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Abstrad. It is shown how the method of Fis::her and Rabin can be extended to get good lower 
bounds for Presburger arithmetic with a bounded number of quantifier alternations. In this case, 
the complexity is one exponential lower than iii the unboundt:d case. This situation is typical for 
first order theories. 

1, InOrodudion 

Almost all lower bounds for the complexity of the decision problem for mathe- 
matical theories rely on the fact that certain formulas with many quantifier alterna- 
tions are hard to decide. Mathematicians realized a long time ago that formulas 
with more than a few quantifier alternations are no longer understandable. There- 
fore it is justified to pay special attention to formulas with few quantifier alternations 
and to investigate the complexity of the decision problem not only as a function 
of the length of formulas, -but as a function of length and quantifier alternation 
depth, and in particular to investigate this complexity for the formulas of constant 
depth. 

Definition. For p E {u, 8) the depth QJF) of a formula F is defined by: 

O,(F) = 0 if F is quantifier-free, 

DJF v G) = DJF A G) = max(Q,(F), D,,(GN, 

D&F) = DsW, Ds(lF) = DAF) 

D,,(F+G)==D,,(--FvG) 

D,,(Fc*G) = D,-,((lF v G) A (F v --iG)), 
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Do (3xF) := max(D,(F), l), 

&(3xF) := D,-,(3xF) + 1, 

D,(VxF) = Dp(~3x1F). 

The quantiger alternation depth of a formula F is min(D,(F), Da(F)). 
Piesburger a r thmetic i (PA) is the theory of nonnegative integers N = (0, 1,2, . . .} 

with 0,l and +. 
Let PA(m) be the set of formulas of PA whose quantifier alternation depth is 

at most m. Weddy and Loveland [9] have shown that PA(m) is accepted by a 

deterlminisk Turing machine in space 2’@’ +4. (They have proved this result for 
fomutas in prenex normal form9 but the extension to PA(m) is obvious.) The 
cotstants c and d are always independent of m and ~1. (m can be considered as a 
comtant or a function of the input length tt.) We assume the reader is famikr with 
the lower bound theorem of Fischer and Rabin [4] for PA, and we show how this 
theorem can easily be extended to get good lower bounds for PA(m) too. 

2. Lower bound 

Let L be the set of formulas in first order logic with 0, 1, + and =. The extended 
version of the crucial Theorem 8 in [4] is: 

‘ITheorem 1. There exists a constant c > 0 so that for ail non-negative integers m and 
k there i3 a formula MT (x, y, z) of L, such that for real numbers, A, B, C, 

M~(A,B,C)istruer-*AENAA~2kmAAB-C. 

Also My (x, y, z) is a formula with quantifier alternation depth max(O, 2m - 1) and 
length at most c(mk log k + l), and Mp (x, y, z) is Turing machine computable from 
m and k in time polynomial in m and k. 

Proof. The construction of the formulas MT (x, y, z) will be inductive on m. For 
m = 0 we have 2k0 = 2 and we define MF h, y, z) as 

(x=Onz=O)v(x=1~z=yjv(x=1+11\2=y+y). 

To get Mz+* from Mr, we observe that for q E N -- (0) and k > 0, 

x& and xsqk 

is equivalent to 

there exist x o,~.~,Xk-1E~WifhXo~q,X1<q,X2<q,...,Xk_l<q 

and x = ‘f’ xiq,’ 
i=O 
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and this is equivalent to 
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there exist U, x0, . . . , xk-+N with u ~q, xosq, x1 cq, 

k-l 

x:!<q,..., Xk-l<q and x = C xiui. 
i=O 

If X = xi”:; xiui, then xy = x:l,’ xiyu’ and by Horner 

x =xo+u(x*+u(* l l +u(x/&+uxk-1)’ ’ 0)) 

and 

xy =xoy+u(x*y+u(* l l + u(Xk-2y + uX&iy)’ l 0)). 

Hence, for k > 0, M r’ * (x, y, z) is equivalent to 

3u, x0,. . . , xk-1, 20,. . . , tk-1, VO, e.. , t&--l, WO,. a., wk-1 

“r\’ # 

k-l 

Xi CI A A MT(U, Xii-Vi, Vi-1)hV)k-1=O/~X=XO+Vg 
i-l i=l 

k-l k-l 

A /\ M~(Xi,y,Zi)A A Mkm(U,ZitWirWi-.l)AWk-1=0 
i=O i=l 

AZ = Z[) + wo. 

