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Abstract

For a space X and a regular uncountable cardinal , we discuss when X x x is normal if and
only if the projection m: X x k — X is closed.
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1. Introduction

Throughout this paper, let £ be a regular uncountable cardinal with the usual order
topology, and we denote by 7 the projection from a product onto one factor.
It had been shown in [7] that

m: X xY — X is closed = X x Y is normal

is true for a paracompact space X and a normal space Y. Using this, it was shown in
[6] that

X x K is orthocompact = 7: X x k£ — X is closed = X X k is normal

is true for a paracompact space X. Moreover, for a metacompact space X, the ortho-
compactness of X x s is equivalent that X has orthocaliber k (see [6]). On the other
hand, it was essentially shown in [7,8] that

X x ktis normal & ¢(X) < k& m: X x k7 — X is closed
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is true for a compact space X. This was generalized in [6] by replacing x* and t(X)
with & and ¢*(X), respectively. It means that the normality of the product of a compact
space X and a cardinal factor x gives an internal characterization of the space X in
terms of tightness.

From the facts mentioned above, it is natural to raise the question of what internal
characterization of a general space X is given by the normality of X x s. As is seen later,
it is not difficult to give an internal characterization of X when #: X x kx — X is closed.
So we may regard this question as when the normality of X x x makes the projection
m:X x K — X closed for a generalized compact (or ordered) space X. Conversely,
it should be noted that by Kunen’s theorem in [10, Corollary 3.7] if X X & is normal,
then X is normal and <k-paracompact (i.e., 7-paracompact for each r < ). So we can
assume in our discussion that X is normal and <rk-paracompact.

All spaces discussed here are assumed to be Hausdorff.

2. A preliminary result

Let us recall some definitions. Let X be a space. For each p € X, we define

tH{p,X) = min{)\: foreach A C X, thereisa BC A
with |B| < XA and p ¢ CI B},

and define t+(X) = sup{t*(p, X): p € X }. The definition of the usual tightness t(p, X)
and t(X) are obtained by replacing |B| < A in the definition of the above ¢*(p, X) by
|B] € A

A sequence {zo: « € k} in a space X is a free sequence of length k if for each
a €k, Clzg: g <a}nCluag 8= af=0.

First of all, we give a slight generalization of known results in [1,8,7].

Lemma 2.1. Let X be a compact space with p € X. If, for every collection H of
nonempty closed Gs-sets in X with |H| < k, there is an open neighborhood U of p in
X such that H — U # Q for each H € H, then there is a free sequence of length x in X.

The proof which is due to Arhangel’skii (see [2, p. 67]) is found in that of [4, Theorem
7.10].

Proposition 2.2. For a compact space X, the following are equivalent.
(a) X X Kk is normal.
(b) The projection 7w: X x k = X is closed.
(¢) There is no free sequence of length r in X.

Proof.
(a) = (b): Assume X x « is normal, or equivalently t*(X) < s (see {6, Theorem
3.5]). Then it follows from [6, LLemma 3.4] (essentially due to [7]) that 7 is closed.



N. Kemoto et al. / Topology and its Applications 69 (1996) 217-226 219

(b) = (c¢): Assume there is a free sequence {z,: @ € s} in X. Since X is compact,
we can take some p € [, Cl{zg: G = a}. Let K = Cl{(z4,a): o € «}. Then it is
straightforward to show that p € Cln(K) - n(K).

(c) = (a): Assume X X x is not normal. By [6, Theorem 3.5], we have t7(X) > k.
Note that t(X) > . If t(X) > k, there is a free sequence of length x* in X by
Arhangel’skii’s theorem in [1}. So we may assume that ¢(X)} = & and t7(X) = ™.
There are a subset A and a point p in X such that p € Cl A and p ¢ CI B for each
B ¢ A with |B] < . Moreover, we may assume that A is dense in X and |A| = &.
By our assumption (c), there is no free sequence of length « in X, so by Lemma 2.1,
there is a collection H of nonempty closed Gs-sets in X with |#H| < & such that each
open neighborhood U of p in X contains some member of H. For each H € H, choose
a sequence {G,(H): n € w} of open sets in X such that H = (), ., Gn(H) and
ClGn4i(H) C Go(H) for each n € w. Find an ap, € G,(H)N A foreach H € H
and n € w. Let By = {agn: H € H,n € w}. Then By C A with |By| < . Let U be
an open neighborhood of p and take an H € H with H C U. Since X is compact, there
is an n € w such that G,,(H) C U. Then U contains ay , € Bp. This means p € Cl By.
This contradicts the choice of A. O

