H)$, there exists a t-coloring $c_{S_{h}}$ of S_{h} such that for any subgraph H^{\prime} of H, if $\bigcap_{h \in V\left(H^{\prime}\right)} S_{h} \neq \emptyset$, then for any $v \in \bigcap_{h \in V\left(H^{\prime}\right)} S_{h}$, the coloring defined by $c_{H^{\prime}}(h)=c_{S_{h}}(v)$ is a proper coloring of H^{\prime}.
The condition (iv) is also equivalent to the following condition (v):
(v) There is a family of t-coloring $c_{h}: S_{h} \rightarrow\{1, \ldots, t\}$ such that if $h h^{\prime} \in E(H)$ and $v \in S_{h} \cap S_{h^{\prime}}$, then $c_{h}(v) \neq c_{h^{\prime}}(v)$.

A t-colorable subgraph cover of G is just a t-colorable subgraph cover of G with respect to itself.

For graphs G and H, if, for any $t: 1 \leqslant t \leqslant \chi(G)-1$, there exists a t-colorable subgraph cover of G with respect to H, then we say that G has a chromatic-complete subgraph cover with respect to H. A chromatic-complete subgraph cover of G is just a chromatic-complete subgraph cover of G with respect to itself. We have already proved that $i_{t}(G \times H) \leqslant i_{t}(G)$ (see 11, Theorem 4.1] or the argument contained in the proof of the following proposition). Furthermore, we have the following proposition.

Proposition 2. For $1 \leqslant t \leqslant \chi(G)-1, i_{t}(G \times H)=i_{t}(G)$ if and only if G has a t colorable subgraph cover with respect to H.

Proof. Since the restriction of a maximum t-colorable subgraph of $G \times H$ on $V(G) \times\{h\}$ is a t-colorable subgraph for $h \in V(H)$, it follows that $\alpha_{t}(G \times H) \leqslant|V(H)| \alpha_{t}(G)$. If G has a t-colorable subgraph cover $\left\{S_{h}: h \in V(H)\right\}$ with respect to H, then it is easy to check that the union of the sets $S_{h} \times\{h\}$ is a t-colorable subgraph of $G \times H$ of cardinality $|V(H)| \alpha_{t}(G)$. Hence $\alpha_{t}(G \times H)=|V(H)| \alpha_{t}(G)$. Conversely, if $\alpha_{t}(G \times H)=|V(H)| \alpha_{t}(G)$, then take a maximum t-colorable subgraph S of $G \times H$. Let $S_{h}=\{g:(g, h) \in S\}$. By the pigeon hole principle, it is easy to see that each S_{h} is a maximum t-colorable subgraph of G. Let H^{\prime} be a $(t+1)$-chromatic subgraph of H. Then $\bigcap_{h \in V\left(H^{\prime}\right)} S_{h}=\emptyset$. Otherwise, let $v \in \bigcap_{h \in V\left(H^{\prime}\right)} S_{h}$, then $\{v\} \times V\left(H^{\prime}\right)$ induces a $(t+1)$-chromatic subgraph of S. This is a contradiction since S is t-colorable. The restriction of a t-coloring c_{S} of S on S_{h} is a t-coloring $c_{S_{h}}$ on S_{h}. For any subgraph H^{\prime} of H with $\chi\left(H^{\prime}\right) \leqslant t$, any $v \in \bigcap_{h \in V\left(H^{\prime}\right)} S_{h}$, there is a proper coloring of H^{\prime} defined by $c_{H^{\prime}}(h)=c_{S}((v, h))=c_{S_{h}}(v)$ to satisfy (iii). Therefore, $\left\{S_{h}: h \in V(H)\right\}$ is a t-colorable subgraph cover of G with respect to H.

