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1. Introduction 

Throughout this paper, let K be a regular uncountable cardinal with the usual order 

topology, and we denote by T the projection from a product onto one factor. 

It had been shown in [7] that 

T : X x Y + X is closed =+ X x Y is normal 

is true for a paracompact space X and a normal space Y. Using this, it was shown in 

]6] that 

X x K is orthocompact + T : X x K + X is closed + X x K is normal 

is true for a paracompact space X. Moreover, for a metacompact space X, the ortho- 

compactness of X x K is equivalent that X has orthocaliber K, (see [6]). On the other 

hand, it was essentially shown in [7,8] that 

X x /c+is normal H t(X) < K ti T: X x K’ + X is closed 
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is true for a compact space X. This was generalized in [6] by replacing K+ and t(X) 

with K. and t+(X), respectively. It means that the normality of the product of a compact 

space X and a cardinal factor fi gives an internal characterization of the space X in 

terms of tightness. 

From the facts mentioned above, it is natural to raise the question of what internal 

characterization of a general space X is given by the normality of X x K. As is seen later, 

it is not difficult to give an internal characterization of X when 7r : X x n --t X is closed. 

So we may regard this question as when the normality of X x IC makes the projection 

7r : X x K + X closed for a generalized compact (or ordered) space X. Conversely, 

it should be noted that by Kunen’s theorem in [lo, Corollary 3.71 if X x IC is normal, 

then X is normal and <n-paracompact (i.e., -r-paracompact for each T < K). So we can 

assume in our discussion that X is normal and <n-paracompact. 

All spaces discussed here are assumed to be Hausdorff. 

2. A preliminary result 

Let us recall some definitions. Let X be a space. For each p E X, we define 

t+(p, X) = min (X: for each A c X, there is a B c A 

with 1B1 < X and p E Cl B>, 

and define t+(X) = sup{t+(p, X): p E X}. The definition of the usual tightness t(p, X) 

and t(X) are obtained by replacing lB1 < X in the definition of the above t+(p, X) by 

JBl < A. 
A sequence {xa: ti E K} in a space X is a free sequence of length IF. if for each 

cy E K, Cl{zp: p < N} flCl{:1:fi: /!j 3 (Y} = (D. 

First of all, we give a slight generalization of known results in [ 1,8,7]. 

Lemma 2.1. Let X be a compuct space with p t X. I& for every collection ?I oj 

nonempty closed Gs-sets in X with 1x1 < K, there is an open neighborhood U of p in 

XsuchthatH-U#@f or each H E Ifc, then there is a free sequence of length K in X. 

The proof which is due to Arhangel’skii (see [2, p. 671) is found in that of [4, Theorem 

7.101. 

Proposition 2.2. For a compact space X, fhe ,follo\~ing are equivalent. 

(a) X X K is normal. 

(b) The projection ?r : X x ti + X is closed. 

(c) There is no free sequence of 1enKth 6, in X. 

Proof. 

(a) + (b): Assume X x ti is normal, or equivalently t’(X) < n (see [6, Theorem 

3.51). Then it follows from [6, Lemma 3.41 (essentially due to [7]) that 7r is closed. 
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(b) + (c): Assume there is a free sequence {z,: (I: E K} in X. Since X is compact, 

we can take some p E naEn Cl{zp: p 3 LY}. Let K = Cl{(z,,cv): a E K}. Then it is 

straightforward to show that p E Cl n(K) - r(K). 

(c) + (a): Assume X x K is not normal. By [6, Theorem 3.51, we have t+(X) > K. 

Note that t(X) 3 6. If t(X) > n, there is a free sequence of length K+ in X by 

Arhangel’skii’s theorem in [l]. So we may assume that t(X) = K and t’(X) = K,+. 

There are a subset A and a point p in X such that p E Cl A and p @ Cl B for each 

B c A with \BI < K. Moreover, we may assume that A is dense in X and IAl = K. 

