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Abstract

For graphs G and H, the Cartesian product G x H is defined as follows: the vertex set is
V(G) x V(H), and two vertices (g,h) and (g',h’) are adjacent in G x H if either g = g’ and
hh' € E(H) or h = k' and g¢' € E(G). Let G* denote the Cartesian product of k copies
of G. The chromatic difference sequence cds(G) is defined by cds(G) = (ai, a2 — ay,...,a —
a,—1,...) where a; denotes the maximum number of vertices of z-colorable subgraph of G. The
normalized chromatic difference sequence ncds(G) is defined by ncds(G) = cds(G)/|V(G)|.
This paper studies the ultimate normalized chromatic difference sequence of a graph NCDS(G)
which is equal to the limit of ncds(G*) as k goes to infinity. We study NCDS(G) under the
context of other graph theoretical properties: star chromatic number, hom-regularity, and graph
homomorphism. We have provided new upper and lower bounds for NCDS(G). We have also
proved, among others, that if there is a homomorphism from a graph G to a graph H, then
NCDS(G) dominates NCDS(H ).

1. Introduction

For a graph G, o,(G) denotes the maximum number of vertices of ¢-colorable sub-
graph of G, i,(G) the t-coloring ratio of G (i.e., i(G) = 4 (G)/|V(G)|), and y =
1(G) the chromatic number of G. The chromatic difference sequence cds(G) [1] is
defined by

cds(G) = (01(G), 22(G) — 1 (G),...,0(G) = 04— 1(G), ..., o (G) — 2, 1(G)).
The normalized chromatic difference sequence ncds(G) is defined by
neds(G) = cds(G)/|V(G)

=((1(G), 2(G) — i(G), ..., i(G) — ir—1(G), ..., i, (G) — iy —1(G)).
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The n-term sequence (x;) is said to dominate the n-term sequence (y,), written
(k) 2 () or (yi) < (x), if:

M D wm=)
k=1 k=1

and

I I
(2) =)y for p=12,...n-1
k=1 k=1
The n-term sequence (yx) is said to be between the n-term sequence (x;) and (z) if
either (xx) 2 (yi) 2 (zx) or (xx) < (¥x) <X (z). For graphs G and H, the Cartesian
product G x H is defined as follows: the vertex set is V(G) x V(H), and two vertices
(g,h) and (¢g',#’) are adjacent in G x H just if either g=¢' and kW € E(H) or h=H
and gg’' € E(G). We use G* to denote the Cartesian product of k copies of G. We
are interested in the ultimate normalized chromatic difference sequence NCDS(G) of
a graph G, defined by

NCDS(G) = lim neds(G*).

If we denote I,(G) = limy_ o ir(G*), then NCDS(G) = (I)(G),,(G) — L(G),...,
I(G) — I,_1(G),...,1 = I,_1(G)). We note that ncds(G x H) < ncds(G)(ncds(H)),
ncds(G*) is nonincreasing with respect to k in the sense of dominance, and so the
limit NCDS(G) always exists and lies between ncds(G) and the flat sequence (1/%(G))
(1,1,...,1), by Theorem 4.1, Corollary 4.2, and Corollary 4.3 of [11].

A homomorphism of G to H is a mapping f : V(G) — V(H) such that gg' € E(G)
implies f(g)f(g’) € E(H). We write G — H to denote that there is a homomorphism
of G to H. A homomorphism is a useful tool in studying the NCDS as well as the
ncds, see also [12].

The study of the ultimate normalized chromatic difference sequence can be viewed
in the spirit of investigating the limiting behaviour of graph parameters under graph
products. The work in [4, 5, 7-9] deal with other graph theoretical parameters of other
types of graph products.

We have some partial results in [11], and will contribute more results in this paper,
in which the limit NCDS can be evaluated. In all our results, both in [11] and in this
paper, the limit is actually equal to either the upper or the lower bound. In [11], we
work on the classes of graphs whose cds can be calculated. In this paper, we work
mainly on the sufficient conditions of the graphs whose ncds is stable, i.e.,, NCDS =
ncds, see Theorems 7 and 9. We also obtain a sufficient condition under which NCDS
reaches the lower bound mentioned above, see Corollary 14. We obtain new lower and
upper bounds for NCDS in the sense of dominance: see Theorem 1 which gives the
lower bound in terms of star chromatic number and chromatic number; see Corollary
13 which gives the upper bound in terms of maximum clique number. Both Corollaries
13 and 14 are derived from the main theorem of this paper: Theorem 10, i.e., if there is
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a homomorphism from a graph G to a graph H, then NCDS(G) dominates NCDS(H ).
Our main ideas originate from [4,6, 13] which concentrated on the first term of NCDS.

