
DISCRETE 
MATHEMATICS 

ELSEVIER Discrete Mathematics 148 (1996) 287 297 ,, 

On the ultimate normalized chromatic difference 
sequence of a graph 

Huishan Zhou * 

Department of Mathematics and Computer Science, Georgia State University. University Plaza, Atlanta, 
GA 30303-3083. USA 

Received 25 February 1992; revised 10 May 1994 

Abstract 

For graphs G and H, the Cartesian product G × H is defined as follows: the vertex set is 
V(G) × V(H), and two vertices (g,h) and (9',h') are adjacent in G × H if either g = g' and 
hh' E E(H) or h = h' and g9' E E(G). Let G k denote the Cartesian product of k copies 
of G. The chromatic difference sequence cds(G) is defined by cds(G) = (al,a2 - a l  . . . . .  at - 
at-~ . . . .  ) where at denotes the maximum number of vertices of t-colorable subgraph of G. The 
normalized chromatic difference sequence ncds(G) is defined by ncds(G) = cds(G)/I V(G)t. 
This paper studies the ultimate normalized chromatic difference sequence of a graph NCDS(G) 
which is equal to the limit of ncds(G k) as k goes to infinity. We study NCDS(G) under the 
context of other graph theoretical properties: star chromatic number, hom-regularity, and graph 
homomorphism. We have provided new upper and lower bounds for NCDS(G). We have also 
proved, among others, that if there is a homomorphism from a graph G to a graph H, then 
NCDS( G) dominates NCDS(H ). 

I. Introduction 

For a graph G, at(G) denotes the m a x i m u m  number  of  vertices o f  t-colorable sub- 

graph o f  G, it(G) the t-coloring ratio of  G (i.e., it(G) = ~t(G)/[V(G)]),  and X = 

z ( G )  the chromatic number of  G. The chromatic difference sequence cds(G)  [1] is 

defined by  

cds(G)  = (~I(G),cz2(G) - oq(G) . . . . .  o~t(G) - oct-l(G) . . . . .  o~z (G) -  ¢zz-I(G)).  

The normalized chromatic difference sequence ncds(G) is defined by  

ncds( G) = cds( G)/I V(G)I 

= (il (G) ,  i2(G) - i1(G) . . . . .  it(G) - i t - I (G)  . . . . .  ix(G) - ix - l (G)) .  
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The n-term sequence (xk) is said to dominate the n-term sequence (Yk), written 
(xk)/> (yk) or (yk) ~ (xk), if: 

(1) 

and 

(2) 

n ± 
Z Xk = Yk, 
k = l  k= l  

P P 

Zxk> ZYk f o r p - - 1 , 2  . . . . .  n - 1  
k=l  k= l  

The n-term sequence (Yk) is said to be between the n-term sequence (Xk) and (z~) if 

either (xk) >/(Yk) >/(zk) or (xk) ~ (Yk) ~ (zk). For graphs G and H,  the Cartesian 
product G × H is defined as follows: the vertex set is V(G) × V(H), and two vertices 
(9,h) and (#t,h') are adjacent in G × H  just if either 9 = 9' and hh' E E(H) or h = h ~ 

and 99 ~ E E(G). We use G k to denote the Cartesian product of k copies of  G. We 
are interested in the ultimate normalized chromatic difference sequence NCDS(G) of 

a graph G, defined by 

NCDS(G) = lim ncds(Gk). 
k---* cx~ 

If  we denote lt(G) = l i m k ~  it(Gk), then NCDS(G) -= (Ii(G),Iz(G) - Ii(G) . . . . .  
It(G) - lt-1(G) . . . . .  1 - Iz_l(G)). We note that ncds(G × H)~,, ncds(G)(ncds(H)), 
ncds(G k) is nonincreasing with respect to k in the sense of  dominance, and so the 

limit NCDS(G) always exists and lies between ncds(G) and the fiat sequence (1/g(G)) 

(1, 1 . . . . .  1), by Theorem 4.1, Corollary 4.2, and Corollary 4.3 of  [11]. 