By our assumption (c), there is no free sequence of length K in X, so by Lemma 2.1, 

there is a collection ‘?i of nonempty closed Gs-sets in X with 1UJ < rc such that each 

open neighborhood U of p in X contains some member of ‘?i. For each H E Ifl, choose 

a sequence {G,(H): n E w} of open sets in X such that H = nnEw G,(H) and 

Cl G,+i (H) c G,(H) for each n E w. Find an a~,~ E G,(H) n A for each H E ‘?I! 

and n E w. Let Ba = {a~,~: H E 3t,n E w}. Then Be C A with I&l < K. Let U be 

an open neighborhood of p and take an H E 31 with H C U. Since X is compact, there 

is an n E w such that GyL(H) C U. Then U contains aH,n E Bo. This means p E Cl Bo. 

This contradicts the choice of A. 0 

3. Normality of X x K versus closed projections 

In this section, we discuss the relation of the normality of X x n and the closed 

projection 7r : X x IF. + X, and give a generalization of Proposition 2.2. 

First, we consider when the closed projection rr : X x K + X implies the normality 

of X x K. Recall that a space X is r;-compact if there is not a closed discrete subspace 

of size n and K-paracornpact if every open cover of X with cardinality K has a locally 

finite open refinement. Observe that both Lindelof spaces and countably compact spaces 

are WI -compact. 

For each G C K, let Lim(G) = {o. E K: (Y = sup(cr n G)}. 

Lemma 3.1. Assume that X is t+compact and the projection n : X x K + X is closed. 

Then for each pair of disjoint closed sets Ko and K1 in X x K, there is an LY E n such 

that n(Ko n X x (a, K)) n r(K1 n X x (CY, K)) = 8. 

Proof. Assume the contrary. Let F, = -ir(Ko n X x (cy, K)) n 7r(K1 n X x (CC, K)) for 

each cy E K. Then each F, is a nonempty closed set in X. 

First, assume we can pick some p E naEn F,. For each o E K and i E 2 = (0: l}, 

take a p%(o) with Q < p%(o) < K such that (p, /J%(o)) E K,. We can inductively choose 

a sequence {cxy,: j E w} in K such that Pi(cyJ) < LY~+I for each j E w and i E 2. Let 

N - supjc, crj (= sup{pi(cxj): j E w, i E 2)). So we have (p, a,) E KO n K1, which 
isUaiontradiction. This establishes naEn F, = 0. 
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For each cy E IC, take an 2, E F, and a Q(N) > LY such that 2, q! FQ(~,. Moreover, 

take a PL(a) > Q such that (x,, pi(~)) E K, for each o E IC and i E 2. Then 

C = {N E n: V’b E (1 V’i E 2 (O(b) < a and fi1(6) < cy)} 

is a closed unbounded set in 6. Since X is K-compact. {IC,: cy E C} has an accumulation 

point. Let 

y = min {y’ < IC: {ic,: CY t C r~ r’} has an accumulation point}, 

and let 2/ be an accumulation point of (2,: cy E C I- y}. By the minimality of y, we 

have y E Lim(C) or y = K, and observe that (2,: (1 t C n S} is closed discrete in X 

for each b < y. Therefore y is an accumulation point of {xQ: cr E C n (6, y)} for each 

6 < y. Now, assume y = K. Then there is a [ E C such that y $ Ft. Since FE is a 

closed set containing {z,: u E C - 0, it follows that y # Cl{z,: ct E C - 0. So, y 

is an accumulation point of {IC,,: LY E C n E}. Th’ 1s contradicts y = 6. Hence we have 

y E Lim(C). 

Take any open neighborhood W of 1~ and any 6 < y. Since y is an accumulation point 

of {x0: (2 E C n (6, y)}, there is an 71 E C f’ (6, y) such that x,! E W. Then we have 

71 < pi(v) < y. Therefore it follows that (:c,~,P~(~/)) E Ki n W x (6,y]. This shows 

(T/,T) E Cl K, = K, f or each % E 2. This contradicts that KO and K1 are disjoint. 0 

Proposition 3.2. Let X be u normal, <Kc-parucompact and lc-compact space. if the 

projection T : X x 6 + X is closed, then X x IF. is normal. 

Proof. Let Ko and KI be any dis.joint closed sets in X x K. By Lemma 3.1, take an 

LY E 6 such that {n(K, n X x (a, K)): i E 2) are disjoint closed sets in X. By the 

normality of X, {Ki n X x (a, K,): ,i E 2) can be separated by disjoint open sets in 

the closed-open subspace X x ((1, K) of X x K. Since X is IQ + 1 I-paracompact, it 

follows from Kunen’s theorem (see [IO, Corollary 3.71) that X x (cy + 1) is normal. So 

{KinX x (cy+ I): i E 2) can be separated by disjoint open sets in X x (N + 1). Hence 

K. and KI can be separated by disjoint open sets in X x rc. 0 

As stated in the Introduction, it is rather easy to get an internal characterization of a 

space X such that the projection 7r: X x /c. + X is closed. 

