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Abstract

Let (I1,X) be a Coxeter system. An ordered list of elements in X and an element in IT
determine a subword complex, as introduced in Knutson and Miller (Ann. of Math. (2) (2003),
to appear). Subword complexes are demonstrated here to be homeomorphic to balls or
spheres, and their Hilbert series are shown to reflect combinatorial properties of reduced
expressions in Coxeter groups. Two formulae for double Grothendieck polynomials, one of
which appeared in Fomin and Kirillov (Proceedings of the Sixth Conference in Formal Power
Series and Algebraic Combinatorics, DIMACS, 1994, pp. 183-190), are recovered in the
context of simplicial topology for subword complexes. Some open questions related to
subword complexes are presented.
© 2003 Elsevier Inc. All rights reserved.
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1. Introduction

We introduced subword complexes in [KMO03] to elucidate the combinatorics of
determinantal ideals and Schubert polynomials. In retrospect, however, they raise
basic questions about the nature of reduced expressions in arbitrary Coxeter groups.
For instance, given a fixed word— that is, an ordered list Q of simple reflections in a
Coxeter group IT— what can be said about the set of all of its reduced subwords? In
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particular, given a fixed element 7 € I1, what structure belongs to the set of subwords
of Q that are reduced expressions for n?

The exchange axiom in IT answers this last question when Q is a list of 1+
length () simple reflections (see Lemma 3.5). The general answer, when Q and 7 are
arbitrary, lies in properties of the subword complex 4(Q,n), whose facets
correspond (by definition) to reduced subwords of Q having product =.

Both the topology and combinatorics of A(Q,n) are governed by the exchange
axiom in a strong sense. Our first main result, Theorem 3.7, says that subword
complexes are homeomorphic to balls or spheres. The proof uses the fact that
subword complexes are shellable, which was demonstrated in [KMO03] by exhibiting
an explicit vertex decomposition. The lurking exchange axiom surfaces here as the
transition between adjacent facets across the codimension 1 face joining them.

Given their topological simplicity, the invariants of subword complexes
necessarily derive from more refined combinatorial data, namely the links of all
faces. Therefore we focus on homological aspects of Stanley—Reisner theory in
Section 4, where we calculate the Hilbert series of face rings of subword complexes in
Theorems 4.1 and 4.4. The exchange axiom here gives rise to the criterion for a face
to lie in the boundary of a subword complex.

The structure theorem for subword complexes, Theorem 3.7, is reminiscent of
fundamental results for Bruhat as well as weak orders, and also for finite distributive
lattices. The topology of subword complexes looks similar to that of order complexes
of intervals in the Bruhat order studied by Bjorner and Wachs [BW82], even though
there seems to be little direct connection to subword complexes. Indeed, the
simplicial complexes in [BW82] are by definition independent of the reduced
expressions involved, although the lexicographic shellings there depend on such
choices. In contrast, Bjorner [Bj684, Section 3] concerns himself with intervals in
weak orders, where the reduced expressions involved form the substance of the
simplicial complexes, as they do for subword complexes. Bjorner proves that
intervals in the weak order are homotopy equivalent to balls or spheres. Our results
are geometrically somewhat stronger, in that we prove not just homotopy
equivalence, but homeomorphism.

The comparison between subword complexes and order complexes of intervals in
the weak order occurs most clearly when the word Q contains as a subword every
reduced expression for 7. In essence, the reduced expressions for 7 must be repeated
often enough, and in enough locations inside Q, to make 4(Q, n) homeomorphic to a
manifold, whereas the set of reduced expressions for m—without repeats—only
achieves homotopy equivalence. Some open questions in Section 6 are relevant here.

The plan of the paper is as follows. We review in Section 2 the shelling
construction and its proof from [KMO3], along with related definitions. Next, we
prove the structure theorem in Section 3. Section 4 contains the Hilbert series
calculation, which requires a review of Hochster’s formula and the Alexander
inversion formula [Mil00], the latter expressing the simple relation between the
Hilbert series of a squarefree monomial ideal and that of its Alexander dual. In
Section 5, we apply our Hilbert series formula in the context of symmetric groups
from [KMO3] to deduce two formulae for Grothendieck polynomials, one of which is
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due originally to Fomin and Kirillov [FK94]. Finally, we present some open
problems in Section 6.