We now focus on a particular class of graphs. We say that G is hom-regular if $G^{2} \rightarrow G$. The importance of these graphs can be seen by the following facts:

Proposition 3. If G is hom-regular and $1 \leqslant t \leqslant \chi(G)-1$, then $I_{t}(G)=i_{t}(G)$ if and only if $i_{t}\left(G^{2}\right)=i_{t}(G)$.

Proof. If $I_{t}(G)=i_{t}(G)$, then clearly $i_{t}\left(G^{2}\right)=i_{t}(G)$. Assume that $i_{t}\left(G^{2}\right)=i_{t}(G)$. Since G is hom-regular, we have $G^{k} \rightarrow G$ by induction. Let f be a homomorphism of G^{k} to G, and let $\left\{S_{g}: g \in V(G)\right\}$ be a t-colorable subgraph cover of G. Such a
cover exists by Proposition 2 and the fact that $i_{t}\left(G^{2}\right)=i_{t}(G)$. If we can prove that $\left\{S_{f(u)}: u \in V\left(G^{k}\right)\right\}$ is a t-colorable subgraph cover of G with respect to G^{k}, then $i_{t}\left(G^{k}\right)=i_{t}(G)$ for every k.
It is easy to see that for any $u \in V\left(G^{k}\right), f(u) \in V(G), S_{f(u)}$ is a maximum t-colorable subgraph. For any subgraph H^{\prime} of G^{k} with $\chi\left(H^{\prime}\right)=t+1$, the graph $f\left(H^{\prime}\right)$ induced by $f\left(V\left(H^{\prime}\right)\right)$ in G has chromatic number at least $t+1$. Therefore, $\bigcap_{u \in V\left(H^{\prime}\right)} S_{f(u)}=$ $\bigcap_{g \in f\left(V\left(H^{\prime}\right)\right)} S_{g}=\emptyset$. For any subgraph H^{\prime} of G^{k} with $\chi\left(H^{\prime}\right) \leqslant t$, if $\chi\left(f\left(H^{\prime}\right)\right)>t$, then $\bigcap_{u \in V\left(H^{\prime}\right)} S_{f(u)}=\emptyset$. So we may assume that $\chi\left(f\left(H^{\prime}\right)\right) \leqslant t$. For any $v \in \bigcap_{u \in V\left(H^{\prime}\right)} S_{f(u)}=$ $\bigcap_{g \in f\left(V\left(H^{\prime}\right)\right)} S_{g}$, we need to prove that there exists a proper coloring $c_{H^{\prime}}$ of H^{\prime} such that $c_{S_{f(u)}}(v)=c_{H^{\prime}}(u)$. Since $\left\{S_{g}: g \in V(G)\right\}$ is a t-colorable subgraph cover of G, there exists a proper coloring $c_{f\left(H^{\prime}\right)}$ of $f\left(H^{\prime}\right)$ such that $c_{S_{q}}(v)=c_{f\left(H^{\prime}\right)}(g)$. Now the composition of $c_{f\left(H^{\prime}\right)}$ and $f, c_{H^{\prime}}=c_{f\left(H^{\prime}\right)} \cdot f$, is a proper coloring of H^{\prime} such that $c_{S_{t(u)}}(v)=c_{H^{\prime}}(u)$.

Corollary 4. If G is hom-regular, then $\operatorname{NCDS}(G)=n c d s(G)$ if and only if $n c d s\left(G^{2}\right)=$ $n c d s(G)$.

A graph G is a core if each homomorphism $G \rightarrow G$ is an automorphism of G, i.e., is a bijection. For hom-regular cores, we show that $I_{t}(G)=i_{t}(G)$ for $t=1,2, \ldots, \chi(G)-1$, i.e., $\operatorname{NCDS}(G)=n c d s(G)$. We need to introduce the concept of $\operatorname{Aut}(G)$, the automorphism graph of G : The vertices of $\operatorname{Aut}(G)$ are automorphisms of G, and $f f^{\prime}$ is an edge of $\operatorname{Aut}(G)$ just if $f(g) f^{\prime}(g) \in E(G)$ for each vertex g of G.

