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Abstract

Let ðP;SÞ be a Coxeter system. An ordered list of elements in S and an element in P
determine a subword complex, as introduced in Knutson and Miller (Ann. of Math. (2) (2003),

to appear). Subword complexes are demonstrated here to be homeomorphic to balls or

spheres, and their Hilbert series are shown to reflect combinatorial properties of reduced

expressions in Coxeter groups. Two formulae for double Grothendieck polynomials, one of

which appeared in Fomin and Kirillov (Proceedings of the Sixth Conference in Formal Power

Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183–190), are recovered in the

context of simplicial topology for subword complexes. Some open questions related to

subword complexes are presented.
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1. Introduction

We introduced subword complexes in [KM03] to elucidate the combinatorics of
determinantal ideals and Schubert polynomials. In retrospect, however, they raise
basic questions about the nature of reduced expressions in arbitrary Coxeter groups.
For instance, given a fixed word— that is, an ordered list Q of simple reflections in a
Coxeter group P— what can be said about the set of all of its reduced subwords? In
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particular, given a fixed element pAP; what structure belongs to the set of subwords
of Q that are reduced expressions for p?

The exchange axiom in P answers this last question when Q is a list of 1þ
length ðpÞ simple reflections (see Lemma 3.5). The general answer, when Q and p are
arbitrary, lies in properties of the subword complex DðQ;pÞ; whose facets
correspond (by definition) to reduced subwords of Q having product p:

Both the topology and combinatorics of DðQ; pÞ are governed by the exchange
axiom in a strong sense. Our first main result, Theorem 3.7, says that subword
complexes are homeomorphic to balls or spheres. The proof uses the fact that
subword complexes are shellable, which was demonstrated in [KM03] by exhibiting
an explicit vertex decomposition. The lurking exchange axiom surfaces here as the
transition between adjacent facets across the codimension 1 face joining them.

Given their topological simplicity, the invariants of subword complexes
necessarily derive from more refined combinatorial data, namely the links of all
faces. Therefore we focus on homological aspects of Stanley–Reisner theory in
Section 4, where we calculate the Hilbert series of face rings of subword complexes in
Theorems 4.1 and 4.4. The exchange axiom here gives rise to the criterion for a face
to lie in the boundary of a subword complex.

The structure theorem for subword complexes, Theorem 3.7, is reminiscent of
fundamental results for Bruhat as well as weak orders, and also for finite distributive
lattices. The topology of subword complexes looks similar to that of order complexes
of intervals in the Bruhat order studied by Björner and Wachs [BW82], even though
there seems to be little direct connection to subword complexes. Indeed, the
simplicial complexes in [BW82] are by definition independent of the reduced
expressions involved, although the lexicographic shellings there depend on such
choices. In contrast, Björner [Bjö84, Section 3] concerns himself with intervals in
weak orders, where the reduced expressions involved form the substance of the
simplicial complexes, as they do for subword complexes. Björner proves that
intervals in the weak order are homotopy equivalent to balls or spheres. Our results
are geometrically somewhat stronger, in that we prove not just homotopy
equivalence, but homeomorphism.

The comparison between subword complexes and order complexes of intervals in
the weak order occurs most clearly when the word Q contains as a subword every
reduced expression for p: In essence, the reduced expressions for p must be repeated
often enough, and in enough locations inside Q; to make DðQ; pÞ homeomorphic to a
manifold, whereas the set of reduced expressions for p—without repeats—only
achieves homotopy equivalence. Some open questions in Section 6 are relevant here.

The plan of the paper is as follows. We review in Section 2 the shelling
construction and its proof from [KM03], along with related definitions. Next, we
prove the structure theorem in Section 3. Section 4 contains the Hilbert series
calculation, which requires a review of Hochster’s formula and the Alexander
inversion formula [Mil00], the latter expressing the simple relation between the
Hilbert series of a squarefree monomial ideal and that of its Alexander dual. In
Section 5, we apply our Hilbert series formula in the context of symmetric groups
from [KM03] to deduce two formulae for Grothendieck polynomials, one of which is
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due originally to Fomin and Kirillov [FK94]. Finally, we present some open
problems in Section 6.

We note that the particular subword complexes in Example 5.1 were, in fact, the
special cases that originally led us to define subword complexes in general. These
special cases appear as the initial schemes of certain types of determinantal varieties
(‘matrix Schubert varieties’). The shellability for subword complexes proved in
[KM03] and reviewed in Section 2 allowed us to give in [KM03] an independent
proof of Cohen–Macaulayness for matrix Schubert varieties [Ful92], and therefore
also for ordinary Schubert varieties in the flag manifold [Ram85].