A well-ordered collection {A,: LY E K} of subsets in a set X is monotone decreasing 

if A, c Ap whenever p < LY. 

Proposition 3.3. For a spuce X, the projection T : X x IF. + X is closed if and only $ 

n NEn U, is open in X for every monotone decreasing collection {Ucy: N E K,} of open 

sets. 

Proof. The “only if” part: Let {U,,: (1 E ,x;> be a monotone decreasing collection of 

open sets in X. We may assume nrvtn U, # 0. Pick a p E naEK U,. Let U = U{UU x 

(CY + 1): LY E K}. Since U is an open set in X x K with {p} x K C U, there is 
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an open neighborhood V of p in X with V x K c U by the closedness of n. Since 

V x (cy + 1) c U, x (N + 1) for each cr E 6, we have V c n{&: 0: E K}. 

The “if” part: Take a point p E X and an open set U in X x K with {p} x IC. c U. 

For each (Y E K, let U, = U{W: W is open set in X with W x (u + 1) c U}. 

Then {Un: cy E K} is a monotone decreasing collection of open neighborhoods of p in 

X. By the assumption, V = r)_ U, is an open neighborhood of p in X such that 

VXKCU. 0 

We can also show the following lemma similar to Proposition 3.3. 

Proposition 3.4. Let X be a space und F a closed set of X. Then the following ure 

equivalent. 

(a) For each closed set K in X x K which is disjoint from F x K, K and F x K are 

separuted by disjoint open sets in X x n. 

(b) For each monotone decreasing collection {Ucy: (Y E K,} of open sets contuining F. 

there is a monotone decreasing collection {I&: cy E TV} of open sets containing F such 

that no_ Cl VP c U, for euch u: E K.. 

(c) For each monotone decreasing collection {Ua: CY E K} of open sets containing F, 

there is a monotone decreasing collection {Va: cy E K} of open sets contuining F such 

that {Q E K: no_ Cl Vo < U,} is not stationary in K. 

Proof. 

(a) =+ (b): Let {Uu: (IY E K} be a monotone decreasing collection of open sets 

containing F in X. Let U = U{U, x (N+ 1): cy E K}. S’ ince U is an open set containing 

F x IG, there is an open set V in X x K such that F x K C V C Cl V C U. For each 

CY E K, let V, = U{W: W is open in X with W x (u.+2) c V}. Then {Vo: u t K} is 

a monotone decreasing collection of open sets containing F in X. Pick an cy c K, and let 

:I; $! U,. Then we have (IL, CY) # U, so (z, CY) $ Cl V. Take a /3 < LY and a neighborhood 

W, of 3: such that W, x (p, CY] n V = 0. Now, assume rc E Cl Vo. Then taking a 

y E Wz n V,, we have (w, p + 1) E VP x (p + 2) n W, x (p, CY] c V n W, x (p, a] = 0. 

This is a contradiction. So we obtain z $4 Cl Vo. This implies ng<, Cl V, c U, for each 

cY E K. 

(b) + (c): Evident. 

(c) =+ (a): Let U b e an open set in X x K with F x K C U. Let U, = U{W: W 

is open in X with W x (cx + 1) c U} f or each cy E K. Then {Ua: ui E K} is a mono- 

tone decreasing collection of open sets containing F. There are a monotone decreasing 

collection {Vu: u: E 6) of open sets containing F in X and a closed unbounded set 

C in K such that n_ Cl Vo c U, for each cy E C. Note that Lim(C) is also closed 

unbounded in K and Lim(C) c C. Define H, = no_ ClVo for each LY E Lim(C), 

v = U{Va x (o+ I): cl c Lim(C)} and H = U{Hu x (a + 1): cy E Lim(C)}. Then 

we have F x K C V C H C U. So it suffices to show that H is closed in X x K. Let 

(x. o) $ H. Consider two cases. 