A homomorphism of G to H is a mapping f : V(G) ~ V(H) such that 99' E E(G) 
implies f ( 9 ) f ( 9  ~) C E(H). We write G ~ H to denote that there is a homomorphism 
of G to H. A homomorphism is a useful tool in studying the NCDS as well as the 
ncds, see also [12]. 

The study of the ultimate normalized chromatic difference sequence can be viewed 

in the spirit of investigating the limiting behaviour of  graph parameters under graph 
products. The work in [4, 5, 7-9] deal with other graph theoretical parameters of other 

types of graph products. 
We have some partial results in [11], and will contribute more results in this paper, 

in which the limit NCDS can be evaluated. In all our results, both in [11] and in this 
paper, the limit is actually equal to either the upper or the lower bound. In [11], we 

work on the classes of  graphs whose cds can be calculated. In this paper, we work 
mainly on the sufficient conditions of the graphs whose ncds is stable, i.e., NCDS = 
ncds, see Theorems 7 and 9. We also obtain a sufficient condition under which NCDS 
reaches the lower bound mentioned above, see Corollary 14. We obtain new lower and 
upper bounds for NCDS in the sense of dominance: see Theorem 1 which gives the 
lower bound in terms of star chromatic number and chromatic number; see Corollary 
13 which gives the upper bound in terms of maximum clique number. Both Corollaries 
13 and 14 are derived from the main theorem of this paper: Theorem 10, i.e., if  there is 
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a homomorphism from a graph G to a graph H ,  then NCDS(G)  dominates NCDS(H).  
Our main ideas originate from [4,6, 13] which concentrated on the first term of  NCDS. 

2. NCDS and star chromatic numbers 

We start with the definition of  the star chromatic number of  a graph [3,10]. Let 

k and d be positive integers such that k>~2d. Set [k] = {0,1 . . . . .  k -  1}. A (k ,d)-  

coloring of  a graph G = (V ,E)  is a mapping c : V ~ [k] such that, for each edge 

( u, v ) E E, d <~ Ic( u ) - e( v )l <<. k - d. The star chromatic number x * ( G ) of  G is defined 
by x*(G) = inf{k/d : G has a (k,d)-colorin9}, and can be calculated by 

z*(G) = min{k/d : G has a (k,d)-coloring for 2d<~k<~lV(G)l }. 

It has been proved that ; t ( G ) -  1 < z* (G)<~(G) .  It has been further proved that a 

graph G is (k,d)-colorable if  and only if there is a homomorphism from G to G d, where 
G d has vertex set {0, 1 . . . . .  k - 1} and edge set {( i , j )  " d~< [ i - j l  ~ < k - d  for i , j  E [k]}. 
See [3, 10] for details. Since NCDS(G) = nods(G) for any circulant graph G [11] it 

follows that 

k ' k  . . . . .  k '  " 

Therefore, we can apply a result o f  Albertson and Collins [2], i.e., if  H is vertex 

transitive and G ~ H,  then ncds(G)>~ncds(H), to obtain a new lower bound for the 
NCDS in the sense of  dominance. 

Theorem 1. For any graph G, 

N C D S ( G ) ~ ( 1  1 1 x - l )  X*' X*' . . . .  ~(., l }2 , 

where X = Z(G) and Z* = x*(G). 

As corollaries, we get Theorem 1 of  [13], i.e., l l(G)~> 1/z*(G ) for any graph G, 
and that x(G)  = z*(G) provided I I (G)  = I /g(G) .  

3. NCDS and horn-regular graphs 

For graphs G and H ,  a t-colorable subgraph cover of  G with respect to H is a 
family {Sh : h E V(H)} such that 

(i) each Sh is a maximum t-colorable subgraph in G, 

(ii) AhCV~H,)Sh ----0 for any (t + 1)-chromatic subgraph H '  of  H ,  and 
(iii) for each Sh, h E V(H),  there exists a t-coloring cs,, of  Sh such that for any 

subgraph H ~ of  H with x(H')<<.t, any v E Nh~v(H,)Sh, there exists a proper coloring 
c/4, of  H '  such that csh(V) = cH,(h) for any h C H ~. 
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It is not hard to check that the conditions (i) and (ii) are equivalent to the condition 
(iv): 

(iv) For each Sh, h E V(H),  there exists a t-coloring csh of Sh such that for any 

subgraph H '  of  H,  if Nh~V¢le,)Sh ~ {0, then for any v E NhcV(n,)Sh, the coloring 
defined by cn,(h) = esh(V) is a proper coloring of H ' .  