2. Subword complexes

We deal with an arbitrary Coxeter system ðP;SÞ consisting of a Coxeter group P
and a set S of simple reflections minimally generating P: See [Hum90] for
background. In Section 5, we shall be particularly interested in an application where
P ¼ Sn is the symmetric group, and S consists of the adjacent transpositions
s1;y; sn�1; where si switches i and i þ 1: Here is our main definition, copied from
[KM03, Definition 1.8.1].

Definition 2.1. A word of size m is an ordered sequence Q ¼ ðs1;y; smÞ of elements
of S: An ordered subsequence P of Q is called a subword of Q:

1. P represents pAP if the ordered product of the simple reflections in P is a reduced
decomposition for p:

2. P contains pAP if some subsequence of P represents p:

The subword complex DðQ; pÞ is the set of subwords Q\P whose complements P

contain p:

In other words, if Q\D is a facet of the subword complex DðQ; pÞ; then the
reflections in D give a reduced expression for p: Note that subwords of Q come with
their embeddings into Q; so two subwords P and P0 involving reflections at different
positions in Q are unequal, even if the sequences of reflections in P and P0 are equal.

Often we write Q as a string without parentheses or commas, and abuse notation
by saying that Q is a word inP; without explicit reference to S:Note that Q need not
itself be a reduced expression. The following lemma is immediate from the definitions
and the fact that all reduced expressions for pAP have the same length.

Lemma 2.2. DðQ; pÞ is a pure simplicial complex whose facets are the subwords Q\P

such that PDQ represents p:

Example 2.3. Consider the subword complex D ¼ Dðs3s2s3s2s3; 1432Þ in P ¼ S4:
This p ¼ 1432 has two reduced expressions, namely s3s2s3 and s2s3s2: Labeling the
vertices of a pentagon with the reflections in Q ¼ s3s2s3s2s3 (in cyclic order), we find
that the facets of D are the pairs of adjacent vertices. Therefore D is the pentagon.
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Definition 2.4. Let D be a simplicial complex and FAD a face.

1. The deletion of F from D is del ðF ;DÞ ¼ fGAD j G-F ¼ |g:
2. The link of F in D is link ðF ;DÞ ¼ fGAD j G-F ¼ | and G,FADg:

D is vertex-decomposable if D is pure and either (1) D ¼ f|g; or (2) for some vertex
vAD; both del ðv;DÞ and linkðv;DÞ are vertex-decomposable. A shelling of D is an

ordered list F1;F2;y;Ft of its facets such that
S

joi F̂ j-F̂ i is a subcomplex

generated by codimension 1 faces of Fi for each ipt; where F̂ denotes the set of faces
of F : We say that D is shellable if it is pure and has a shelling.

Vertex-decomposability can be seen as a sort of universal property. Indeed,
suppose that F is a family of pure simplicial complexes in which every nonempty
complex DAF has a vertex whose link and deletion both lie in F: Then F consists
of vertex-decomposable complexes. The set of vertex-decomposable complexes is the
largest (hence universal) such family.

In the above definition, the empty set | is a perfectly good face of D; representing
the empty set of vertices; we set its dimension equal to �1: Thus D ¼ f|g is a sphere
of dimension �1; with reduced homology Z in dimension �1:

The notion of vertex-decomposability was introduced by Provan and Billera
[BP79], who proved that it implies shellability. For the convenience of the reader, the
proof of the next result is copied more or less verbatim from [KM03, Section 1.8].

Theorem 2.5. Subword complexes DðQ; pÞ are vertex-decomposable, hence shellable.

Proof. Supposing that Q ¼ ðs; s2; s3;y; smÞ; it suffices to show that both the link
and the deletion of s from DðQ; pÞ are subword complexes. By definition, both
consist of subwords of Q0 ¼ ðs2;y; smÞ: The link is naturally identified with the
subword complex DðQ0; pÞ: For the deletion, there are two cases. If sp is longer than
p; then the deletion of s equals its link because no reduced expression for p begins
with s: On the other hand, when sp is shorter than p; the deletion is DðQ0; spÞ: &

Remark 2.6. Among the known vertex decomposable simplicial complexes are the
dual greedoid complexes [BKL85], which include the matroid complexes. Although
subword complexes strongly resemble dual greedoid complexes, the exchange axioms
defining greedoids seem to be slightly stronger than the exchange axioms for facets of
subword complexes imposed by Coxeter relations. In particular, the naı̈ve ways to
correspond subword complexes to dual greedoid complexes do not work, and we
conjecture that they are not in general isomorphic to dual greedoid complexes.