Cuse 1: LY E Lim(C). Since (z, cx) $ H > H, x (c~ + l), we have IC $ H,. So there 

is a fi < Q: such that z $ Cl VP. Then (X - Cl I+) x (p, a] is a neighborhood of (x, CY) 

disjoint from H. 

Case 2: Q $ Lim(C). Define y = min{y’ E Lim(C): cy < r’} and b = sup(C n cy), 

Since cr 6 Lim(C), we have 6 < o < y. Assume (X - H7) x (6, a] meets H. Then 

there is a fl E Lim(C) such that (X - Hy) x (O^,a] n Ho x (p + 1) # 0. Since 

(X-H,)nHp#0and(6,(~]O(p+1)#0, we have 0 < y and 6 < ,6’ respectively. 

Therefore /J E Lim(C) n (fi, y) c C n (6, y). But this contradicts the definition of 6. 

Moreover, since cr E (6, y), C O (5,~) = 0 and (2, (t) $ H, by the definition of H, we 

know X - H7 is a neighborhood of 5. So (X - H7) x (6, cx] is a neighborhood of (2, o) 

disjoint from H. 0 

Note that if X is normal and the projection YT : X x r; + X is closed, then one (hence 

all) of the clauses of Proposition 3.4 holds. 

Recall that a point x in X said to be a (complete) accumulation point of a subset A 

of X if U n A is infinite (of size IAl) for each neighborhood U of Z. 

Lemma 3.5. If X x K, is normal, then evev free sequence of length K in X has u 

subsequence of length K with no complete accumulation point. 

Proof. Assume the contrary. There is a free sequence {xa: Q E K} in X such that 

{z:~: cy E S} has a complete accumulation point for each S C K of size K. For each 

S c K of size K, let F(S) be the set of all complete accumulation points of {x,: (Y E S}. 

Then each F(S) is a nonempty closed set in X. Let U, = X - Cl{z,: fi < o} for 

each cy E 6. Since {z,: cy E K,} is a free sequence, {UQ: Q: E K} is a monotone 

decreasing collection of open sets containing F(K). Since X x K is normal, it follows 

from Proposition 3.4 that there is a monotone decreasing collection {Va: N E K} of 

open sets containing F(K) such that no,_ Cl VP c U, for each a E K. Since xa $ U,, 

there is a p(o) < cy with 5, $ Cl Vo,,,. Then it follows from the pressing down lemma 

that there is a y < K and a stationary set S in K such that P(Q) = y for each cr E S. 

This means Cl V, n {x0: a: E S} = 0. Hence we have V, n Cl{z,: cy E S} = 8. On 

the other hand, since F(S) C Cl{s,: cr E S} and F(S) c F(K) c V,, it follows that 

V, n Cl{z,: cy E S} 3 F(S) # 0. This is a contradiction. 0 

Now, we are ready to prove the main result, which is the converse of Proposition 3.2. 

Theorem 3.6. Let X be a normal, <K-paracompact and n-compact space. Then X x K 

is normal if and only if the projection r : X x K + X is closed. 

Proof. Since the “if” part is just Proposition 3.2, we show the “only if” part. Assume 

7r is not closed. It follows from Proposition 3.3 that there is a monotone decreasing 

collection {Um: (Y E K} of open sets in X such that nNEK U, is not open. Pick some 

pt naEn Ua-WncuEK Un). Since X x K. is normal, it follows from Proposition 3.4 that 

there is a monotone decreasing collection {I/a: LY E K} of open neighborhoods of p such 
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that no_,, Cl V, c U, for each a E K. In particular, observe that Cl V, c Ua+l c U, 

for each (Y E n. Since V, is a neighborhood of p but naEn U, is not, we take an f(o) > cy 

and an 5, E V, - U,(,) for each Q E K. Put C = {cy E )c: ‘J/3 < cr(f(P) < a)}. Since C 

is unbounded in IC and X is K-compact, there is an accumulation point of {xa: CY E C}. 

Let 

y = min {y’ < K: there is an accumulation point of {z,: cu E C n -y’}}, 

and let y be an accumulation point of {a~,: cy E C n r}. By the minimality of y, we 

have y E Lim(C) or y = K. 