2. NCDS and star chromatic numbers

We start with the definition of the star chromatic number of a graph [3,10]. Let
k and d be positive integers such that k£ >2d. Set [k] = {0,1,...,k — 1}. A (k,d)-
coloring of a graph G = (V,E) is a mapping ¢ : ¥V — [k] such that, for each edge
(u,v) € E,d <|c(u) — c(v)| <k — d. The star chromatic number 3*(G) of G is defined
by x*(G) = inf{k/d : G has a (k,d)-coloring}, and can be calculated by

¥*(G) = min{k/d : G has a (k,d)-coloring for 2d <k <|V(G)|}.

It has been proved that y(G) — 1 < y*(G)<yx(G). It has been further proved that a
graph G is (k,d)-colorable if and only if there is a homomorphism from G to G¢, where
G? has vertex set {0,1,...,k~ 1} and edge set {(i,j) : d<|i—j|<k—d for i,j € [k]}.
See [3,10] for details. Since NCDS(G) = ncds(G) for any circulant graph G [11] it
follows that
dd dk-|%]d
dy _ dy _ [ ¢ @ a4 d
NCDS(Gk)—ncds(Gk)—(k,k,...,k, p .
Therefore, we can apply a result of Albertson and Collins [2], i.e., if H is vertex
transitive and G — H, then ncds(G)=ncds(H), to obtain a new lower bound for the
NCDS in the sense of dominance.

Theorem 1. For any graph G,

11 —1
NCDS(G)>(—*,-:,...,—*,1—X )
A r

where y = y(G) and y* = ¥*(G).

As corollaries, we get Theorem 1 of [13], ie., [;(G)=1/x*(G) for any graph G,
and that x(G) = x*(G) provided I,(G) = 1/x(G).

3. NCDS and hom-regular graphs

For graphs G and H, a t-colorable subgraph cover of G with respect to H is a
family {S, : h € V(H)} such that

(1) each S, is a maximum ¢-colorable subgraph in G,

(ii) ﬂheV(H,)S;, = ) for any (¢ + 1)-chromatic subgraph H' of H, and

(iii) for each S,, h € V(H), there exists a ¢-coloring cg, of S, such that for any
subgraph H' of H with x(H')<t, any v € ﬂheV( w1y Sk, there exists a proper coloring
cy of H' such that cg,(v) = cy/(h) for any h € H'.



290 H. Zhou! Discrete Mathematics 148 (1996) 287-297

It is not hard to check that the conditions (i) and (ii) are equivalent to the condition
(iv):

(iv) For each S, h € V(H), there exists a t-coloring cg, of S, such that for any
subgraph H' of H, if (NycpySn # 0, then for any v € N,y ) S, the coloring
defined by cy/(h) = cs,(v) is a proper coloring of H'.

The condition (iv) is also equivalent to the following condition (v):

(v) There is a family of ¢-coloring cs: Sy — {1,...,¢} such that if sk’ € E(H) and
v € 8, N Sy, then cp(v) # cp (V).

A t-colorable subgraph cover of G is just a z-colorable subgraph cover of G with
respect to itself.

For graphs G and H, if, for any ¢ : 1<¢t<y(G) — 1, there exists a t-colorable
subgraph cover of G with respect to H, then we say that G has a chromatic-complete
subgraph cover with respect to H. A chromatic-complete subgraph cover of G is just a
chromatic-complete subgraph cover of G with respect to itself. We have already proved
that /(G x H)<i,(G) (see 11, Theorem 4.1] or the argument contained in the proof
of the following proposition). Furthermore, we have the following proposition.

Propeosition 2. For 1<t<y(G) -1, i(G x H) = i,(G) if and only if G has a t-
colorable subgraph cover with respect to H.