If we replace xi Z u by a formula expressing xi < u, then WC: get a formula which 

is more easily understandable. 
We define A& exactly like this, but for yyt > 0, MY+1 is constructed from this 

formula using the abbreviation method [4]: 

is replaced by 

X=l’lAY=SiA.Z +M(x,Y,z) . 1 
And as in [4], the same variable names are used several times, so that only 4k + 7 
different variable names appear in Mr (x, y, z). (Actually variable renaming is no? 
necessary tHhen m = O(k) as in Theorem 2.) 

Then there is a constant c with 

IM km+* :x, y, z)l~ IMk” (x, y, z>l+ ck log k 

and therefore 

IMr(x, y, z)lsc(mk log k+l). 
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The quantifier alternation depth of Mr (x, y, z) is max(2m - 1,O). It is obvious that 
Mr (x, y, I) is computable by a Turing machine in time polynomial in m and k 
(even within space O(log m +log k) on the work tapes). 

The method *we use to get lower complexity bounds from a formula for multiplica- 
f;on is not new. Therefore we present only an outline. 

First we use modular arithmetic and the prime number theorem, as in [4], to 
clefirie multiplication up to 2 2(n’m’cm in Presburger arithmetic by a formula of length 
n and quantifircr alternation depth m. 

To do ttiis, wt: define g(n) to be the least common multiple of all positive integers 
less &an or equal to n. Then g(n) = e”“‘, where + is Tchebychef ‘s function. Using 
this definition of g, it is easy to write a formula G?(x) which is true precisely for 
x = g(2’“). (Nuts: that y is a non-negative integer a2km iff Mr (y, 0,O) is true.) 

Let f&z) +&z) denote asymptotic equivalence of f1 and fi, i.e. 
km, -a fibz)lf;~ Y) = 1. 

Then the prin.rc number theorem (see e.g. [7]) is equivalent to #(n) - n. (In fact 
one proves +(rr ‘,I -* sr in order to prove the prime number theorem.) And the Chinese 
remainder thearem implies that for all non-negative integers X, y, z < g(n), we have 

xy=r iff 

Xifli = Zi for all positive integers i S n 

and all xi, yip zI < i with 

XEXi,ysyiandzszi modi. 

Using the formulas Mr (x, y, z) and Gr (x) to express these congruences and 
equalities, we can easily define a formula Prod p(x, y, z) which is true in f+l iff xy = z 
and X, y, z c g(2km). The length of Prod&, y, z) is only c(mk Isg k + 1) and its 
quantifier alternation depth is 2,m + d. We have already seen that for all constants 
c c e and for k” sufficiently big ~(2~“) > Cafe. 

Now when multiplication is defined for a large initial segment of N, we can-if 
we like-depart from the paper of Fischer and Rabin and follow the more elegant 
met&l used by lieintz [8] and A. IL Meyer (see [S]): we first define the concatena- 
tion of words and then use it to describe computations of Turing machines. All 
this increases the quantifier alternation depth of the formula only by a small additive 
constant. 

The most elegant method to code words over a finite alphabet into non-negative 
integers is due to Smullyan [lo]. The number A = Cy=, ai2’ with ai E {1,2} (not 
(0, l)!) codes the word W(A) = a,,a,,+ . . . ao. This defines a one-to-one enumeration 
of the words over {1,2). 

We first define a formula Potr(y, u) saying that y < g(2k”) and u is the biggest 
power of 2 k:ss than or equal to y. Then the following formula says that W(z) is 



Complexity of Presburger arithmetic 109 

the concatenation of with W(y) and 2 cg(2”“‘) (hence the length of W(Z) 
is bounded by log g(2@‘> - 2km): ’ 

Having concatenation available it is no problem (but a bit lengthy) to describe 
computations. Mere ‘computation’ means a suitable encoding of a sequence of 
subsequent configurations of a Turing machine. 

We can describe computations of length 2”” by formulas of length rc 1 (nzk log k +- 1) 
and quantifier alternation depth 2m +cz. Hence, there are constants c and d such 
that for all m, n > d we can describe computations of length ~2(~““)‘“’ by formulas 
of length n and depth m. This implies: 

Theorem 2, There is a constant c >O such that no 2” =H”~’ time-bounded non- 
deterministic Turing machine can decide PA(m ). 