To be precise, a collection M of subsets of a finite vertex set Q constitutes the

feasible subsets of a greedoid when |AM; and

if X and Y are in M with jX j4jY j; then there is some element xAX \Y such that
Y,x lies in M:
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The facets of the dual greedoid complex are then the complements in Q of the
maximal elements (bases) in M:

There is a natural attempt at defining a greedoid whose dual complex is DðQ; pÞ:
namely, let MðQ; pÞ be the collection of subwords of Q that are themselves reduced

subwords of some PDQ representing p: Thus an element YAMðQ; pÞ is a sublist of
Q such that (i) the ordered product of elements in Y has length jY j; and (ii) there is
some sublist ZDQ such that Y,Z is a reduced expression for p: However, this
MðQ; pÞ need not be a greedoid.

An easy nongreedoid example occurs when p ¼ 12543 ¼ s3s4s3 ¼ s4s3s4 and Q is
the reduced expression s4s3s2s1s4s3s2s4s3s4 for the long word in S5:

Q ¼ s4 s3 s2 s1 s4 s3 s2 s4 s3 s4;

X ¼ s3 s4 s3;

Y ¼ s4 s3;

Z ¼ s4:

Moving any of the elements from X down to Y creates a nonreduced expression.
The reader is invited to find a general construction of greedoids making subword

complexes into dual greedoid complexes; we conjecture that none exists. Note that
any successful attempt will exclude the subword Y above from the feasible set.

3. Balls or spheres

Knowing now that subword complexes in Coxeter groups are shellable, we are
able to prove a much more precise statement. Our proof technique requires a certain
deformation of the group algebra of a Coxeter group. As we shall see in Lemma
3.4.1, the Demazure product in the following definition ‘‘detects’’ Bruhat order on
arbitrary words by a subword condition, just like the ordinary product detects
Bruhat order on reduced words by a subword condition.

Definition 3.1. Let R be a commutative ring, and D a free R-module with basis
fepjpAPg: Defining a multiplication on D by

epes ¼
eps if length ðpsÞ4length ðpÞ
ep if length ðpsÞolength ðpÞ

(
ð1Þ

for sAS yields the Demazure algebra of ðP;SÞ over R: Define the Demazure product

dðQÞ of the word Q ¼ ðs1;y; smÞ by es1?esm
¼ edðQÞ:

Example 3.2. Let P ¼ Sn act on the polynomial ring R½x1;y; xn� by permuting the

variables. Define the Demazure operator %@i for i ¼ 1;y; n � 1 on a polynomial f ¼
f ðx1;y;xnÞ with coefficients in R by

%@ið f Þ ¼ xiþ1f � xiðsi 
 f Þ
xiþ1 � xi

:
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Checking monomial by monomial in f reveals that the denominator divides the
numerator, so this rational function is really a polynomial in R½x1;y; xn�: The
algebra D is isomorphic to the algebra generated over R by the Demazure operators
%@i; hence the name ‘Demazure algebra’. In this case, the fact that D is an associative
algebra with given free R-basis follows from the easily verified fact that the
Demazure operators satisfy the Coxeter relations.

Remark 3.3. The operators in Example 3.2 and the related ‘divided difference’
operators were introduced by Demazure [Dem74] and Bernstein–Gel0fand–Gel0fand
[BGG73] for arbitrary Weyl groups. Their context was the calculation of the
cohomology and K-theory classes of Schubert varieties in G=P via desingularization.

The operators %@i; which are frequently denoted in the literature by pi; were called
isobaric divided differences by Lascoux and Schützenberger [LS82b]. See Section 5 for
the relation to Grothendieck polynomials, and [Mac91] for background on the
algebra of divided differences.