Proof. Since the restriction of a maximum ¢-colorable subgraph of GxH on V(G)x{h}
is a r-colorable subgraph for & € V(H), it follows that a,(G x H)<|V(H)|oa(G). If
G has a t-colorable subgraph cover {S, : & € V(H)} with respect to H, then it
is easy to check that the union of the sets S, x {h} is a s-colorable subgraph of
G x H of cardinality |V (H)|e,(G). Hence o,(G x H) = |V(H)|o(G). Conversely, if
(G x H) = |V(H)|%(G), then take a maximum ¢-colorable subgraph S of G x H.
Let Sy = {g : (g,h) € S}. By the pigeon hole principle, it is easy to see that each S},
is a maximum ¢-colorable subgraph of G. Let H' be a (¢ + 1)-chromatic subgraph of
H. Then ﬂhEV(H,)Sh = (). Otherwise, let v € ;¢ () Sh, then {v} x V(H') induces
a (¢ + 1)-chromatic subgraph of S. This is a contradiction since S is f-colorable. The
restriction of a t-coloring cs of S on S, is a ¢-coloring cg, on S;. For any subgraph H'
of H with y(H')<t, any v € [),cpy) Sh» there is a proper coloring of H' defined by
cy(h) = cs((v,h)) = cs,(v) to satisfy (iii). Therefore, {Sy : # € V(H)} is a t-colorable
subgraph cover of G with respect to H. [

We now focus on a particular class of graphs. We say that G is hom-regular if
G? — G. The importance of these graphs can be seen by the following facts:

Proposition 3. If G is hom-regular and 1<t<y(G) — 1, then I,(G) = i(G) if and
only if i(G*) = ir(G).

Proof. If I,(G) = i(G), then clearly i,(G?) = i,(G). Assume that i,(G?) = i(G).
Since G is hom-regular, we have G¥ — G by induction. Let f be a homomorphism
of G* to G, and let {S, : g € ¥(G)} be a t-colorable subgraph cover of G. Such a
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cover exists by Proposition 2 and the fact that i,(G?) = i,(G). If we can prove that
{Srwy : u € V(G*)} is a t-colorable subgraph cover of G with respect to G*, then
i(G*) = iy(G) for every k.

It is easy to see that for any u € V(G*), f(u) € V(G),S f(uy 15 @ maximum ¢-colorable
subgraph. For any subgraph H' of G* with y(H') = t + 1, the graph f(H’) induced
by f(V(H')) in G has chromatic number at least ¢ + 1. Therefore, {3 c)yr) Sre =
Mye /vy Sa = 0. For any subgraph H' of G* with y(H')<t, if x(f(H')) > ¢, then
Nuevary Srw = 0. So we may assume that x(f(H'))<t. For any v € ey Sre =
Mge severy Sg» We need to prove that there exists a proper coloring cys of H' such
that cs,,,(v) = cp(u). Since {S; : g € V(G)} is a t-colorable subgraph cover of G,
there exists a proper coloring c sy of f(H') such that cg,(v) = cyuv)(g). Now the
composition of cspry and f, cyr = cyry - f, is a proper coloring of H' such that
es, o0y =cyr(u). O

Corollary 4. If G is hom-regular, then NCDS(G) = ncds(G) if and only if ncds(G?) =
neds(G).

A graph G is a core if each homomorphism G — G is an automorphism of G, i.c., is
a bijection. For hom-regular cores, we show that I[,(G) = i,(G) fort = 1,2,...,x(G)—1,
i1.e., NCDS(G) = ncds(G). We need to introduce the concept of Aut(G), the automor-
phism graph of G: The vertices of Aut(G) are automorphisms of G, and ff’ is an
edge of Aut(G) just if f(g)f'(g) € E(G) for each vertex g of G.

Proposition 5. A core G is hom-regular if and only if G — Aut(G).

Proof. See [6] for the proof. It is also mentioned in [6] that hom-regular cores have
a more standard kind of regularity: Any hom-regular core is vertex transitive. [

Proposition 6. If G — Aut(G), then G has a chromatic-complete subgraph cover.