Proposition 5. A core G is hom-regular if and only if $G \rightarrow \operatorname{Aut}(G)$.

Proof. See [6] for the proof. It is also mentioned in [6] that hom-regular cores have a more standard kind of regularity: Any hom-regular core is vertex transitive.

Proposition 6. If $G \rightarrow \operatorname{Aut}(G)$, then G has a chromatic-complete subgraph cover.

Proof. We prove that for every $t, 1 \leqslant t \leqslant \chi(G)-1, G$ has a t-colorable subgraph cover. Let $f: G \rightarrow \operatorname{Aut}(G)$ be a homomorphism, and S a maximum t-colorable subgraph of G. We prove that the family $\{f(g)(S): g \in V(G)\}$ is a t-colorable subgraph cover of G.

Each $f(g)(S)$ is a maximum t-colorable subgraph of G since $f(g)$ is an automorphism and S is a maximum t-colorable subgraph of G. In order to prove that the family $\{f(g)(S): g \in V(G)\}$ satisfies (ii) and (iii) required by the definition of t-colorable subgraph cover, we prove the following fact first. Let K be a subgraph of G and $v \in \bigcap_{g \in V(K)}(f(g))(S)$. Assume further that

$$
f\left(g_{1}\right)\left(s_{1}\right)=f\left(g_{2}\right)\left(s_{2}\right)=\cdots=f\left(g_{m}\right)\left(s_{m}\right)=v,
$$

where $V(K)=\left\{g_{1}, g_{2}, \ldots, g_{m}\right\}$ and $s_{i} \in V(S)$ for $i=1,2, \ldots, m$. Define $\psi: \psi\left(g_{i}\right)=s_{i}$ $(i=1,2, \ldots, m)$. We claim that ψ is a homomorphism from K to S. Let $g_{i} g_{j}$ be an edge of the subgraph K, where $i, j \in\{1,2, \ldots, m\}$ and $i \neq j$. Then $f\left(g_{i}\right) f\left(g_{j}\right)$ is an edge of $\operatorname{Aut}(G)$. First, we prove that $s_{i} \neq s_{j}$. Otherwise, $v v=f\left(g_{i}\right)\left(s_{i}\right) f\left(g_{j}\right)\left(s_{j}\right)=f\left(g_{i}\right)\left(s_{i}\right)$ $f\left(g_{j}\right)\left(s_{i}\right) \in E(G)$. This is a contradiction. Second, we prove that $s_{i} s_{j} \in E(G)$. Let $f\left(g_{i}\right)\left(s_{j}\right)=w$. Then $f\left(g_{i}\right)\left(s_{j}\right) f\left(g_{j}\right)\left(s_{j}\right)=w v \in E(G)$. Since $f\left(g_{i}\right)$ is an automorphism, we have $s_{i} s_{j}=\left(f\left(g_{i}\right)\right)^{-1}(v)\left(f\left(g_{i}\right)\right)^{-1}(w) \in E(G)$. Therefore, ψ is a homomorphism.