In general, the fact that the equations in (1) define an associative algebra is the
special case of [Hum90, Theorem 7.1] where all of the ‘a’ variables equal 1 and all of
the ‘b’ variables are zero. Observe that the ordered product of a word equals the
Demazure product if the word is reduced. Here are some basic properties of
Demazure products, using ‘X’ and ‘4’ signs to denote the Bruhat partial order on
P; in which tXp if some (and hence every) reduced word representing t contains a
subword representing p [Hum90, Section 5.9]. For notation in the proof and
henceforth, we write Q\si for the word of size m � 1 obtained from Q ¼ ðs1;y; smÞ
by omitting si:

Lemma 3.4. Let P be a word in P and let pAP:

1. The Demazure product dðPÞ is Xp if and only if P contains p:
2. If dðPÞ ¼ p; then every subword of P containing p has Demazure product p:
3. If dðPÞ4p; then P contains a word T representing an element t4p satisfying

jT j ¼ length ðtÞ ¼ length ðpÞ þ 1:

Proof. If P0DP and P0 contains p; then P0 contains dðP0Þ and p ¼ dðPÞXdðP0ÞXp;
proving part 2 from part 1. Choosing any tAP such that length ðtÞ ¼ length ðpÞ þ 1
and potpdðPÞ proves part 3 from part 1.

Now we prove part 1. Suppose p0 ¼ dðPÞXp; and let P0DP be the subword
obtained by reading P in order, omitting any reflections along the way that do not
increase length. Then P0 represents p0 by definition, and contains p because any
reduced expression for p0 contains a reduced expression for p:

If TDP represents p; then use induction on jPj as follows. Let sAS be the last
reflection in the list P; so dðPÞsodðPÞ by definition of Demazure product, and
dðP\sÞ equals either dðPÞ or dðPÞs: If ps4p then TDP\s; so ppdðP\sÞpdðPÞ by
induction. If psop and T 0CT represents ps; then T 0DP\s and hence pspdðP\sÞ by
induction. Since psop; we have pspdðP\sÞ ) ppdðPÞ: &
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Lemma 3.5. Let T be a word in P and pAP such that jT j ¼ length ðpÞ þ 1:

1. There are at most two elements sAT such that T\s represents p:
2. If dðTÞ ¼ p; then there are two distinct sAT such that T\s represents p:
3. If T represents t4p; then T\s represents p for exactly one sAT :

Proof. Part 1 is obvious if jT jp2; so suppose there are elements s1; s2; s3AT (in
order of appearance) such that T\si represents p for each i ¼ 1; 2; 3: Writing T ¼
T1s1T2s2T3s3T4; we find that

T1T2s2T3s3T4 ¼ T1s1T2T3s3T4:

Canceling T1 from the left and T3s3T4 from the right yields T2s2 ¼ s1T2: It follows
that p ¼ T1s1T2s2T3T4 ¼ T1s1s1T2T3T4 ¼ T1T2T3T4; contradicting the hypothesis
that length ðpÞ ¼ jT j � 1:

In part 2, dðTÞ ¼ p means there is some sAT such that

(i) T ¼ T1sT2;
(ii) T1T2 represents p; and
(iii) t14t1s; where T1 represents t1:

Omitting some s0 from T1 leaves a reduced expression for t1s by (iii). It follows that
T\s0 and T\s both represent p:

Part 3 is the exchange condition. &

Lemma 3.6. Suppose every codimension 1 face of a shellable simplicial complex D is

contained in at most two facets. Then D is a topological manifold-with-boundary that is

homeomorphic to either a ball or a sphere. The facets of the topological boundary of D
are the codimension 1 faces of D contained in exactly one facet of D:

Proof. See Björner et al. [BLSWZ99, Proposition 4.7.22]. &

Theorem 3.7. The subword complex DðQ; pÞ is a either a ball or a sphere. A face Q\P is

in the boundary of DðQ; pÞ if and only if P has Demazure product dðPÞap:

Proof. That every codimension 1 face of DðQ; pÞ is contained in at most two facets is
the content of part 1 in Lemma 3.5, while shellability is Theorem 2.5. This verifies the
hypotheses of Lemma 3.6 for the first sentence of the theorem.

If Q\P is a face and P has Demazure product ap; then dðPÞ4p by part 1 of
Lemma 3.4. Choosing T as in part 3 of Lemma 3.4, we find by part 3 of Lemma 3.5
that Q\T is a codimension 1 face contained in exactly one facet of DðQ; pÞ: Thus,
using Lemma 3.6, we conclude that Q\PDQ\T is in the boundary of DðQ; pÞ:

If dðPÞ ¼ p; on the other hand, part 2 of Lemmas 3.4 and 3.5 say that every
codimension 1 face Q\TADðQ; pÞ containing Q\P is contained in two facets of
DðQ; pÞ: Lemma 3.6 says each such Q\T is in the interior of DðQ; pÞ; whence Q\P

must itself be an interior face. &
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Corollary 3.8. The complex DðQ; pÞ is a sphere if dðQÞ ¼ p and a ball otherwise.