We note that the particular subword complexes in Example 5.1 were, in fact, the
special cases that originally led us to define subword complexes in general. These
special cases appear as the initial schemes of certain types of determinantal varieties
(‘matrix Schubert varieties’). The shellability for subword complexes proved in
[KMO03] and reviewed in Section 2 allowed us to give in [KMO03] an independent
proof of Cohen—Macaulayness for matrix Schubert varieties [Ful92], and therefore
also for ordinary Schubert varieties in the flag manifold [Ram85].

2. Subword complexes

We deal with an arbitrary Coxeter system (I1, 2) consisting of a Coxeter group IT
and a set X~ of simple reflections minimally generating II. See [Hum90] for
background. In Section 5, we shall be particularly interested in an application where
I =S, is the symmetric group, and X consists of the adjacent transpositions
S, ...,S,—1, where s; switches i and i+ 1. Here is our main definition, copied from
[KMO03, Definition 1.8.1].

Definition 2.1. A word of size m is an ordered sequence Q = (a1, ..., 0,,) of elements
of X. An ordered subsequence P of Q is called a subword of Q.

1. Prepresents me Il if the ordered product of the simple reflections in P is a reduced
decomposition for 7.
2. P contains nell if some subsequence of P represents 7.

The subword complex A(Q, =) is the set of subwords Q\P whose complements P
contain 7.

In other words, if Q\D is a facet of the subword complex 4(Q,n), then the
reflections in D give a reduced expression for 7. Note that subwords of Q come with
their embeddings into Q, so two subwords P and P’ involving reflections at different
positions in Q are unequal, even if the sequences of reflections in P and P’ are equal.

Often we write Q as a string without parentheses or commas, and abuse notation
by saying that Q is a word in I1, without explicit reference to 2. Note that Q need not
itself be a reduced expression. The following lemma is immediate from the definitions
and the fact that all reduced expressions for we Il have the same length.

Lemma 2.2. A(Q,n) is a pure simplicial complex whose facets are the subwords Q\P
such that P< Q represents .

Example 2.3. Consider the subword complex A = A(s352535253, 1432) in IT = Sy.
This = = 1432 has two reduced expressions, namely s3s5253 and s2535. Labeling the
vertices of a pentagon with the reflections in Q = 5355535253 (in cyclic order), we find
that the facets of A are the pairs of adjacent vertices. Therefore 4 is the pentagon.
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Definition 2.4. Let 4 be a simplicial complex and Fe 4 a face.

1. The deletion of F from A is del (F,4) = {Ged|GnF = 0}.
2. The link of F in 4 is link (F,4) = {Ged|GnF =@ and GUFeA}.

A is vertex-decomposable if A is pure and either (1) 4 = {Q}, or (2) for some vertex
ved, both del (v, 4) and link(v, 4) are vertex-decomposable. A shelling of 4 is an

ordered list Fy,F>,...,F, of its facets such that U,'<z Fjr\Fi is a subcomplex

generated by codimension 1 faces of F; for each i<t, where F denotes the set of faces
of F. We say that 4 is shellable if it is pure and has a shelling.

Vertex-decomposability can be seen as a sort of universal property. Indeed,
suppose that % is a family of pure simplicial complexes in which every nonempty
complex 4€.Z has a vertex whose link and deletion both lie in #. Then & consists
of vertex-decomposable complexes. The set of vertex-decomposable complexes is the
largest (hence universal) such family.

In the above definition, the empty set () is a perfectly good face of A4, representing
the empty set of vertices; we set its dimension equal to —1. Thus 4 = {{} is a sphere
of dimension —1, with reduced homology Z in dimension —1.

The notion of vertex-decomposability was introduced by Provan and Billera
[BP79], who proved that it implies shellability. For the convenience of the reader, the
proof of the next result is copied more or less verbatim from [KMO03, Section 1.8].

Theorem 2.5. Subword complexes A(Q, ) are vertex-decomposable, hence shellable.

Proof. Supposing that Q = (7,023,063, ...,0n), it suffices to show that both the link
and the deletion of ¢ from A(Q,n) are subword complexes. By definition, both
consist of subwords of Q' = (o2, ...,0,). The link is naturally identified with the
subword complex 4(Q', 7). For the deletion, there are two cases. If o7 is longer than
7, then the deletion of ¢ equals its link because no reduced expression for = begins
with ¢. On the other hand, when o7 is shorter than =, the deletion is 4(Q',on). O

Remark 2.6. Among the known vertex decomposable simplicial complexes are the
dual greedoid complexes [BKLS85], which include the matroid complexes. Although
subword complexes strongly resemble dual greedoid complexes, the exchange axioms
defining greedoids seem to be slightly stronger than the exchange axioms for facets of
subword complexes imposed by Coxeter relations. In particular, the naive ways to
correspond subword complexes to dual greedoid complexes do not work, and we
conjecture that they are not in general isomorphic to dual greedoid complexes.