Case 1: y E Lim(C). Since xc, 4 U,(,, and f(a) < y for each cy E C n y, it follows 

that y E Cl{z,: a E C n -y} C X - U,. So there is a S < y with y $ Cl V6. By the 

minimality of y, {Za: Q: E C n 6) is closed discrete in X. Hence y E Cl{z,: cy E 

C n [6,-y)}. Since X - Cl Vb is a neighborhood of y, there is a [ E C n [6, y) such that 

zc E X - Cl Vs. This contradicts XE E Vc c Vs. 

Case 2: y = n. First, notice that (2,: QI E C} is a free sequence by enumerating 

C with the increasing order. In fact, pick an (Y E C. Since “0 $ Uf(a) > U, for each 

p~Cnaandsg~VpcV,foreachptC-cu,itfollowsthatCl{z~: /?EC~Q}C 

X - U, and Cl{~o: p E C - N} C Cl V,. By ClV, C U,, {zra: cy E C} is a free 

sequence in X. So it follows from Lemma 3.5 that there is some S c C of size n 

such that {xu: (Y E S} has no complete accumulation point. On the other hand, the K- 

compactness of X assures the existence of an accumulation point z of {xQ: N E S}. By 

the minimality of y = K, this z must be a complete accumulation point of {x,: (Y E S}. 

This is a contradiction. cl 

Our Theorem 3.6 immediately yields the following corollaries. 

Corollary 3.7. Let X be a regular Lindeltif space. Then X x K is normal if and only if 

the projection r : X x IC + X is closed. 

Corollary 3.8. Let X be normal, countably paracompact and WI -compact space. Then 

X x WI is normal if and only if the projection r : X x WI + X is closed. 

These corollaries are not true for a paracompact space X, because of 

Example 3.9. There is a paracompact space Y such that Y x K is normal, but the 

projection rr : Y x n -+ Y is not closed. 

Let YO be the set of maps f on K to (0, l} such that f(a) = 0 for all but finitely many 

Q E K. Let fe : K + (0, l} be the function which assumes the constant value 1. For each 

q E [K]<W = (4 c K: IQI < WI, put U(q) = {fo} U {f E Yo: f(cu) = 1 for all u: E f~}. 

Set Y = {fa} U Yo. Topologize Y as follows. Let {U(q): q E [K]‘“} be a neighborhood 

base of fe, and other points isolated. This example described in [9, p. 3421. Then Y 

is paracompact and IYI = K. Since IF. is a collectionwise normal space with weight 

< K, Y x K is (collectionwise) normal. By IYI = n, let Y\{fe} = {gol: LY E K}. Let 

U, = Y\Cl{gp: /3 < a} for QI E n. Then {Ua: LY E K} is a monotone decreasing 



collection of open neighborhoods of j’o in Y, and naER U, is not open in Y. It follows 

from Proposition 3.3 that 7r is not closed. 

4. GO-spaces and related results 

In this section, we consider the cast X is a GO-space. It is well known that every GO- 

space is normal and countably paracompact. First, we recall the notations in [5]. Let X 

he a GO-space. A linearly ordered compactification of X is a compact linearly ordered 

space which contains X as a dense subspace and whose linear order is an extension 

of the original order on X. It is known that there always exists a minimal linearly 

ordered compactification 1X of a GO-space X in the sense that, for each linearly ordered 

compactification CX of X, there is a continuous map ,f : CX + 1X such that all points 

of X are pointwise fixed. It is also shown in [S, Lemma 2.11 that, for a linearly ordered 

compactification CX of a GO-space X, CX = 1X if and only if (u, b),x # 0 for each 

a, h E CX - X with a < 0, where (a, Ij)cx denotes the open interval in cX. 

Next, for each z E 1X, let 

O-cf.7: = min {IAl: A c (t,n:) and VT/ < n: 3a E A (y < a)}, 

and let 

I-cfz=min{]A]: Ac(:c,i)and~?/>n:?a~A(y3a)} 

Then we can fix a strictly increasing sequence (:G(N) : Q E 0- cfz) in (t, z)lx such that 

for each 2/ < 5 there is an (Y < 0-cf:r such that ~1 < z(a), and z(o) = sup{z(/?): [j < o} 

for each limit ordinal n: < 0- cf x. We call this sequence a O-normal sequence for 2:. 

Analogously, we can define a l-normal sequence for x. 