The condition (iv) is also equivalent to the following condition (v): 
(v) There is a family of  t-coloring ch: Sh ~ {1 . . . . .  t} such that if hh' 6 E(H)  and 

v E Sh N Sh,, then ch(v) ¢ ch,(v). 
A t-colorable subgraph cover of G is just a t-colorable subgraph cover of G with 

respect to itself. 

For graphs G and H,  if, for any t : 1 < . t < ~ ( G ) -  1, there exists a t-colorable 
subgraph cover of G with respect to H,  then we say that G has a chromatic-complete 
suboraph cover with respect to H.  A chromatic-complete subgraph cover of  G is just a 

chromatic-complete subgraph cover of  G with respect to itself. We have already proved 
that it(G × H)<.i t(G) (see 11, Theorem 4.1] or the argument contained in the proof 
of  the following proposition). Furthermore, we have the following proposition. 

Proposition 2. For 1 <~t~z(G) - 1, 6(G x H )  = it(G) if  and only i f  G has a t- 
colorable subgraph cover with respect to H. 

Proof. Since the restriction of a maximum t-colorable subgraph of G x H  on V(G)x {h} 

is a t-colorable subgraph for h E V(H),  it follows that ott(G × H)<~IV(H)I~t(G). If  
G has a t-colorable subgraph cover {Sh : h E V(H)} with respect to H,  then it 
is easy to check that the union of the sets Sh × {h} is a t-colorable subgraph of 

G x H of cardinality I V(H)I~t(G). Hence ott(G x H )  = [V(H)[ott(G ). Conversely, if 
ctt(G × H)  = [V(H)I~t(G), then take a maximum t-colorable subgraph S of G x H. 

Let Sh = {9 : (#,h) E S}. By the pigeon hole principle, it is easy to see that each Sh 
is a maximum t-colorable subgraph of G. Let H '  be a (t + 1)-chromatic subgraph of 

H. Then Ah~V(H,)Sh = ~. Otherwise, let v E Nh~V~H,)Sh, then {v} x V(H')  induces 
a (t + 1)-chromatic subgraph of S. This is a contradiction since S is t-colorable. The 

restriction of a t-coloring cs of S on Sh is a t-coloring esh on Sh. For any subgraph H '  

of H with g(H~)<~t, any v E Ah~v<14,)Sh, there is a proper coloring of H '  defined by 
ct4,(h) = cs((v,h)) = esh(V) to satisfy (iii). Therefore, {Sh : h E V(H)} is a t-colorable 
subgraph cover of  G with respect to H. [] 

We now focus on a particular class of graphs. We say that G is horn-regular if 

G 2 ~ G. The importance of these graphs can be seen by the following facts: 

Proposition 3. I f  G is hom-reyular and 1 ~<t~<x(G)-  1, then It(G) = it(G) if  and 
only i f  it(G 2) = it(G). 

Proof. If  It(G) = 6(G), then clearly it(G 2) -- /t(G). Assume that it(G 2) = 6(G). 
Since G is hom-regular, we have G k ---, G by induction. Let f be a homomorphism 
of G k to G, and let {So : g E V(G)} be a t-colorable subgraph cover of  G. Such a 
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cover exists by Proposition 2 and the fact that i t(G 2) = it(G). If  we can prove that 

{Sf(u) : u E V(Gk)} is a t-coiorable subgraph cover of  G with respect to G k, then 

it(G k) = it(G) for every k. 