Now we can conclude that $\bigcap_{g \in V(K)} f(g)(S)=\emptyset$ for any $(t+1)$-chromatic subgraph K of G. For otherwise, there exists a homomorphism from K to S, which implies $t+1=\chi(K) \leqslant \chi(S)$, a contradiction. For checking the condition (iii), we note that if c is a t-coloring of S, then there is a natural t-coloring $c_{f(g)(S)}$ of $f(g)(S)$ defined by $c_{f(g)(S)}[f(g)(s)]=c(s)(s \in S)$ for every $g \in V(G)$. For any j-chromatic subgraph K of $G(1 \leqslant j \leqslant t)$, any $v \in \bigcap_{g \in V(K)} f(g)(S)$, let $V(K)=\left\{g_{1}, g_{2}, \ldots g_{m}\right\}$, and $s_{i} \in S(i=$ $1,2, \ldots, m)$ such that $f\left(g_{i}\right)\left(s_{i}\right)=v(i=1,2, \ldots, m)$. As we proved above, the mapping ψ defined by $\psi\left(g_{i}\right)=s_{i}(i=1,2, \ldots, m)$ is a homomorphism from K to S. Hence we can define a coloring c_{K} on K by $c_{K}\left(g_{i}\right)=c \cdot \psi\left(g_{i}\right)=c\left(s_{i}\right)$ for $i=1,2, \ldots, m$. Now it is obvious that $c_{K}\left(g_{i}\right)=c\left(s_{i}\right)=c_{f\left(g_{i}\right)(S)}\left[f\left(g_{i}\right)\left(s_{i}\right)\right]=c_{f\left(g_{i}\right)(S)}(v)$ for any $g_{i} \in V(K)$.

Theorem 7. A hom-regular core G has $N C D S(G)=n c d s(G)$.

Proof. A hom-regular core G has $G \rightarrow \operatorname{Aut}(G)$ by Proposition 5 and a chromaticcomplete subgraph cover by Proposition 6. Now Proposition 2 implies that $i_{t}\left(G^{2}\right)=$ $i_{t}(G)$, and Proposition 3 that $I_{t}(G)=i_{t}(G)$ for $t=1,2, \ldots, \chi(G)-1$.
It is easy to see that a Cayley graph G of a commutative group has $G \rightarrow \operatorname{Aut}(G)$ (using left multiplications). Thus if G is also a core, $I_{t}(G)=i_{t}(G)$. We will see below that the condition of being a core is not necessary.

Let $V(H)$ be a commutative group, with the operation written as + . A strong t colorable subgraph cover of G with respect to H (or just "of G " if $G=H$) is a t-colorable subgraph cover $\left\{S_{h}: h \in V(H)\right\}$ of G with respect to H, such that
(a) for any ($t+1$)-chromatic subgraph K of $H, \bigcap_{g \in V(K)} S_{g+x}=\emptyset$ for any $x \in V(H)$; and
(b) for any $u \in V(H)$, there exists a t-coloring $c_{S_{u}}$ of S_{u} such that for any $x \in V(H)$, any j-chromatic subgraph K of $H(1 \leqslant j \leqslant t)$, and any $v \in \bigcap_{g \in V(K)} S_{g+x}$, there exists a j-coloring c_{K} of K, which induces a natural j-coloring on $K+x, c_{K+x}(g+x)=c_{K}(g)$ for $g \in V(K)$, such that $c_{K+x}(g+x)=c_{S_{q+x}}(v)$ for any $g \in V(K)$.

For graphs G and H, if for any $t, 1 \leqslant t \leqslant \chi(G)-1$, there exists a strong t-colorable subgraph cover of G with respect to H, then we say that G has a strong chromaticcomplete subgraph cover with respect to H.

Proposition 8. If G has a strong chromatic-complete subgraph cover, then each G^{k} $(k=1,2, \ldots)$ has a strong chromatic-complete subgraph cover with respect to G.

Proof. By induction on k. If $\left\{S_{g}: g \in V(G)\right\}$, is a strong t-colorable ($t \in\{1,2, \ldots$, $\chi(G)-1\}$) subgraph cover of G^{k} with respect to G, we define $\left\{S_{g}^{\prime}: g \in V(G)\right\}$ as follows:

$$
S_{g}^{\prime}=\bigcup_{x \in V(G)}\left(S_{g+x} \times\{x\}\right)
$$

It is easy to see that each $S_{g}^{\prime}(g \in V(G))$ is a maximum t-colorable subgraph of G^{k+1}. Furthermore, we claim that $\left\{S_{g}^{\prime}: g \in V(G)\right\}$ is a strong t-colorable subgraph cover of G^{k+1} with respect to G. Let K be a $(t+1)$-chromatic subgraph of G. Then