3. Normality of X X x versus closed projections

In this section, we discuss the relation of the normality of X x x and the closed
projection 7: X x k — X, and give a generalization of Proposition 2.2.

First, we consider when the closed projection 7: X x £ — X implies the normality
of X x k. Recall that a space X is k-compact if there is not a closed discrete subspace
of size x and s-paracompact if every open cover of X with cardinality « has a locally
finite open refinement. Observe that both Lindelotf spaces and countably compact spaces
are wj-compact.

For each C C &, let Lim(C) = {a € k: a =sup(anNC)}.

Lemma 3.1. Assume that X is k-compact and the projection w: X x v — X is closed.
Then for each pair of disjoint closed sets Ky and K| in X x K, there is an o € K such
that (Ko N X x (a,k)) N7(K; N X x (o, k) = 0.

Proof. Assume the contrary. Let Fy, = n(Ko N X x (a,x)) Nn(K; N X X (o, &)) for
each a € k. Then each F, is a nonempty closed set in X.

First, assume we can pick some p € [ ¢, Fa. For each o € k and 1 € 2 = {0, 1},
take a B;(a) with a < G;(a) < & such that {(p, 8;(a)) € K;. We can inductively choose
a sequence {a;: j € w} in & such that §;(a;) < ajq) for each j € w and i € 2. Let
Q= Sup;e,, o; (= sup{Bi(a;): j € w, i € 2}). So we have (p,a,,) € KoM K, which
is a contradiction. This establishes F, =9.

afk
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For each « € k, take an x4 € F,, and a 6() > « such that z, ¢ Fy(a). Moreover,
take a §;(a) > « such that (24, 8i(e)) € K, for each o € x and i € 2. Then

C={aer VéicaVie2 (§(5) <aand () <a)}

is a closed unbounded set in . Since X is s-compact, {z,: o € C'} has an accumulation
point. Let

v =min {7 < : {z4: @ € CN5'} has an accumulation point},

and let y be an accumulation point of {z,: a € C N ~}. By the minimality of ~, we
have v € Lim(C) or v = «, and observe that {2,: @ € C N4} is closed discrete in X
for each § < +y. Therefore y is an accumulation point of {z4: a € C' N (§,v)} for each
§ < . Now, assume v = «. Then there is a £ € C such that y ¢ F. Since Fy is a
closed set containing {z,: « € C — £}, it follows that y ¢ Cl{z,: a € C —£}. So, y
is an accumulation point of {z,: « € C N &}. This contradicts v = k. Hence we have
v € Lim(C).

Take any open neighborhood W of i and any é < +y. Since y is an accumulation point
of {zo: @ € CN(4,7)} there is an p € C M (4,) such that 2, € W. Then we have
1 < Bi(n) < «. Therefore it follows that (u,, 5;(n)) € K; "W x (8,7]. This shows
(y,7) € C1K,; = K, for each ¢ € 2. This contradicts that K and K, are disjoint. O

Proposition 3.2. Let X be a normal, <k-paracompact and k-compact space. If the
projection m: X x k — X is closed, then X X k is normal.

Proof. Let Ky and K be any disjoint closed sets in X x . By Lemma 3.1, take an
a € & such that {7 (K; N X x (a,x)): ¢ € 2} are disjoint closed sets in X. By the
normality of X, {K; N X X (a,k): ¢ € 2} can be separated by disjoint open sets in
the closed-open subspace X x (a,x) of X x k. Since X is |a + 1|-paracompact, it
follows from Kunen’s theorem (sece [10, Corollary 3.71) that X x (a + 1) is normal. So
{K;NX x (a+1): i€ 2} can be separated by disjoint open sets in X x (a -+ 1). Hence
Ky and K| can be separated by disjoint open sets in X x k. O

As stated in the Introduction, it is rather easy to get an internal characterization of a
space X such that the projection 7: X X £ — X is closed.