It is easy to see that for any u E V(Gk), f (u)  E V(G),Sf(u) is a maximum t-colorable 

subgraph. For any subgraph H '  of  G k with z(H') --- t + 1, the graph f ( H ' )  induced 

by f ( V ( H ' ) )  in G has chromatic number at least t + 1. Therefore, Nucv(te,)Sf(u) =- 
Ng6f(V(H,))Sy = ~.  For any subgraph H '  of  G k with z(H')~<t,  if z ( f (H ' ) )  > t, then 

Nu~v(z4,)Sf(,) --- 0. So we may assume that z(f(H'))<~t. For any v E Nu~v(H,)Sf(,) = 
No~f(v(14,))So, we need to prove that there exists a proper coloring ell, of  H '  such 
that cs/~u,(v) = cH,(u). Since {S o : 9 E V(G)} is a t-colorable subgraph cover of  G, 

there exists a proper coloring cy(H,) of  f ( H ' )  such that cs,(v) = Cf(H,)(g). Now the 

composition of  cf(H,) and f ,  cH, = cf(14,) • f ,  is a proper coloring of  H '  such that 

cs,, , , ,(v) = cH, (u) .  [] 

Corollary 4. I f  G is hom-regular, then NCDS( G) = ncds( G) if and only if ncds( G 2) = 
ncds( G ). 

A graph G is a core if  each homomorphism G --~ G is an automorphism of  G, i.e., is 

a bijection. For horn-regular cores, we show that It(G) = it(G) for t = 1,2 . . . . .  z (G) -1 ,  
i.e., NCDS(G) = ncds(G). We need to introduce the concept of  Aut(G), the automor- 

phism graph of  G: The vertices of  Aut(G) are automorphisms of  G, and f f '  is an 

edge of  Aut(G) just if f ( g ) f ' ( 9 )  E E(G) for each vertex 9 of  G. 

Proposition 5. A core G is hom-regular if  and only if G --* Aut(G). 

Proof.  See [6] for the proof. It is also mentioned in [6] that hom-regular cores have 

a more standard kind of  regularity: Any hom-regular core is vertex transitive. [] 

Proposition 6. I f  G ---, Aut(G), then G has a chromatic-complete subgraph cover. 

Proof.  We prove that for every t, 1 <~t<<,g(G ) - 1, G has a t-colorable subgraph cover. 

Let f : G --* Aut(G) be a homomorphism, and S a maximum t-colorable subgraph of  

G. We prove that the family { f (g)(S)  : g E V(G)} is a t-colorable subgraph cover o f  
G. 

Each f (g ) (S)  is a maximum t-colorable subgraph of  G since f ( g )  is an automor- 

phism and S is a maximum t-colorable subgraph of  G. In order to prove that the family 

{ f (#)(S)  : g E V(G)} satisfies (ii) and (iii) required by the definition o f  t-colorable 

subgraph cover, we prove the following fact first. Let K be a subgraph of  G and 

v E Ngev(r)(f(g))(S). Assume further that 

f ( g l  ) ( S l )  = f(g2)(s2) . . . . .  f (Om)(Sm) = V, 
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where V(K)  = {gl,g2 . . . . .  gin} and si E V(S)  for i = 1,2 . . . . .  m. Define ff : ~(9i) = si 
(i = 1,2 . . . . .  m). We claim that ~k is a homomorphism from K to S. Let g~gj be an edge 

of  the subgraph K, where i , j  E {1,2 . . . . .  m} and i C j .  Then f ( g i ) f ( g j )  is an edge o f  

Aut(G).  First, we prove that st ¢ sj. Otherwise, vv = f ( o i ) ( s i ) f ( o j ) ( s j )  = f (g i ) ( s i )  
f ( g j ) ( & )  E E(G).  This is a contradiction. Second, we prove that sisj E E(G).  Let 

f ( g i ) ( s j )  = w. Then f ( g i ) ( s j ) f ( g j ) ( s j )  = wv E E(G).  Since f ( g i )  is an automorphism, 

we have sisj = ( f ( g i ) ) - l ( v ) ( f ( o i ) ) - l ( w )  E E(G) .  Therefore, ~b is a homomorphism. 