To be precise, a collection M of subsets of a finite vertex set Q constitutes the
feasible subsets of a greedoid when (e M, and

if X and Y are in M with | X|>|Y|, then there is some element xe X \Y such that
Yux lies in M.
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The facets of the dual greedoid complex are then the complements in Q of the
maximal elements (bases) in M.

There is a natural attempt at defining a greedoid whose dual complex is 4(Q, n):
namely, let M(Q, n) be the collection of subwords of Q that are themselves reduced
subwords of some P< Q representing 7. Thus an element Y e M(Q, n) is a sublist of
Q such that (i) the ordered product of elements in ¥ has length | Y|, and (ii) there is
some sublist Z< Q such that YU Z is a reduced expression for n. However, this
M(Q, r) need not be a greedoid.

An easy nongreedoid example occurs when © = 12543 = 535453 = 545384 and Q is
the reduced expression s4535251545352545384 for the long word in Ss:

O= 54 853 S S1 Sa 3 S2 S4 3 84,
X = 53 S4 83,

Y= 54 53,

Z = S4.

Moving any of the elements from X down to Y creates a nonreduced expression.
The reader is invited to find a general construction of greedoids making subword

complexes into dual greedoid complexes; we conjecture that none exists. Note that

any successful attempt will exclude the subword Y above from the feasible set.

3. Balls or spheres

Knowing now that subword complexes in Coxeter groups are shellable, we are
able to prove a much more precise statement. Our proof technique requires a certain
deformation of the group algebra of a Coxeter group. As we shall see in Lemma
3.4.1, the Demazure product in the following definition “detects” Bruhat order on
arbitrary words by a subword condition, just like the ordinary product detects
Bruhat order on reduced words by a subword condition.

Definition 3.1. Let R be a commutative ring, and 2 a free R-module with basis
{ez|meIl}. Defining a multiplication on & by

ens if length (no)>length (n) (1)
€n€s = .
e, if length (no)<length ()

for o€ X yields the Demazure algebra of (I1,2) over R. Define the Demazure product
0(Q) of the word Q = (a1, ...,0m) by €5, -5, = €510)-

Example 3.2. Let IT = S, act on the polynomial ring R[xy, ..., x,] by permuting the
variables. Define the Demazure operator 0; for i =1, ....,n — 1 on a polynomial f =
f(x1,...,x,) with coefficients in R by

_ Xip1f — xi(Si 'f).

Xitl — X

ai(f)
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Checking monomial by monomial in f reveals that the denominator divides the
numerator, so this rational function is really a polynomial in R[xi, ..., x,]. The
algebra 2 is isomorphic to the algebra generated over R by the Demazure operators
0;; hence the name ‘Demazure algebra’. In this case, the fact that & is an associative
algebra with given free R-basis follows from the easily verified fact that the
Demazure operators satisfy the Coxeter relations.

Remark 3.3. The operators in Example 3.2 and the related ‘divided difference’
operators were introduced by Demazure [Dem74] and Bernstein—Gel'fand—Gel'fand
[BGG73] for arbitrary Weyl groups. Their context was the calculation of the
cohomology and K-theory classes of Schubert varieties in G/ P via desingularization.
The operators J;, which are frequently denoted in the literature by ;, were called
isobaric divided differences by Lascoux and Schiitzenberger [LS82b]. See Section 5 for
the relation to Grothendieck polynomials, and [Mac91] for background on the
algebra of divided differences.

In general, the fact that the equations in (1) define an associative algebra is the
special case of [Hum90, Theorem 7.1] where all of the ‘@’ variables equal 1 and all of
the ‘b’ variables are zero. Observe that the ordered product of a word equals the
Demazure product if the word is reduced. Here are some basic properties of
Demazure products, using ‘>’ and ‘>’ signs to denote the Bruhat partial order on
I1, in which 7>n if some (and hence every) reduced word representing t contains a
subword representing © [Hum90, Section 5.9]. For notation in the proof and
henceforth, we write Q\o; for the word of size m — 1 obtained from Q = (a4, ..., 0m)
by omitting a;.

Lemma 3.4. Let P be a word in I1 and let mell.