4. Hilbert series

Let us review some standard notions from Stanley–Reisner theory. Fix a field k

and a set z ¼ z1;y; zm of variables. Suppose D is a simplicial complex with m

vertices, which we think of as corresponding to the simple reflections s1;y; sm in the
word Q: Recall that the Stanley–Reisner ideal of D is ID ¼ /

Q
iAD zi j DeDS; the

ideal generated by monomials corresponding to the (minimal) nonfaces of D:
Equivalently,

ID ¼
\

DAD

/zi j ieDS

is an intersection of prime ideals for faces of D by an easy exercise. By definition, the
Hilbert series Hðk½D�; zÞ of the Stanley–Reisner ring k½D� ¼ k½z�=ID equals the sum of
all monomials in k½z� that lie outside ID: Thus Hðk½D�; zÞ is the sum of all monomials
outside every one of the ideals /zi j ieDS for faces DAD: This sum is over the

monomials zb for bANm having support exactly D for some face DAD:

Hðk½D�; zÞ ¼
X
DAD

Y
iAD

zi

1� zi

¼
X
DAD

Q
iAD

ðziÞ
Q

ieD

ð1� ziÞQm
i¼1 ð1� ziÞ

: ð2Þ

In the special case where D ¼ DðQ; pÞ is a subword complex, the Stanley–Reisner
ideal is the intersection ID ¼

T
/zi j siAPS over subwords PDQ such that P

represents p: Now we are ready to state the main result of this section.

Theorem 4.1. If D is the subword complex DðQ; pÞ and c ¼ length ðpÞ; then the Hilbert

series of the Stanley–Reisner ring k½D� is

Hðk½D�; zÞ ¼
P

dðPÞ¼pð�1ÞjPj�cð1� zÞPQm
i¼1ð1� ziÞ

;

where ð1� zÞP ¼
Q

siAPð1� ziÞ; and the sum is over subwords PDQ:

The proof of Theorem 4.1 is after Proposition 4.3. First, we set about stating and
proving the two results used in the proof of the theorem.

In general, if G is an arbitrary monomial ideal JDk½z�; or a quotient k½z�=J; then
the Hilbert series of G (which is the sum of all monomials inside or outside J;
respectively) has the form

HðG; zÞ ¼ KðG; zÞQm
i¼1ð1� ziÞ

;
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and we call KðG; zÞ the K-polynomial or Hilbert numerator of G: It has the following
direct interpretation in terms of Zm-graded homological algebra. Since G is Zm-
graded, it has a minimal Zm-graded free resolution

0’G’E0’E1’?’Em’0; Ej ¼ "
PDQ

k½z�ð�deg zPÞbj;P ; ð3Þ

where bj;P is the jth Betti number of G in Zm-graded degree deg zP: Then the K-

polynomial of G is K ðG; zÞ ¼
P

j ð�1Þjbj;P 
 zP:

Hochster’s formula, which we shall state in (4), says how to calculate explicitly the
Betti numbers of the Alexander dual ideal of ID; which is defined by

I%

D ¼
Y
ieD

zi j DAD

* +
:

Note that the generators of I%
D are obtained by multiplying the variables in each

prime component of ID: Thus, for instance, when D ¼ DðQ; pÞ is a subword complex,
we get

I%

D ¼ /zP j PDQ and P represents pS;

where zP ¼
Q

siAP zi for any subword PDQ: Hochster’s formula [MP01, p. 45] now

says that, in terms of reduced homology of D ¼ DðQ; pÞ over the field k; the Zm-

graded Betti numbers of I%

D over k½z� are

bj;P ¼ dimk H̃j�1ðlinkðQ\P;DÞ; kÞ: ð4Þ

Lemma 4.2. If D is the subword complex DðQ; pÞ and c ¼ length ðpÞ; then

KðI%

D ; zÞ ¼
X
PDQ
dðPÞ¼p

ð�1ÞjPj�c
zP

is the Hilbert numerator of the Alexander dual ideal.