$$
\begin{aligned}
\bigcap_{g \in V(K)}\left(\bigcup_{y \in V(G)}\left(S_{g+x+y} \times\{y\}\right)\right) & =\bigcup_{y \in V(G)}\left(\bigcap_{g \in V(K)}\left(S_{g+x+y} \times\{y\}\right)\right) \\
& =\bigcup_{y \in V(G)}\left(\left(\bigcap_{g \in V(K)} S_{g+x+y}\right) \times\{y\}\right)=\emptyset
\end{aligned}
$$

by induction hypothesis.
For any $v \in S_{g}^{\prime}$, let $v=\left(u, y_{v}\right)$ where $u \in S_{g+y_{t}}, y_{v} \in V(G)$. We color v by the color of u in the t-coloring of $S_{g+y_{i}}$. Now assume that $x \in V(G), K$ is a j-chromatic subgraph of $G(j \leqslant t)$, and

$$
\begin{aligned}
v \in \bigcap_{g \in V(K)} S_{g+x}^{\prime} & =\bigcap_{g \in V(K)}\left(\bigcup_{y \in V(G)}\left(S_{g+x+y} \times\{y\}\right)\right) \\
& =\bigcup_{y \in V(G)}\left(\bigcap_{g \in V(K)}\left(S_{g+x+y} \times\{y\}\right)\right) \\
& =\bigcup_{y \in V(G)}\left(\left(\bigcap_{g \in V(K)} S_{g+x+y}\right) \times\{y\}\right) .
\end{aligned}
$$

Then there exists $y_{v} \in V(G)$ such that $v \in\left(\bigcap_{g \in V(K)} S_{g+x+y_{t}}\right) \times\left\{y_{v}\right\}$, i.e., for any $g \in V(K)$, there exists $u \in S_{g+x+y_{v}}$ such that $v=\left(u, y_{v}\right)$. By applying the induction hypothesis and the definition of coloring $c_{S_{q+x}^{\prime}}$ on S_{g+x}^{\prime}, we have

$$
c_{K+x}(g+x)=c_{S_{4+x+v_{c}}}(u)=c_{S_{\psi+x}^{\prime}}(v)
$$

for any $v \in V(K)$ and any $x \in V(G)$. Therefore, $\left\{S_{g}^{\prime}: g \in V(G)\right\}$ is a strong t-colorable subgraph cover of G^{k+1} with respect to G.

Now the following theorem follows from Propositions 2 and 8.
Theorem 9. If G has a strong chromatic-complete subgraph cover, then $\operatorname{NCDS}(G)=$ $n c d s(G)$. In particular, $N C D S(G)=n c d s(G)$ for Cayley graphs of commutative groups, since it has a strong chromatic-complete subgraph cover.

4. NCDS and homomorphisms

If we get rid of the condition of vertex transitivity of the graph H in the so-called "no-homomorphism lemma" of [2] (see the statement of this lemma and the notation just before Theorem 1 of this paper), then the dominance will not hold. Let G be a triangle. Let H have vertices a, b, c, d, e, f; and edges $a b, b c, c a, d b, d c, e a, e c, f a$ and $f b$. Then $G \rightarrow H, n c d s(G)=\frac{1}{3}(1,1,1$,$) , and n c d s(H)=\left(\frac{1}{2}, \frac{1}{6}, \frac{1}{3}\right) . n c d s(G)$ does not dominate $n c d s(H)$. It is very interesting that the dominance relationship between the $N C D S$ of the two graphs will still hold.