A well-ordered collection {A,: « € x} of subsets in a set X is monotone decreasing
if A, C Ag whenever 3 < c.

Proposition 3.3. For a space X, the projection w: X x k& — X is closed if and only if
(Nper Ua is open in X for every monotone decreasing collection {Us: a € Kk} of open

sets.

Proof. The “only if” part: Let {U,: « € x} be a monotone decreasing collection of
open sets in X. We may assume (.. Ua # 0. Pick a p € (N ¢, Ua- Let U = (J{Uq %
(e + 1) « € k}. Since U is an open set in X x & with {p} x k C U, there is
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an open neighborhood V of p in X with V x & C U by the closedness of 7. Since
V x(a+1)C U, x (a+1) for each o € k, we have V C ({Uqs: @ € &}

The “if” part: Take a point p € X and an open set U in X X & with {p} x x C U.
For each o € &, let Uy = |J{W: W isopensetin X with W x (o + 1} C U}.
Then {U,: o € «} is a monotone decreasing collection of open neighborhoods of p in
X. By the assumption, V' = (7 ., Uy is an open neighborhood of p in X such that
VxkcCcU. O

We can also show the following lemma similar to Proposition 3.3.

Proposition 3.4. Let X be a space and F a closed set of X. Then the following are
equivalent.

(a) For each closed set K in X x k which is disjoint from F x k, K and F X & are
separated by disjoint open sets in X X k.

(b) For each monotone decreasing collection {U,: « € Kk} of open sets containing F,
there is a monotone decreasing collection {V,: « € &} of open sets containing F' such
that (3., C1Vg C Uy for each o € k.

(¢) For each monotone decreasing collection {U,: « € &} of open sets containing F,
there is a monotone decreasing collection {V,: « € k} of open sets containing F such
that {a € K: 3., C1V & Uy} is not stationary in k.

Proof.

(a) = (b): Let {U,: a € &k} be a monotone decreasing collection of open sets
containing F in X. Let U = |J{Uqs % (@+1): « € &}. Since U is an open set containing
F x k, there is an open set V in X X k such that ' x k C V C C1V C U. For each
a €k, let Vy, ={J{W: Wisopenin X with W x («+2) C V}. Then {V,: o € x} is
a monotone decreasing collection of open sets containing F' in X. Pick an « € «, and let
z ¢ Uy. Then we have (z,a) ¢ U, so (x,a) ¢ C1V. Take a 3 < « and a neighborhood
W, of = such that W, x (8, NV = 0. Now, assume z € ClVj3. Then taking a
y € W,NVg, wehave (y,34+1) € V3 x (B+2)NW, x (8,0l CVNW, x(8,a] = 0.
This is a contradiction. So we obtain ¢ CI V. This implies (5, C1 V5 C U, for each
o € K.

(b) = (c): Evident.

(c) = (a): Let U be an open set in X X £ with F x x C U. Let U, = | J{W: W
is open in X with W x (a+ 1) C U} for each o € . Then {U,: « € K} is a mono-
tone decreasing collection of open sets containing F'. There are a monotone decreasing
collection {V,,: a € x} of open sets containing F in X and a closed unbounded set
C in & such that (N,_, C1Vg C U, for each o € C. Note that Lim(C) is also closed
unbounded in x and Lim(C) C C. Define H, = (3., ClVp for each « € Lim(C),
V=U{Va x(a@+1): a€Lim(C)} and H = J{Has % (a + 1): o € Lim(C)}. Then
we have F'x x C V C H C U. So it suffices to show that H is closed in X x x. Let
(x,a) ¢ H. Consider two cases.
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Case 1: o € Lim(C). Since (x,a) ¢ H D Hy x (a+ 1), we have z ¢ H,. So there
is a 3 < a such that z ¢ Cl1V3. Then (X — ClVg) x (3, @] is a neighborhood of (z, a)
disjoint from H.