Proof. Let Q\PAD; so PDQ contains p: By Theorem 3.7, either dðPÞap; in which
case link ðQ\P;DÞ is contractible, or dðPÞ ¼ p; in which case link ðQ\P;DÞ is a sphere
of dimension

ðdim DÞ � jQ\Pj ¼ ðjQj � c� 1Þ � jQ\Pj ¼ jPj � c� 1:

(Recall that a sphere of dimension �1 is taken to mean the empty complex f|g
having nonzero reduced homology in dimension �1:) Therefore H̃j�1link ðQ\P;DÞ is
zero unless dðPÞ ¼ p and j ¼ jPj � c; in which case the reduced homology has

dimension 1: Now apply (4) to the formula KðG; zÞ ¼
P

j ð�1Þjbj;P 
 zP: &
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Lemma 4.2 helps us calculate the Hilbert series of k½D� because the K-polynomials of

the Stanley–Reisner ring k½D� and the Alexander dual ideal I%
D are intimately related,

as the next result demonstrates. Although it holds more generally for the ‘‘squarefree
modules’’ of Yanagawa [Yan00], as shown in [Mil00, Theorem 4.36], we include an
elementary proof of Proposition 4.3 because of its simplicity. A Z-graded version
was proved by Terai for squarefree ideals using some calculations involving f -vectors
of simplicial complexes [Ter99, Lemma 2.3]. For notation, KðG; 1� zÞ is the
polynomial obtained from KðG; zÞ by substituting 1� zi for each variable zi:

Proposition 4.3 (Alexander inversion formula). For any simplicial complex D we have

Kðk½D�; zÞ ¼ KðI%

D ; 1� zÞ:

Proof. See (2) for the Hilbert series of k½D�: On the other hand, the Hilbert series of

I%
D is the sum of all monomials zb divisible by

Q
ieD zi for some DAD:

HðI%

D ; zÞ ¼
X
DAD

Y
ieD

zi

1� zi

¼
X
DAD

Q
ieD ðziÞ

Q
iADð1� ziÞQm

i¼1ð1� ziÞ
: ð5Þ

Now compare the last expressions of (2) and (5). &

Proof of Theorem 4.1. Lemma 4.2 gives the numerator of the Hilbert series of the

Alexander dual ideal I%

D ; and Proposition 4.3 says how to recover the numerator of

the Hilbert series of the Stanley–Reisner ring from that. &

Theorem 4.1 can be restated in a somewhat different form, grouping subwords with
Demazure product p according to their lexicographically first reduced subwords for
p: Given a reduced subword DDQ; say that siAQ\D is absorbable if the word
T ¼ D,si in Q has the properties: (i) dðTÞ ¼ dðDÞ; and (ii) the unique reflection
sjAD (afforded by Lemma 3.5.2) satisfying dðT\sjÞ ¼ dðDÞ has index joi:

Theorem 4.4. If D is the subword complex DðQ; pÞ and abs ðDÞDQ is the set of

absorbable reflections for each reduced subword DDQ; then k½D� has K-polynomial

Kðk½D�; zÞ ¼
X

facetsQ\D

ð1� zÞD
zabsðDÞ;

where ð1� zÞD ¼
Q

siAD ð1� ziÞ; and zabs ðDÞ ¼
Q

siAabs ðDÞ zi:

Proof. Given a subword PDQ; say that P simplifies to DDP; and write P*D; if D

is the lexicographically first subword of P with Demazure product dðPÞ: If P has
Demazure product p and P*D; the subword Q\D is automatically a facet of D:

If we denote by Ppi the initial string of reflections in P with index at most i; the
simplification D is obtained from P by omitting any reflection siAP such that
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dðPpi�1Þ ¼ dðPpiÞ: Theorem 4.1 says that

Kðk½D�; zÞ ¼
X

facetsQ\D

ð1� zÞD
X

P*D

ðz� 1ÞP\D:

Now note that subwords P simplifying to D are (by definition of Demazure product)
obtained by adding to D (at will) some of its absorbable reflections in Q: ThereforeX

P*D

ðz� 1ÞP\D ¼
Y

siAabsðDÞ
ð1þ ðzi � 1ÞÞ ¼ zabs ðDÞ;

completing the proof. &

Remark 4.5. The Hilbert numerator as expressed in Theorem 4.4 looks more like
one would expect from a shellable simplicial complex, using a version of [Sta96,
Proposition 2.3] suitably enhanced for the fine grading. We believe the reason comes
from the facet adjacency graph GðQ; pÞ of DðQ; pÞ; which by definition has the facets
of DðQ; pÞ for vertices, while its edges are the interior ridges (codimension 1 faces) of
DðQ; pÞ: Two facets are adjacent if they share a ridge. Note that every interior ridge
lies in exactly two facets by Lemma 3.6.