Theorem 10. If $G \rightarrow H$, then $\operatorname{NCDS}(G) \geqslant \operatorname{NCDS}(H)$.
We shall begin by proving two propositions of independent interest.
Proposition 11. Let G be a subgraph of H. Then $I_{t}(G) \geqslant I_{t}(H)$ for $t=1,2, \ldots, \chi(G)$.
Proof. Without loss of generality we assume, in this proof and the proof of next proposition, that $V(G)=\{1,2, \ldots, n\}$ and $V(H)=\{1,2, \ldots, m\}$ are the vertex sets of G and H, respectively. For each $k \geqslant 1$, consider the subset S_{k} of $V\left(H^{k}\right)$ defined by

$$
S_{k}=\left\{x: x_{r} \leqslant n \text { for some } r=1, \ldots, k\right\},
$$

that is, the set of those vertices $x=\left(x_{1}, \ldots, x_{k}\right)$ of H^{k} for which at least one coordinate x_{r} belongs to $V(G)$. We claim that $i_{t}(G) \geqslant i_{t}\left(S_{k}\right)$.

In order to prove the claim, we partition S_{k} into $S_{k, 1} \cup S_{k, 2} \cup \cdots \cup S_{k, k}$, and show that $i_{t}(G) \geqslant i_{t}\left(S_{k, r}\right)$ for each $r=1, \ldots, k$. We define $S_{k, 1}=\left\{x: x_{1} \leqslant n\right\}$, and $S_{k, r}=\{x$: $x_{r} \leqslant n$ and $x_{j}>n$ for $\left.j=1, \ldots, r-1\right\}, r=2, \ldots, k$. In other words, x belongs to $S_{k, r}$ just if r is its first coordinate with $x_{r} \leqslant n$.

Now observe that each $S_{k, r}$ is the disjoint union of sets of the form

$$
\left\{\left(x_{1}, \ldots, x_{r-1}, y, x_{r+1}, \ldots, x_{k}\right): y=1, \ldots, n\right\}
$$

where $x_{1}, \ldots, x_{r-1}, x_{r+1}, \ldots, x_{k}$ are fixed and $x_{j}>m$ for $j<r$. Since each of these disjoint sets induces, in H^{k}, a graph isomorphic to $G, i_{t}(G) \geqslant i_{t}\left(S_{k, r}\right)$ for each r, and hence also

$$
\begin{align*}
i_{t}\left(S_{k}\right) & =\frac{\alpha_{t}\left(S_{k}\right)}{\left|S_{k}\right|} \leqslant \frac{\alpha_{t}\left(S_{k, 1}\right)+\alpha_{t}\left(S_{k, 2}\right)+\cdots+\alpha_{t}\left(S_{k, k}\right)}{\left|S_{k}\right|} \\
& =\frac{\alpha_{t}\left(S_{k, 1}\right)}{\left|S_{k, 1}\right|} \frac{\left|S_{k, 1}\right|}{\left|S_{k}\right|}+\cdots+\frac{\alpha_{t}\left(S_{k, k}\right)}{\left|S_{k, k}\right|} \frac{\left|S_{k, k}\right|}{\left|S_{k}\right|} \\
& =i_{t}\left(S_{k, 1}\right) \frac{\left|S_{k, 1}\right|}{\left|S_{k}\right|}+\cdots+i_{t}\left(S_{k, k}\right) \frac{\left|S_{k, k}\right|}{\left|S_{k}\right|} \\
& \leqslant i_{t}(G)\left(\frac{\left|S_{k, 1}\right|}{\left|S_{k}\right|}+\cdots+\frac{\left|S_{k, k}\right|}{\left|S_{k}\right|}\right)=i_{t}(G) . \tag{1}
\end{align*}
$$

This proves the claim.