Now we can conclude that (']o~V(K) f ( g ) ( S )  = 0 for any (t + 1 )-chromatic subgraph 

K of  G. For otherwise, there exists a homomorphism from K to S, which implies 

t + 1 = z (K)<~z(S  ), a contradiction. For checking the condition (iii), we note that if 

c is a t-coloring o f  S, then there is a natural t-coloring cf(g)(s) of  f ( g ) ( S )  defined by 

cf(g)(s)[f(g)(s)] = c(s)(s E S)  for every g E V(G). For any j-chromatic subgraph K 

of  G (1 <<.j<~t), any v E ~o~V(K) f (g ) (S ) ,  let V(K)  = {gl,g2 . . . .  g,,}, and si E S (i = 
1,2 . . . . .  m) such that f (g i ) ( s i )  = v (i = 1,2 . . . . .  m). As we proved above, the mapping 

~0 defined by ~k(gi) = st (i -- 1,2 . . . . .  m) is a homomorphism from K to S. Hence 
we can define a coloring cx on K by eK(gi) = c • ~b(gi ) = e(si) for i = 1,2 . . . . .  m. 

Now it is obvious that CK(gi) = C(Si) = Cf(oi)(s)[f(gi)(Si)] = Cf(o,)(S)(V ) for any 
g~ E V(K).  [] 

Theorem 7. A horn-regular core G has NCDS(G)  = ncds(G). 

Proof.  A hom-regular core G has G ~ Aut (G)  by Proposition 5 and a chromatic- 

complete subgraph cover by Proposition 6. Now Proposition 2 implies that it(G 2) = 

it(G), and Proposition 3 that I t(G) = it(G) for t = 1,2 . . . . .  z (G)  - 1. [] 

It is easy to see that a Cayley graph G of  a commutative group has G ~ Aut (G)  

(using left multiplications). Thus if G is also a core, I t (G) = it(G). We will see below 

that the condition of  being a core is not necessary. 

Let V ( H )  be a commutative group, with the operation written as +.  A strong t- 

colorable subgraph cover of  G with respect to H (or just "o f  G" if G = H )  is a 

t-colorable subgraph cover {Sh : h E V(H)} of  G with respect to H,  such that 

(a) for any ( t +  1)-chromatic subgraph K of  H,  Ag~V(K)Sg+x = 0 for any x E V(H); 

and 
(b) for any u E V(H) ,  there exists a t-coloring csu of  Su such that for any x E V(H) ,  

any j-chromatic subgraph K of  H (1 <~j<~t), and any v E AgCV(K)Sg+x, there exists a 

j-coloring cK of  K, which induces a natural j-coloring on K + x, CK+x(g + x )  = CK(g) 

for g E V(K) ,  such that CK+x(g + x)  = CS~+x(V) for any g E V(K).  

For graphs G and H, if for any t, 1 <<.t<<.z(G ) - 1, there exists a strong t-colorable 

subgraph cover o f  G with respect to H,  then we say that G has a strong chromatic- 

complete subgraph cover with respect to H.  

Proposition 8. I f  G has a strong chromatic-complete subgraph cover, then each G k 
(k = 1,2 . . . . .  ) has a strong chromatic-complete subgraph cover with respect to G. 
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Proof.  By induction on k. If  {S o : g E V(G)}, is a strong t-colorable (t E {1,2 . . . . .  
z(G) - 1}) subgraph cover of  G k with respect to G, we define {S~ : g E V(G)} as 

follows: 

s;= U 
xEV(G) 

It is easy to see that each S'y (9 E V(G)) is a maximum t-colorable subgraph of  G k+l. 

Furthermore, we claim that {S~ : g E V(G)} is a strong t-colorable subgraph cover of  

G k+l with respect to G. Let K be a (t + 1)-chromatic subgraph of  G. Then 

yEAK, (.vE~V(G}(S'q+x+Y X {Y')) ~yE~V{G, (9E~K)(So+x+Y X {Y}) ) 