The facet adjacency graph GðQ; pÞ can be oriented, by having each ridge Q\P point
toward the facet Q\D whenever P simplifies to D: The resulting directed facet
adjacency graph is acyclic—so its transitive closure is a poset—because the relation
by ridges is a subrelation of lexicographic order. We believe that every linear
extension of this poset gives a shelling order for DðQ; pÞ: The shelling formulae we
get for the K-polynomial will all be the same, namely the one in Theorem 4.4.

5. Combinatorics of Grothendieck polynomials

The Grothendieck polynomial GwðxÞ in variables x1;y; xn and its ‘‘double’’
analogue Gwðx; yÞ represent the classes of Schubert varieties in ordinary and
equivariant K-theory of the flag manifold [LS82b]. Their algebraic definition will be
recalled below. The goal of this section is to derive as special cases of Theorems 4.1
and 4.4 two formulae for Grothendieck polynomials. The first formula (Corollary
5.4) coincides with a special case of a formula discovered by Fomin and Kirillov
[FK94]. It is the K-theoretic analogue of the Billey–Jockusch–Stanley formula for
the Schubert polynomial SwðxÞ [BJS93,FS94], interpreted here for the first time in
terms of simplicial topology. The second formula (Corollary 5.5) relates to other
combinatorial models for Grothendieck polynomials in work of Lenart et al.
[LRS03]. We begin with the example of subword complexes that pervades [KM03].

Example 5.1. Set P ¼ S2n; and let

Qn�n ¼ snsn�1ys2s1 snþ1snys3s2 snþ2snþ1y ysnþ2snþ1 s2n�1s2n�2ysnþ1sn:
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This is the square word from [KM03, Example 1.8.3], so named because the n2 simple
reflections in this list Q fill the n � n grid naturally by starting at the upper-right,
continuing to the left, and subsequently reading each row from right to left, in turn.
Observe that every occurrence of si in Qn�n sits on the ith antidiagonal of the
resulting square array.

Given wASn (not S2n), the subword complex D ¼ DðQn�n;wÞ plays a crucial role in
the main theorems of [KM03]; see Proposition 5.3, below. For the Stanley–Reisner
ring k½D�; we index the variables z ¼ z1;y; zn2 by their positions in the n � n grid, so

z ¼ fzijgn
i;j¼1 with z11 at the upper-left and z1n at the upper-right.

Definition 5.2. Let wASn be a permutation, and recall the Demazure operators %@i

from Example 3.2. The Grothendieck polynomial GwðxÞ is obtained recursively from

the top one Gw0
ðxÞ :¼

Qn
i¼1 ð1� xiÞn�i via the recurrence

Gwsi
ðxÞ ¼ %@iGwðxÞ

whenever length ðwsiÞolength ðwÞ: The double Grothendieck polynomials are defined
by the same recurrence, but start from Gw0

ðx; yÞ :¼
Q

iþjpn ð1� xiyjÞ:

We use slightly different notation in Definition 5.2 than in [KM03, Definition
1.1.3]: the polynomial Gwðx; yÞ here is obtained from the corresponding Laurent

polynomial in [KM03] by setting each variable y�1
i to yi (the geometry in

[KM03] required inverses). This alteration makes the notation more closely resemble

that in [FK94], where their polynomial Lð�1Þ
w ðy; xÞ corresponds to what we call

Gwð1� x; 1� yÞ here.
Grothendieck polynomials connect to subword complexes by part of the ‘Gröbner

geometry theorems’ in [KM03]. In our context, they say the following.

Proposition 5.3 (Knutson and Miller [KM03, Theorems A and B]). Suppose wASn;
and let D ¼ DðQn�n;wÞ be the subword complex for the square word. Setting zij equal

to xiyj or to xi in the Hilbert numerator Kðk½D�; zÞ yields respectively the double

Grothendieck polynomial Gwðx; yÞ or the Grothendieck polynomial GwðxÞ:

For notation, regard subwords PDQn�n as subsets of the n � n grid.