Case 2: « ¢ Lim(C). Define v = min{+’ € Lim(C): a < v’} and § = sup(C N a).
Since o ¢ Lim(C'), we have 6 < o < . Assume (X — H,,) x (4, a] meets H. Then
there is a 8 € Lim(C) such that (X — H,) x (4,a] N Hg x (8 + 1) # 0. Since
(X —Hy)NHg#0and (§,a] N (B + 1) # 0, we have 8 < v and § < 3 respectively.
Therefore 8 € Lim(C) 1 (4,7) € C N (4,~). But this contradicts the definition of 4.
Moreover, since a € (4,7), C N (6,7) = @ and (z,a) ¢ H, by the definition of H, we
know X — H., is a neighborhood of z. So (X — H) x (4, a] is a neighborhood of {z, &)
disjoint from H. 0O

Note that if X is normal and the projection 7 : X x « — X 1s closed, then one (hence
all) of the clauses of Proposition 3.4 holds.

Recall that a point z in X said to be a (complete) accumulation point of a subset A
of X if U N A is infinite (of size |A|) for each neighborhood U of z.

Lemma 3.5. If X X & is normal, then every free sequence of length k in X has a
subsequence of length k with no complete accumulation point.

Proof. Assume the contrary. There is a free sequence {z,: « € &} in X such that
{z4: @ € S} has a complete accumulation point for each S C & of size x. For each
S C x of size &, let F(S) be the set of all complete accumulation points of {z,: « € S}.
Then each F(S) is a nonempty closed set in X. Let U, = X — Cl{zg: 8 < a} for
each a € k. Since {zo: a € k} is a free sequence, {U,: @ € s} is a monotone
decreasing collection of open sets containing F'(k). Since X X x is normal, it follows
from Proposition 3.4 that there is a monotone decreasing collection {V,: a € s} of
open sets containing F'(x) such that ﬂﬂ<a ClV; C U, for each a € k. Since 24 ¢ U,,
there is a B(a) < a with 2 ¢ Cl V(). Then it follows from the pressing down lemma
that there is a v < & and a stationary set S in & such that 8(«) = v for each @ € S.
This means C1V, N {z,: a € S} = 0. Hence we have V, NCl{za: o € S} = §. On
the other hand, since F(S) C Cl{z,: o € S} and F(S) C F(k) C V,, it follows that
V,NClHzq: a€ S} D F(S) # 0. This is a contradiction. O

Now, we are ready to prove the main result, which is the converse of Proposition 3.2.

Theorem 3.6. Let X be a normal, <r-paracompact and k-compact space. Then X % i
is normal if and only if the projection 7w: X x k — X is closed.

Proof. Since the “if” part is just Proposition 3.2, we show the “only if” part. Assume
m is not closed. It follows from Proposition 3.3 that there is a monotone decreasing
collection {Uy: @ € k} of open sets in X such that (), Uq is not open. Pick some
P € Naer Ua—int((N e, Ua)- Since X x x is normal, it follows from Proposition 3.4 that
there is a monotone decreasing collection {V,: « € } of open neighborhoods of p such
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that ﬂﬁ<aCI Vi C Uy for each o € k. In particular, observe that C1V, C Uyqy C Uy,
for each & € . Since V, is a neighborhood of p but (. Ua is not, we take an f(a) > o
and an 24 € Vo —Ujy(q) foreach o € 5. Put C = {a € k: V8 < a(f(8) < a)}. Since C
is unbounded in & and X is k-compact, there is an accumulation point of {z,: « € C}.
Let

v =min {y" < k: there is an accumulation point of {za: a € CN~'}},

and let y be an accumulation point of {z4: o« € C N ~}. By the minimality of v, we
have v € Lim{C) or 7 = k.