) 'E V(G) g ) 

by induction hypothesis. 
For any v E S~, let v = (u,y~) where u E Sg+y,.,yv E V(G). We color v by the 

color of  u in the t-coloring of  So+y,.. Now assume that x E V(G), K is a j-chromatic 

subgraph of  G (j'~<t), and 

gEV(K) gEV(K) y 

yEV(G) 
Then there exists yv E V(G) such that v E (NgEV(K)So+x+y,,) × {yv}, i.e., for any 
g E V(K), there exists u E Sg+x+y,. such that v = (u,y~.). By applying the induction 

hypothesis and the definition of  coloring Css+~ on S~+ x, we have 

CK+x(g q-X) = C& . . . . .  , , ( U )  = CS~+, (V ) 
for any v E V(K) and any x E V(G). Therefore, {S~ : g E V(G)} is a strong t-colorable 

subgraph cover o f  G k+l with respect to G. [] 

Now the following theorem follows from Propositions 2 and 8. 

Theorem 9. I f  G has a strong chromatic-complete subgraph cover, then NCDS(G) = 
ncds(G). In particular, NCDS(G) = ncds(G) for Cayley graphs of  commutative 
groups, since it has a strong chromatic-complete subgraph cover. [] 
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4. NCDS and homomorphisms  

If  we get rid o f  the condition of  vertex transitivity o f  the graph H in the so-called 

"no-homomorphism lemma" of  [2] (see the statement o f  this lemma and the notation 

just before Theorem 1 of  this paper), then the dominance will not hold. Let G be a 

triangle. Let H have vertices 

fb .  Then G --+ H, ncds(G) --- 
dominate ncds(H). It is very 

NCDS of  the two graphs will 

a, b, c, d, e, f ;  and edges ab, bc, ca, db, dc, ea, ec, f a  and 

½(1, 1, 1, ), and ncds(H) = (1, ½). ncds(G) does not 
interesting that the dominance relationship between the 

still hold. 

Theorem 10. I f  G ~ H, then NCDS(G) >/ NCDS(H). 

We shall begin by proving two propositions of  independent interest. 

Proposition 11. Let G be a suboraph of  H. Then It(G)>~It(H) for t = 1,2 . . . . .  ;t(G). 

Proof.  Without loss of  generality we assume, in this proof and the proof o f  next 

proposition, that V ( G ) =  {1,2 . . . . .  n} and V(H) = {1,2 . . . . .  m} are the vertex sets o f  

G and H,  respectively. For each k ~> 1, consider the subset Sk of  V(H k) defined by 

Sk = {x :Xr<.n for some r = 1 . . . . .  k}, 

that is, the set o f  those vertices x = (xl . . . . .  xk) of  H k for which at least one coordinate 

Xr belongs to V(G). We claim that it(G)>~it(Sk). 
In order to prove the claim, we partition Sk into Sk, l t3 Sk,2 t_J . . .  t3 Sk, k, and show 

that it(G)>~it(Sk, r) for each r = 1 . . . . .  k. We define Sk,1 = {x :xl  ~<n}, and Sk, r = {x : 
xr ~< n and xj > n for j = 1 . . . . .  r - 1 }, r = 2 . . . . .  k. In other words, x belongs to Sk, 

just if r is its first coordinate with Xr <~ n. 
Now observe that each Sk, r is the disjoint union of  sets o f  the form 

{(Xl . . . . .  Xr-l ,y,  Xr+l . . . . .  Xk) : y : 1 . . . . .  n}, 

where Xl . . . . .  x~-l,Xr+l . . . . .  xk are fixed and xj > m for j < r. Since each of  these 

disjoint sets induces, in H k, a graph isomorphic to G, it(G)>~it(Sk, r) for each r, and 

hence also 

~t(Sk)  oQ(Sk, l )  ~t-O~t(Sk,2)--[ - . . .  Jt-O~t(Sk, k) 
it(Sk) = I&l ISk[ 

0{t(Sk, l )  ISk, l[ k) I&kl -- _ _ _ _  + . . . +  
[&l[ ISkl I&kl ISkl 

I&ll I&kl 
: it(Sk, l ) - ~  + " "  q-it(Sk, k) 

<. it(G) \ - ~  + " "  + - ~ ]  = it(G). 

This proves the claim. 