Corollary 5.4 (Fomin and Kirillov [FK94, Theorem 2.3, p. 190]). If wASn and Qn�n

is the square word as in Example 5.1, then the double Grothendieck polynomial

Gwðx; yÞ satisfies

Gwð1� x; 1� yÞ ¼
X

PDQn�n

dðPÞ¼w

Y
ði;jÞAP

ð�1ÞjPj�cðxi þ yj � xiyjÞ;
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where length ðwÞ ¼ c: The version for single Grothendieck polynomials reads

Gwð1� xÞ ¼
X

PDQn�n

dðPÞ¼w

ð�1ÞjPj�c
xP; where xP ¼

Y
ði;jÞAP

xi:

Proof. Apply Theorem 4.1 to the subword complex D ¼ DðQn�n;wÞ: Substituting
xiyj for zij as stipulated in Proposition 5.3 yields the double version after calculating

1� ð1� xiÞð1� yjÞ ¼ xi þ yj � xiyj; while the single version follows trivially. &

Corollary 5.4 can be rewritten in terms of absorbable reflections as in
Theorem 4.4.

Corollary 5.5. If wASn and DðQn�n;wÞ is the square subword complex, then

Gwðx; yÞ ¼
X
facets

Qn�n\D

Y
ði;jÞAD

ð1� xiyjÞ
Y

ði;jÞAabs ðDÞ
xiyj:

The version for single Grothendieck polynomials reads

GwðxÞ ¼
X
facets

Qn�n\D

ð1� xÞD
xabs ðDÞ;

where ð1� xÞD ¼
Q

ði;jÞAD ð1� xiÞ and xabs ðDÞ ¼
Q

ði;jÞAabs ðDÞ xi:

Proof. Apply Proposition 5.3 to the result of Theorem 4.4 for D ¼ DðQn�n;wÞ: &

Readers familiar with reduced pipe dreams (also called rc-graphs; see [KM03,
Section 1.4] for an introduction) can see a geometric interpretation of absorbable
reflections: given a reduced pipe dream D; an elbow tile is absorbable if the two pipes
passing through it intersect in a crossing tile to its northeast. Thus the pipe dream D

almost fails to be being a reduced pipe dream because of that elbow tile. Note that
there must be exactly one reduced pipe dream with no absorbable elbow tiles (in
[BB93] this is the ‘bottom’ rc-graph), because the constant term of the K-polynomial
of any Stanley–Reisner ring—or indeed any non zero quotient of the polynomial
ring—equals 1:

Here is a weird consequence of the Demazure product characterization of the
Hilbert numerator Kðk½D�; zÞ for D ¼ DðQn�n;wÞ

Porism 5.6. For each squarefree monomial zP in the variables z ¼ ðzijÞNi;j¼1; there exists

a unique permutation wASN ¼
S

n Sn such that zP appears with nonzero coefficient in

the Hilbert numerator of the Alexander dual ideal I%

DðQn�n;wÞ for some (and hence all) n

such that wASn: The coefficient of zP is 71:

Proof. The permutation w in question is dðPÞ; by Lemma 4.2. &
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6. Open problems

The considerations in this paper motivate some questions concerning the
combinatorics of reduced expressions in Coxeter groups.

Question 6.1. Given an element pAP; what is the smallest size of a word in S
containing every reduced expression for p as a subword?

Note that a smallest size word containing all reduced expressions for p will not in
general be unique. Indeed, even for the long word w ¼ 321AS3; there are two such:
s1s2s1s2 and s2s1s2s1:

Question 6.1 asks for a measure of how far intervals in the weak order are from
being subword complexes. Another measure would be provided by a solution to the
following problem, which asks roughly how many faces must be added to order
complexes of intervals in the weak order to get subword complexes. To be precise, let
the repetition number repnum ðQ; pÞ be the largest number of times that a single
reduced expression for p appears as a subword of Q:

Problem 6.2. Describe the function sending p/repnum ðpÞ; where repnum ðpÞ ¼
minðrepnum ðQÞ j Q contains all reduced expressions for pÞ:

Restricting to symmetric groups, for instance,

Question 6.3. Is the function in Problem 6.2 bounded above on SN ¼
S

n Sn? If not,

how does it grow?

Given that subword complexes appeared naturally in the context of the geometry
of Schubert varieties, it is natural to ask whether there are good geometric
representatives for subword complexes.

Question 6.4. Can any spherical subword complex be realized as a convex polytope?

One could also take the opposite perspective, by starting with a simplicial
sphere.

Problem 6.5. Characterize those simplicial spheres realizable as subword complexes.

Of course, in all of these problems it may be useful to try restricting to words
in Sn:
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for Grothendieck polynomials in Corollary 5.5, which prompted us to include also
Theorem 4.4.

References

[BB93] N. Bergeron, S. Billey, RC-graphs and Schubert polynomials, Exp. Math. 2 (4) (1993)

257–269.
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