Case 1: v € Lim(C). Since 2 ¢ Uy(qy and f(a) < v for each a € C M, it follows
that y € Cl{z,: a € CNy} C X —U,. So there is a § < v with y ¢ CiV;. By the
minimality of 7, {zq: @ € C N} is closed discrete in X. Hence y € Cl{z,: a €
CnN[8,v)}. Since X — Cl1V; is a neighborhood of y, there is a £ € C N [§,~) such that
z¢ € X — C1Vs. This contradicts x¢ € Ve C V5.

Case 2: v = k. First, notice that {z,: @ € C} is a free sequence by enumerating
C with the increasing order. In fact, pick an a € C. Since zg ¢ Usz O U, for each
BeCnaand xg € V3 C V, foreach 8 € C — q, it follows that Cl{zg: 8 € CNa} C
X —Uq and Cl{zg: € C —a} C ClV,. By C1V, C U,, {z4: a € C} is a free
sequence in X. So it follows from Lemma 3.5 that there is some S C C of size »
such that {z4: o € S} has no complete accumulation point. On the other hand, the -
compactness of X assures the existence of an accumulation point z of {z,: « € S}. By
the minimality of v = , this z must be a complete accumulation point of {x,: a € S}.
This is a contradiction. O

Our Theorem 3.6 immediately yields the following corollaries.

Corollary 3.7. Let X be a regular Lindeldf space. Then X x x is normal if and only if
the projection m: X x kK = X is closed.

Corollary 3.8. Let X be normal, countably paracompact and w,-compact space. Then
X X wy is normal if and only if the projection w: X x w) — X is closed.

These corollaries are not true for a paracompact space X, because of

Example 3.9. There is a paracompact space Y such that Y x x is normal, but the
projection 7:Y x k — Y is not closed.

Let Yy be the set of maps f on & to {0, 1} such that f(a) = 0 for all but finitely many
a € k. Let fo: 6 — {0, 1} be the function which assumes the constant value 1. For each
g€ (K< ={gCr |l <wh putUq) = {fo} U{f € Yo: f(a) =1 forall a € q}.
Set Y = {fo} UYs. Topologize Y as follows. Let {U(g): g € [«]<“} be a neighborhood
base of fy, and other points isolated. This example described in [9, p. 342]. Then Y
is paracompact and |Y| = k. Since x is a collectionwise normal space with weight
< K, Y X k is (collectionwise) normal. By |Y| = &, let Y\{fo} = {go: a € k}. Let
Uy = Y\Cl{yp: 8 < a} for a € k. Then {Uy: a € x} is a monotone decreasing
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collection of open neighborhoods of fy in Y, and .. Uy is not open in Y. It follows
from Proposition 3.3 that 7 is not closed.

4. GO-spaces and related results

In this section, we consider the case X is a GO-space. It is well known that every GO-
space is normal and countably paracompact. First, we recall the notations in [5]. Let X
be a GO-space. A linearly ordered compactification of X is a compact linearly ordered
space which contains X as a dense subspace and whose linear order is an extension
of the original order on X. It is known that there always exists a minimal linearly
ordered compactification /X of a GO-space X in the sense that, for each linearly ordered
compactification ¢X of X, there is a continuous map f:c¢X — [X such that all points
of X are pointwise fixed. It is also shown in [5, Lemma 2.1] that, for a linearly ordered
compactification ¢X of a GO-space X, cX = /X if and only if (a,b).x # @ for each
a,b € cX — X with a < b, where (a,b).x denotes the open interval in cX.

Next, for each z € X, let

O-cfz =min{]4|: AC (¢, z)andVy <z Ja € A (y < a)},
and let
l-cfz =min {|A]: AC (z,—)andVy >z 3a€ A (y >a)}.

Then we can fix a strictly increasing sequence {z{a):a € 0-ctz) in (<, z);x such that
foreach y < x there is an & < O-cf = such that y < (), and z(a) = sup{z(8): 8 < a}
for each limit ordinal o < O-cfz. We call this sequence a O-normal sequence for z.
Analogously, we can define a 1-normal sequence for z.