To finish the proof of this lemma, observe that the complement of S_{k} in $V\left(H^{k}\right)$ contains $(m-n)^{k}$ vertices. Now clearly

$$
\begin{align*}
i_{t}\left(H^{k}\right) & =\frac{\alpha_{t}\left(H^{k}\right)}{\left|V\left(H^{k}\right)\right|} \leqslant \frac{\alpha_{t}\left(S_{k}\right)+\alpha_{t}\left(H^{k} \backslash S_{k}\right)}{\left|V\left(H^{k}\right)\right|} \\
& =\frac{\alpha_{t}\left(S_{k}\right)}{\left|S_{k}\right|} \frac{\left|S_{k}\right|}{\left|V\left(H^{k}\right)\right|}+\frac{\alpha_{t}\left(H^{k} \backslash S_{k}\right)}{\left|V\left(H^{k}\right)\right|} \leqslant \frac{\alpha_{t}\left(S_{k}\right)}{\left|S_{k}\right|}+\frac{\left(H^{k} \backslash S_{k}\right)}{\left|V\left(H^{k}\right)\right|} \\
& =i_{t}\left(S_{k}\right)+\frac{\left|V\left(H^{k}\right) \backslash S_{k}\right|}{\left|V\left(H^{k}\right)\right|}=i_{t}\left(S_{k}\right)+\left(1-\frac{n}{m}\right)^{k} \\
& =i_{t}(G)+\left(1-\frac{n}{m}\right)^{k} \tag{2}
\end{align*}
$$

Taking the limit of both sides, as k goes to infinity, we obtain that $I_{t}(H) \leqslant i_{t}(G)$. For any integer $k \geqslant 1, G^{k}$ is a subgraph of H^{k}. By the similar argument as above, we obtain that $I_{t}(H) \leqslant i_{t}\left(G^{k}\right)$. Let k goes to infinity, we obtain the desired conclusion.

Let G be a graph on n vertices and let p_{1}, \ldots, p_{n} be positive integers. We say that a graph H is a $\left(p_{1}, \ldots, p_{n}\right)$-multiple of G if it is obtained by replacing each vertex x_{i} of G by a set $x_{i 1}, \ldots, x_{i p_{i}}$ of new vertices with an edge betweeen $x_{i j}$ and $x_{i^{\prime} j^{\prime}}$ if and only if there is an edge between x_{i} and $x_{i^{\prime}}$ in G. A multiple is said to be p-regular if $p_{1}=\cdots p_{n}=p$.

Proposition 12. Let H be a multiple of a graph G. Then $I_{t}(G)=I_{t}(H)$ for $t=$ $1,2, \ldots, \chi(G)-1$.

Proof. We prove the lemma in two steps.
(i) Assume first that H is a p-regular multiple of G and let S be a maximum t-colorable subgraph of G^{k}. Then

$$
S^{\prime}=\left\{\left(x_{1 j_{1}}, x_{2 j_{2}}, \ldots, x_{k j_{k}}\right):\left(x_{1}, \ldots, x_{k}\right) \in S \text { and } 1 \leqslant j_{1}, \ldots, j_{k} \leqslant p\right\}
$$

is a t-colorable subgraph of G^{k} of size $p^{k}|S|$. Hence

$$
i_{t}\left(H^{k}\right) \geqslant \frac{\left|S^{\prime}\right|}{(n p)^{k}}=\frac{|S|}{n^{k}}=i_{t}\left(G^{k}\right)
$$

and $I_{t}(H) \geqslant I_{t}(G)$. Combining this with $I_{t}(H) \leqslant I_{t}(G)$ obtained from Lemma 11 (since G is a subgraph of H), we get $I_{t}(G)=I_{t}(H)$ in this case.
(ii) Let H be an arbitrary $\left(p_{1}, \ldots, p_{n}\right)$-multiple of G, and let $p=\max \left\{p_{1}, \ldots, p_{n}\right\}$. Let F be the regular p-multiple of G. By the preceding lemma, we have $I_{t}(F) \leqslant I_{t}(H)$ $\leqslant I_{t}(G)$ since G is a subgraph of H, and H is a subgraph of F. We have already proved $I_{t}(F)=I_{t}(G)$ in part (i) and so we conclude that $I_{t}(G)=I_{t}(H)=I_{t}(F)$.