Lemma 4.1 [5, Theorem 4.31. Let X he a <K-paracompact GO-space. Then X x K is 

normal if and only if i- cf rc # K ,for each IC E X and i E 2. 

Theorem 4.2. Let X be a GO-space. Then i- cf :I; # K ji3r each 5 E X and i E 2 if and 

onl?) if the projection ?r : X x K, + X is closed. 

Proof. The “only if” part: Let {Ue: (1 E K} be a monotone decreasing collection of 

open sets. It suffices from Proposition 3.3 to show that nruEK U, is open in X, so pick 

an 5 E nnEn U,. 
Claim 1. There is a ~a E IX with 1~0 < 3: such that (:/c, IC]~X n X c nivEn U,. In fact, 

put X = 0- cf 5 # n, and fix a O-normal sequence (z(p) : /? E A) for x. Since U, is open 

in X and x E U,, we can take a /J(N) < X such that (X@(N)), zrc]~~ n X c U, for each 

N E K. 

Case 1: X < K. Applying the pressing down lemma, find a stationary set S C K and a 

y < X such that p(a) = 7 for each CY E S. Then (z(y), X]~X n X c ncvEK U,, because 

{Ua: cy E 6) is monotone decreasing. 
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Case 2: X > K,. Put b = supaEK p(a). Then we obtain (z(~),z]~x n X c ncvEK U,,. 

Similarly, we can get 

Claim 2. There is a yt E IX with Tut > z such that [x,yt)lx n X c nnEn U,. 

Therefore, (~0, yt)lx n X is an open neighborhood of z contained in natK U,. 

The “if” part: Assume there is an CIJ E X with 0- cf 5 = K. Fix a O-normal sequence 

(z:(o) : a E K) for z. Define U, = (z(o), -+)lx n X for each N E 6. Then it is 

straightforward to show that {UQ: cy E K} is a monotone decreasing collection of open 

neighborhoods of 2, and that nLYEK. U, is not a neighborhood of IC because supaEn z(o) = 

2:. It follows from Proposition 3.3 that 7r is not closed. The case of I- cf 3: = IF. is 

similar. 0 

Immediately we have: 

Corollary 4.3. Let X be a <r;-paracompact GO-space. Then X x n is normal (f and 

only if the projection T : X x K + X is closed. 

Corollary 4.4. Let X be a GO-space. Then X x WI is normal ifand only if the projection 

r:X x wI +X is closed. 

5. On free sequences 

Finally, we deal with the connection between the normality of X x K, and the non- 

existence of free sequences of length K in X. 

Proposition 5.1. Let X be a regular Lindeliif space. If X x n is normal, then X has no 

free sequence of length K. 

Proof. Assume that there is a free sequence {a~~: Q E K} in X. By Lemma 3.5, there 

is a subsequence of length K with no complete accumulation point. This contradicts the 

Lindelofness of X. 0 

Proposition 5.2. Let X be a <K,-paracompact GO-space. If X has no free sequence of 

length K, then X x K, is normal. 

Proof. Assume X x K is not normal. By Lemma 4.1, there are an z E X and an i E 2 

such that i- cf z = K. We may assume i = 0. Fix a O-normal sequence (z(o) : N E K) 

for 2. If A = {N E K: x(a) E X} is unbounded in K, then {z(o): Q E A - Lim(A)} is 

a free sequence of length K. If A is bounded in K, then take a /‘? E K such that A c 0. 

For each N 3 /3, we can take a 2/(o) E (n:(a), z(o + I))lx n X by [5, Lemma 2.11. By 

renumbering the sequence { y (cy) : CY b 0) as {Y’(Y): y E K} where T/(Y) = y(P + 7). 
we have a free sequence {y’(o): CY E K} of length K. 0 
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The following example shows that, in the above Proposition 5.2, the normality in 

X x K need not ensure the nonexistence of a free sequence of length K. 

Example 5.3. Let X = K with the order topology. Then X is a countably compact GO- 

space. As is well known, X x K = ~~ is normal. But the set of all nonlimit ordinals less 

than K is a free sequence (with the increasing order) in X of length K. 

In connection with these considerations, we have the following problems. 

Problem 5.4. If X is a Lindelof space without a free sequence of length WI, then is 

X x wi normal? 

Problem 5.5. If X is a normal, countably compact space without a free sequence of 

length WI, then is X x wi normal’? 
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