Proof. We prove that for every ¢,1<¢<x(G)— 1, G has a t-colorable subgraph cover.
Let f: G — Aut(G) be a homomorphism, and § a maximum ¢-colorable subgraph of
G. We prove that the family {f(g)(S): g € V(G)} is a t-colorable subgraph cover of
G.

Each f(g)(S) is a maximum ¢-colorable subgraph of G since f(g) is an automor-
phism and § is a maximum #-colorable subgraph of G. In order to prove that the family
{f(g)S) : g € V(G)} satisfies (ii) and (iii) required by the definition of ¢-colorable
subgraph cover, we prove the following fact first. Let K be a subgraph of G and
v € Nyery(f(9)XS). Assume further that

f(g1)s1) = f(g2)(s2) = -+ = f(gm)(Sm) = v,
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where V(K) = {91,92,.--,9m} and s; € V(S) for i = 1,2,...,m. Define y : Y(g;) = s;
(i=1,2,...,m). We claim that i is a homomorphism from X to S. Let g;g; be an edge
of the subgraph K, where i,j € {1,2,...,m} and i # j. Then f(g;)f(g;) is an edge of
Aut(G). First, we prove that s; # s;. Otherwise, vv = f(g;)(s:)f(g;)(s;) = f(g:)(s;)
f(g;)(s;) € E(G). This is a contradiction. Second, we prove that s;5; € E(G). Let
f(gi)s;) =w. Then f(g:)(s;)f(g;)s;) = wv € E(G). Since f(g;) is an automorphism,
we have s;5; = (f(9:)) "' (v)(f(9:))""(w) € E(G). Therefore, ¥ is a homomorphism.

Now we can conclude that ﬂgeV(K) f(g)(S) = 0 for any (¢ + 1)-chromatic subgraph
K of G. For otherwise, there exists a homomorphism from K to S, which implies
t+ 1= (K)<x(S), a contradiction. For checking the condition (iii), we note that if
c is a t-coloring of S, then there is a natural r-coloring cyyys) of f(g)(S) defined by
crgs[f(g)s)] = c(s)(s € §) for every g € V(G). For any j-chromatic subgraph K
of G (1<j<t), any v € (Vycpxy S(9)S), let V(K) = {g1,92,...gm}, and 5, € S (i =
1,2,...,m) such that f(g;)(s;) =v (i =1,2,...,m). As we proved above, the mapping
Y defined by W(g;) = s; (i = 1,2,...,m) is a homomorphism from K to S. Hence
we can define a coloring cx on K by cx(g:) = ¢ - Y(g;) = c(s;) for i = 1,2,...,m.
Now it is obvious that cx(g:) = c(s:) = )l f (@i )s:)] = crgys)(v) for any
g €V(K). O

Theorem 7. 4 hom-regular core G has NCDS(G) = ncds(G).

Proof. A hom-regular core G has G — Aut(G) by Proposition 5 and a chromatic-
complete subgraph cover by Proposition 6. Now Proposition 2 implies that i,(G*) =
iy(G), and Proposition 3 that [,(G) = i(G) for t = 1,2,...,x(G)y-1. O

It is easy to see that a Cayley graph G of a commutative group has G — Aut(G)
(using left multiplications). Thus if G is also a core, [,(G) = i,(G). We will see below
that the condition of being a core is not necessary.

Let V(H) be a commutative group, with the operation written as +. A strong f-
colorable subgraph cover of G with respect to H (or just “of G” if G = H) is a
t-colorable subgraph cover {S; : h € V(H)} of G with respect to H, such that

(a) for any (+ 1)-chromatic subgraph K of H, [,y k) Sg4x = (} for any x € V(H);
and

(b) for any u € V(H), there exists a #-coloring cg, of S, such that for any x € V(H),
any j-chromatic subgraph K of H (1</j<¢), and any v € ﬂgey(K) Sg+x, there exists a
j-coloring cx of K, which induces a natural j-coloring on K + x, cx4+.(g +x) = ck(g)
for g € V(K), such that cx.(g9 + x) = cs,, (v) for any g € V(K).

For graphs G and H, if for any £, 1<t<y(G) — 1, there exists a strong ¢-colorable
subgraph cover of G with respect to H, then we say that G has a strong chromatic-
complete subgraph cover with respect to H.