We can now prove Theorem 10 .

Proof of Theorem 10. Let f be a homomorphism from G to H. Let $F=f(G)$ be the image of G. Let W be a p-regular multiple of F with p sufficiently large ($p=|V(G)|$ is enough). Now F is a subgraph of H and G is a subgraph of W and so, by Lemma $11, I_{t}(H) \leqslant I_{t}(F)$ and $I_{t}(W) \leqslant I_{t}(G)$. Using Lemma 12 we get $I_{t}(F)=I_{t}(W)$, and hence $I_{t}(H) \leqslant I_{t}(G)$. This argument is true for any $t=1,2, \ldots, \chi(G)-1$.

Corollary 13. For any graph G,

$$
\operatorname{NCDS}(G) \leqslant\left(\frac{1}{\omega(G)}, \frac{1}{\omega(G)}, \ldots, \frac{1}{\omega(G)}, 0, \ldots, 0\right)
$$

where there are $\chi(G)-\omega(G)$ zero's and $\omega(G)$ denotes the size of a maximum complete subgraph of G.

Proof. Let K be a maximum complete subgraph of G. Then $K \rightarrow G$ and $\operatorname{NCDS}(K)=$ $\left(\frac{1}{\omega(G)}\right)(1,1, \ldots, 1)$ for a complete graph K by [11].

It follows that we can exactly evaluate $\operatorname{NCDS}(G)$ for perfect graphs G. In fact, we have a more general result:

Corollary 14. If $\omega(G)=\chi(G)$, then $\operatorname{NCDS}(G)=\left(\frac{1}{\chi(G)}\right)(1,1, \ldots, 1)$.
Proof. This follows from Corollary 13 and the lower bound $\operatorname{NCDS}(G) \geqslant\left(\frac{1}{\chi(G)}\right)$ $(1,1, \ldots, 1)$.

In particular, $\operatorname{NCDS}(G)=\left(\frac{1}{2}, \frac{1}{2}\right)$ if G is bipartite.

Acknowledgements

We thank Professor Pavol Hell, Dr. Xuding Zhu and Dr. Guogang Gao for their valuable comments and suggestions.

References

[1] M.O. Albertson and D.M. Berman, The chromatic difference sequence of a graph, J. Combin. Theory Ser. B 29 (1980) 1-12.
[2] M.O. Albertson and K.L. Collins, Homomorphisms of 3-chromatic graphs, Discrete Math. 54 (1985), 127-132.
[3] J.A. Bondy and P. Hell, A note on the star chromatic number, J. Graph Theory 14 (1990) 479-482.
[4] G. Hahn, P. Hell and S. Poljak, On the ultimate independence ratio of a graph, European J. Combin., submitted.
[5] P. Hell and F. Roberts, Analogues of the Shannon capacity of a graph, Ann. Discrete Math. 12 (1982) 155-168.
[6] P. Hell, X. Yu and H. Zhou, Independence ratios of graph powers, Discrete Math. 127 (1994) 213-220.
[7] S.F. Hwang and L.H. Hsu, Capacity equivalent class for graphs with fixed odd girth, Tamkang J. Math. 20 (1989) 159-167.
[8] L. Lovasz, On the Shannon capacity of a graph, IEEE Trans. Inform. Theory IT-25 (1979) 1-7.
[9] C.E. Shannon, The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory 2 (1956) 8-19. [10] A. Vince, Star chromatic number, J. Graph Theory. 12 (1988) 551-559.
[11] H. Zhou, The chromatic difference sequence of the cartesian product of graphs, Discrete Math. 90 (1991) 297-311.
[12] H. Zhou, Chromatic difference sequence and homomorphism, Discrete Math. 113 (1993) 285-292.
[13] X. Zhu, On the bounds for the ultimate independence ratio of a graph, Discrete Math., submitted.

[^0]: * Email: mathhz@gsusgiz.gsu.edu.