Lemma 4.1 [5, Theorem 4.3]. Let X be a <k-paracompact GO-space. Then X % K is
normal if and only if i-cf z #£ & for each x € X and i € 2.

Theorem 4.2. Let X be a GO-space. Then i-cfx # k for each x € X and i € 2 if and
only if the projection w: X X k — X is closed.

Proof. The “only if” part: Let {U,: « € k} be a monotone decreasing collection of
open sets. It suffices from Proposition 3.3 to show that )
an z € (yep Ua

Claim 1. There is a yo € (X with 3o < 2 such that (yo, z]ix 0 X C [\4e,, Ua. In fact,
put A = 0-cf z # k, and fix a O-normal sequence {z(3): 8 € A) for z. Since U, is open
in X and x € U,, we can take a 3(a) < A such that (x(8()), z]ix N X C U, for each
€ K.

Case 1: X < k. Applying the pressing down lemma, find a stationary set S C  and a
v < A such that 8(a) = v for each a € S. Then (z(v),z]ix N X C (e, Ua because
{Us: « € K} is monotone decreasing.

Uy is open in X, so pick

aEkr

QER
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Case 2: X > . Put § = sup,, B(a). Then we obtain (z(8),zlix N X C (e, Ua.
Similarly, we can get

Claim 2. There is a y; € 1X with y; > 2z such that {z,y)ix N X C ﬂaEHUQ.
Therefore, (yo,y1)ix N X is an open neighborhood of z contained in (., Ua-

The “if” part: Assume there is an z € X with 0-cfz = . Fix a 0-normal sequence
{(z(a):a € k) for z. Define U, = (z(a),—)ix N X for each o € k. Then it is
straightforward to show that {U,: a € s} is a monotone decreasing collection of open
neighborhoods of z, and that " ... U is not a neighborhood of x because sup,, ¢ . (c) =
z. It follows from Proposition 3.3 that 7 is not closed. The case of lI-cfz = & is
similar. O

Immediately we have:

Corollary 4.3. Let X be a <k-paracompact GO-space. Then X X k is normal if and
only if the projection w: X x k — X is closed.

Corollary 4.4. Let X be a GO-space. Then X X w, is normal if and only if the projection
m: X X w) — X is closed.

5. On free sequences

Finally, we deal with the connection between the normality of X x s and the non-
existence of free sequences of length x in X.

Proposition 5.1. Let X be a regular Lindeldf space. If X X k is normal, then X has no
free sequence of length k.

Proof. Assume that there is a free sequence {z,: @ € k} in X. By Lemma 3.5, there
is a subsequence of length x with no complete accumulation point. This contradicts the
Lindelotness of X. O

Proposition 5.2. Let X be a <k-paracompact GO-space. If X has no free sequence of
length K, then X X k is normal.

Proof. Assume X x & is not normal. By Lemma 4.1, there are an x € X and an ¢ € 2
such that i-cfz = k. We may assume ¢ = 0. Fix a 0-normal sequence {(z(a):a € k)
forz. If A ={a € k: z(a) € X} is unbounded in &, then {z(a): o € A—Lim(A)} is
a free sequence of length . If A is bounded in x, then take a 8 € k such that A C 3.
For each o > 3, we can take a y(a) € (z(a),z(a + 1));x N X by [5, Lemma 2.1]. By
renumbering the sequence {y(«): a = B8} as {¢'(v): v € Kk} where ¥/ (v) = y(8 + 7).
we have a free sequence {y'(a): « € &} of length k. O
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The following example shows that, in the above Proposition 5.2, the normality in
X x k need not ensure the nonexistence of a free sequence of length k.

Example 5.3. Let X = x with the order topology. Then X is a countably compact GO-
space. As is well known, X x k = x? is normal. But the set of all nonlimit ordinals less
than « is a free sequence (with the increasing order) in X of length .

In connection with these considerations, we have the following problems.

Problem 5.4. If X is a Lindelof space without a free sequence of length wy, then is
X X w; normal?

Problem 5.5. If X is a normal, countably compact space without a free sequence of
length wy, then is X x w; normal?
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