Proposition 8. If G has a strong chromatic-complete subgraph cover, then each G*
(k =1,2,....) has a strong chromatic-complete subgraph cover with respect to G.
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Proof. By induction on k. If {S, : g € V(G)}, is a strong t-colorable (z € {1,2,...,
2(G) — 1}) subgraph cover of G* with respect to G, we define {S, : g € V(G)} as
follows:

Sy = U (Sg+x x {x}).

X€V(G)

It is easy to see that each S (g € ¥(G)) is a maximum -colorable subgraph of G**'.
Furthermore, we claim that {S; : g € V(G)} is a strong ¢-colorable subgraph cover of
G**! with respect to G. Let K be a (¢ + 1)-chromatic subgraph of G. Then

m U (Sgrxry x ¥ | = U ﬂ (Sgexsy X {¥})

geV(K) \yeV(G) YEV(G) \geV(K)
= U m Sgexty | X {»}] =0
YEV(G) geV(K)

by induction hypothesis.

For any v € S;, let v = (u,y,) where u € Sy4y., ¥ € V(G). We color v by the
color of u in the ¢-coloring of Sy, , . Now assume that x € V(G), K is a j-chromatic
subgraph of G (j<t), and

vE ﬂ S;+x= m U (Sg+x+yx{y})

geV(K) geEV(K) \yeV(G)

= U m (Sg+x+y X {y})

YEV(G) \9eV(K)

= U ﬂ Sg+x+y X{y}

yeV(G) geEV(K)

Then there exists y, € V(G) such that v € (,cpx)Sgtxtr) X {¥s}, ie., for any
g € V(K), there exists u € Sg4.4y, such that v = (u, y,). By applying the induction

hypothesis and the definition of coloring ¢, on Sy1x» We have

ck+x(g +x) = cs,,.., (1) = ¢, (V)

for any v € V(K) and any x € V(G). Therefore, {S; : g € V(G)} is a strong t-colorable
subgraph cover of G**! with respect to G. O

Now the following theorem follows from Propositions 2 and 8.
Theorem 9. If G has a strong chromatic-complete subgraph cover, then NCDS(G) =

ncds(G). In particular, NCDS(G) = ncds(G) for Cayley graphs of commutative
groups, since it has a strong chromatic-complete subgraph cover. [
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4. NCDS and homomorphisms

If we get rid of the condition of vertex transitivity of the graph A in the so-called
“no-homomorphism lemma” of [2] (see the statement of this lemma and the notation
just before Theorem 1 of this paper), then the dominance will not hold. Let G be a
triangle. Let H have vertices a,b,c,d,e, f; and edges ab, bc,ca,db,dc,ea,ec, fa and
fb. Then G — H,ncds(G) = 3(1,1,1,), and ncds(H) = (},1,3). ncds(G) does not
dominate ncds(H ). It is very interesting that the dominance relationship between the
NCDS of the two graphs will still hold.

Theorem 10. If G — H, then NCDS(G) = NCDS(H).
We shall begin by proving two propositions of independent interest.
Proposition 11. Let G be a subgraph of H. Then I(G)=1(H) for t = 1,2,...,2(G).

Proof. Without loss of generality we assume, in this proof and the proof of next
proposition, that ¥(G) = {1,2,...,n} and V(H) = {1,2,...,m} are the vertex sets of
G and H, respectively. For each k> 1, consider the subset S; of V(H*) defined by

Sy = {x : x,<n for some r = 1,...,k},

that is, the set of those vertices x = (xy,...,x;) of H* for which at least one coordinate
x, belongs to V(G). We claim that i((G)>i(Sk).

In order to prove the claim, we partition S; into Sg; U Sg2 U -+ U Sik, and show
that i(G)>i(S,) for each r = 1,...,k. We define Sx; = {x : x;<n}, and S, = {x:
x,<nand x; > n for j=1,...,r — 1},r =2,...,k In other words, x belongs to S,
just if r is its first coordinate with x, <n.