(1) 
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To finish the proof of this lemma, observe that the complement of  Sk in V(H k) 
contains ( m -  n) k vertices. Now clearly 

at(H k) <~ at(Sk) + o~t(Hk\Sk) 
i t (Hk)= iV(Hk)l I V(Hk)l 

O~t(Sk) ISkl O~t(gk\Sk) _<: O~t(Sk) 
- ISk---F IV(Hk)----~l + IV(Hk)l  ~ ISkl 

: i t ( S k ) +  IV(Zk)\Sk[ ( n )  k 
iV(Hk) I - i t (Sk)+ 1 - -m 

(Hk\Sk)  + - -  
]V(Uk)l 

=it(G)--}- ( l - n )  k. (2) 

Taking the limit of both sides, as k goes to infinity, we obtain that It(H)<~it(G). 
For any integer k >t 1, G k is a subgraph of H k. By the similar argument as above, we 

obtain that It(H)<~it(Gk). Let k goes to infinity, we obtain the desired conclusion. [] 

Let G be a graph on n vertices and let Pl . . . . .  p ,  be positive integers. We say that 
a graph H is a (Pl . . . . .  p ,  )-multiple of G if it is obtained by replacing each vertex xi 
of G by a set Xil . . . . .  xip, of new vertices with an edge betweeen xij and xi,j, if and 
only if there is an edge between xi and xi, in G. A multiple is said to be p-regular if 

Pl . . . .  P , = P .  

Proposition 12. Let H be a multiple o f  a graph G. Then It(G) = I t ( H ) f o r  t = 
1,2 . . . . .  z ( G ) -  1. 

Proof. We prove the lemma in two steps. 

(i) Assume first that H is a p-regular multiple of G and let S be a maximum 
t-colorable subgraph of G k. Then 

S' : {(xu,,x2j2 . . . . .  Xkjk):(Xl . . . . .  Xk) E S and l~<j l  . . . . .  jk ~<P} 

is a t-colorable subgraph of G k of size pklS I. Hence 

it(Hk)>/ Isq : I S / =  it(Gk), 
(np)  k n k 

and It(H)>~It(G). Combining this with It(H)<~It(G) obtained from Lemma 11 (since 
G is a subgraph of H) ,  we get It(G) = It(H) in this case. 

(ii) Let H be an arbitrary (Pl . . . . .  p ,  )-multiple of G, and let p = max{pi . . . . .  p,}.  
Let F be the regular p-multiple of  G. By the preceding lemma, we have It(F)<~It(H) 
<<.It(G) since G is a subgraph of H, and H is a subgraph of F. We have already 
proved It(F) = It(G) in part (i) and so we conclude that It(G) = It(H) = It(F). [] 

We can now prove Theorem 10. 
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Proof of Theorem 10. Let f be a homomorphism from G to H.  Let F = f (G) be the 
image of  G. Let W be a p-regular multiple o f F  with p sufficiently large ( p  = IV(G)] 

is enough). Now F is a subgraph of  H and G is a subgraph of  W and so, by Lemma 
l l, It(H)<~It(F) and It(W)<.It(G). Using Lemma 12 we get It(F) = It(W), and hence 
It(H)<~It(G). This argument is true for any t = 1,2 . . . . .  z (G) -  1. [] 

Corollary 13. For any graph G, 

N C D S ( G ) ~ (  1 ' 1 ~ ) 
o~(-G) R~(G) . . . .  ' ,0 . . . .  ,0 , 

where there are z ( G ) - o J ( G )  zero's and ~o( G) denotes the size of a maximum complete 
subgraph of G. 

Proof. Let K be a maximum complete subgraph of  G. Then K ~ G and NCDS(K) = 
( ~ ) ( 1 ,  1 . . . . .  1 ) for a complete graph K by [ 11 ]. [] 

It follows that we can exactly evaluate NCDS(G) for perfect graphs G. In fact, we 

have a more general result: 

Corollary 14. I f  og(G) = z(G),  then NCDS(G) = (z--~G))(1' 1 . . . . .  1). 

Proof. This follows from Corollary 13 and the lower bound NCDS(G)~(~-~6)) 
(1,1 . . . . .  1). [] 

In particular, NCDS(G) = (½, ½) if G is bipartite. 
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