This result holds also when m is a function of the input length n. 

3. The Berman complexity 

Both the time and the space complexity measure seem to be not quite adequate 
for mathematical theories like Presburger arithmetic. Berman [l] has shown that 
the simultaneous bounds for time and alternation depth of an alternating Turing 
machine is a better compL:xity measure. 

Directly applying the method of [I] to the above non-deterministic lower time 
bound for PA(m) and to the upper space bound of [9] for PA(m), we get (as for 
PA) also pretty tight bounds for PA(m): 

Theorem 3. There is a constant c >O such that for all m, rn’E RJ (with m’< m) 
2(n/m)Lc(m-m’)J 

is a lower bound for the time complexity of alternating Turing machines 
deciding PA(ura) with at most m’ alternations. 

Remark, Theorem 3 can be improved, if we say in a formula, “there is an accepting 
computation tree”, instead of simulating the alternations of the alternating Turing 
machine by quantifier-alternations of the formula. 

Theorem 4. There is a constant c such that for all m E N there is a 2cn’n+4 time-bounded 
alternating Turing machine which decides PA(m) with m alternations. 
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The method of this paper can be applied to other mathematical theories. ‘Ihe 
exponential ccrmplexity jump from PA(m) (for constant m) to PA is typical for 
those mathematical theories whose decision complexity is at least non-deterministic 
exponential tkne. 

If the complexity is also not more than exponential space, such as for the theory 
of reals with zcddition [3], then good lower bounds for bounded and for unbounded 
quantifier al&rnation depth are usually much easier to obtain. It is then usually 
possible to defk~ concatenation directly, without defining multiplication. We illus- 
trate this met:! .G with one exalmple. 

4.1. 77~~ tkeorry of reals with addition 

We represent some reals {namely the non-negative integlers) by words over a 
finite alphablet and define their concatenation in the theory of reals with addition. 
IMeGid of the thfzory of reals wittn addition, we could choose iany other theory such 
that all its models are groups, and in one model an element of infinite order exists 
(see /8]j. 

As before, let thle integer A = C:=, ai2’ with ai E { 1,2} represent the word W(A) = 

am l l l ao, Hence !:he integer 0 represents the empty word. Mow we define a formula 
Kr(x, y, z), such, that for all A, B, C E N, Kr(A, B, C) is true iti W(A) W(B) = 

W(C) (the corrllzaknation of W(A) with W(B) is W(C)) and B ~2~“‘. 
Ki (x, y, 2) is definecj as 

(y==OAx=r)v(y=3.Ax+x+1 =Z)V(y=l+lAX+X+1+1=Z) 

and Kp“’ (x, y, t) is defined to be equivalent to 

3u1, 9 l l 9 uk, YO, 0 ‘ l 9 Yk, 20, 9 . . 9 zk 

it .luF (Yi-19 Ui, Yr) 
i=l 

Using the abbreviation methods of Section 2, this formula can be transformed such 
that 

IKP ix, y, z)\ s c(mk log k + 1) 

and the quantifier alternation depth of Kr (x, y, z) is max(2m - 1,O). 
From this rtisult it follows easily: . 



Complexity of Presburger arithmetk 111 

Theorem 5. Tdiere is a constant c > 0 such that the validity of formulas with quantifier 
alternation depth srn of the theory of reals with addition cannot be decided by an 
(n/mjLCml time-bounded non-deterministic Turing machine. 

And naturally also the analogues to the Theorems 3 and 4 hold for the reals 
with addition. 

5. Conclusions 

For a big enough constant m, the complexity of PA(m) is one exponential lower 
than that of PA. This is typical for mathematical theories. For very small constants 
m, the complexity is even lower. PA(l) is (NP u co-NP)-complete. This follows 
from the result of Borosh and Treybig [2] and von zur Gathen and Sieveking [6] 
that solvable linear diophantine inequality systems have a polynomially bounded 
solution. But for a constant m as low as about 6, we have an exponential nondcter- 
ministic lower time bound for PA(m). Hence, there is a very interesting complexity 
jump somewhere between m = 1 and m = 10. 

Problem. Where does this complexity jump occur? In particular, for which m E 

11 9*+-Y 10) is PA(m) in NP u co-NP or in PQLYSPACE, and for which m is PA(m) 
not in NEXPTIME? 
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