Now observe that each Sy, is the disjoint union of sets of the form

{1 s Xr s P Xty Xk) 1y = 1,00},
where xi,...,%,_1,%r+1,...,X are fixed and x; > m for j < r. Since each of these
disjoint sets induces, in H*, a graph isomorphic to G, i(G)>i/(S,) for each r, and
hence also

i(Sk) = o (Sk) < 0 (Sk 1) + 0 (Sk2) + -+ + a4 (Skx)

ISk ISk
_ 0(Se) Sl %(Skk) [ Skl
1Sk1] |Skl Skl [kl
. [Sk1 ; Sk,
=i(Sp1)~ + - FiE(Skr) 5
I( k,]) |Sk’ l( k,k) ISkl
. ISk.1] ISkkl) .
< i(G —— 4. — | =i(G). 1

This proves the claim.
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To finish the proof of this lemma, observe that the complement of S, in V(H*)
contains (m — n)t vertices. Now clearly

o (H*) < o (Sk) + a,(Hk\Sk)

VEHS ™ VHY)

_ %(Sk) |Sk| Otx(H"\Sk)<0tr(Sk) (H"\S¢)
ISe| [V (H*)) V(S T[Sl |V (H)|

[V (H\S|

) ) n\k
=80+ st = S + (1 - ;)

i(H*) =

i@+ (1- 1) 2)

Taking the limit of both sides, as & goes to infinity, we obtain that I,(H)<i/(G).
For any integer £ >1, G* is a subgraph of H*. By the similar argument as above, we
obtain that I,(H)<i,(G*). Let k goes to infinity, we obtain the desired conclusion. [

Let G be a graph on n vertices and let p,,..., p, be positive integers. We say that
a graph H is a (p,..., pn)-multiple of G if it is obtained by replacing each vertex x;
of G by a set x;1,...,x;, of new vertices with an edge betweeen x;; and x;;» if and
only if there is an edge between x; and x; in G. A multiple is said to be p-regular if

pr=pn=p.

Proposition 12. Let H be a multiple of a graph G. Then I(G) = I(H) for t =
1,2,...,%x(G) — 1.

Proof. We prove the lemma in two steps.
(i) Assume first that H is a p-regular multiple of G and let S be a maximum
t-colorable subgraph of G*. Then

S = {(x1)y, X255+ > Xukjy ) : (Koo s X)) € S and 1<y, .., jk < p}

is a t-colorable subgraph of G* of size p*|S|. Hence

!
i(H*) > (Jil)k = ',f—k' = i(GY),

and I,(H)=1,(G). Combining this with /,(H)</,(G) obtained from Lemma 11 (since

G is a subgraph of H), we get [,(G) = I,(H) in this case.

(ii) Let H be an arbitrary (pi,..., p,)-multiple of G, and let p = max{p,..., p»}.
Let F be the regular p-multiple of G. By the preceding lemma, we have [,(F)<I,(H)
<I;(G) since G is a subgraph of H, and H is a subgraph of F. We have already
proved L,(F) = I,(G) in part (i) and so we conclude that I,(G) = ,(H) = I(F). O

We can now prove Theorem 10.
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Proof of Theorem 10. Let f be a homomorphism from G to H. Let F = f(G) be the
image of G. Let W be a p-regular multiple of F with p sufficiently large (p = |V(G)|
is enough). Now F is a subgraph of H and G is a subgraph of W and so, by Lemma
11, LH)Y<I(F) and I(W)<I{G). Using Lemma 12 we get I,(F') = I,(W), and hence
I,(H)<I,(G). This argument is true for any ¢t = 1,2,...,x(G) - 1. O

Corollary 13. For any graph G,

1 1 1
NCDS(G) < , yenns ,0,...,0],
@< (67 w6y o™ )
where there are y(G)—w(G) zero’s and w(G) denotes the size of a maximum complete
subgraph of G.

Proof. Let K be a maximum complete subgraph of G. Then K — G and NCDS(K) =
(—(;(‘?))(1,1,..., 1) for a complete graph K by [11]. O

It follows that we can exactly evaluate NCDS(G) for perfect graphs G. In fact, we
have a more general result:

Corollary 14. If o(G) = x(G), then NCDS(G) = (ﬁ)(l,l,..., 1)

Proof. This follows from Corollary 13 and the lower bound NCDS(G)>(%)
(,1,...,1). O

In particular, NCDS(G) = (4,1) if G is bipartite.
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