1. The Demazure product 6(P) is = if and only if P contains 7.

2. If 6(P) = =, then every subword of P containing n has Demazure product 7.

3. If 6(P)>m, then P contains a word T representing an element 1> satisfying
|T| = length (1) = length (%) + 1.

Proof. If P’< P and P’ contains =, then P’ contains é(P') and n = 6(P)=d6(P') =,
proving part 2 from part 1. Choosing any eIl such that length (7) = length (%) + 1
and n<t<J(P) proves part 3 from part 1.

Now we prove part 1. Suppose n' = 6(P)=n, and let PP be the subword
obtained by reading P in order, omitting any reflections along the way that do not
increase length. Then P’ represents n’ by definition, and contains © because any
reduced expression for 7’ contains a reduced expression for 7.

If T'< P represents n, then use induction on |P| as follows. Let o€ be the last
reflection in the list P, so d(P)o<d(P) by definition of Demazure product, and
0(P\o) equals either 6(P) or d(P)o. If mo>n then T = P\g, so n<d(P\o)<o(P) by
induction. If te <m and 7" = T represents 7o, then 7’ < P\¢ and hence no <J(P\o) by
induction. Since no <, we have no <é(P\o) = n<do(P). O
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Lemma 3.5. Let T be a word in Il and well such that |T| = length () + 1.

1. There are at most two elements a€ T such that T\o represents 7.
2. If 6(T) = =, then there are two distinct c€ T such that T\c represents m.
3. If T represents 1>m, then T\o represents 1 for exactly one e T.

Proof. Part 1 is obvious if |T|<2, so suppose there are elements o,02,03€ T (in
order of appearance) such that T\g; represents 7 for each i = 1,2,3. Writing T =
Ti61T>6,T505T4, we find that

T1 T20'2T303T4 = T10'1T2T303T4.

Canceling T} from the left and T50374 from the right yields T, = o 7>. It follows
that 1 = T101T20,T5T4 = Tyo,0,1>T53T4 = T\ T, T5T4, contradicting the hypothesis
that length (n) = |T| — 1.

In part 2, 6(T) = n means there is some g€ T such that

() T="TTx;
(i1) T,T; represents m; and
(ii1) 7, >7t;0, where T} represents 1;.

Omitting some ¢’ from T leaves a reduced expression for 7;6 by (iii). It follows that
T\o' and T\o¢ both represent 7.
Part 3 is the exchange condition. [

Lemma 3.6. Suppose every codimension 1 face of a shellable simplicial complex A is
contained in at most two facets. Then A is a topological manifold-with-boundary that is
homeomorphic to either a ball or a sphere. The facets of the topological boundary of A
are the codimension 1 faces of A contained in exactly one facet of A.

Proof. See Bjorner et al. [BLSWZ99, Proposition 4.7.22]. O

Theorem 3.7. The subword complex A(Q, ) is a either a ball or a sphere. A face Q\P is
in the boundary of A(Q,n) if and only if P has Demazure product 6(P)#T.

Proof. That every codimension 1 face of 4(Q, 7) is contained in at most two facets is
the content of part 1 in Lemma 3.5, while shellability is Theorem 2.5. This verifies the
hypotheses of Lemma 3.6 for the first sentence of the theorem.

If Q\P is a face and P has Demazure product #m, then d(P)>n by part 1 of
Lemma 3.4. Choosing T as in part 3 of Lemma 3.4, we find by part 3 of Lemma 3.5
that Q\T is a codimension 1 face contained in exactly one facet of 4(Q,n). Thus,
using Lemma 3.6, we conclude that Q\P<= Q\T is in the boundary of 4(Q,n).

If 6(P) = =, on the other hand, part 2 of Lemmas 3.4 and 3.5 say that every
codimension 1 face Q\TeA(Q,n) containing Q\P is contained in two facets of
A(Q, ). Lemma 3.6 says each such Q\T is in the interior of A(Q,n), whence Q\P
must itself be an interior face. [
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Corollary 3.8. The complex A(Q,n) is a sphere if 6(Q) = n and a ball otherwise.

4. Hilbert series

Let us review some standard notions from Stanley—Reisner theory. Fix a field k
and a set z=zj,...,z, of variables. Suppose 4 is a simplicial complex with m
vertices, which we think of as corresponding to the simple reflections o1, ..., g,, in the
word Q. Recall that the Stanley—Reisner ideal of A is Iy = { [[;.p zi| D¢ 4, the
ideal generated by monomials corresponding to the (minimal) nonfaces of 4.
Equivalently,

Li= () <zli¢D)

DeA

is an intersection of prime ideals for faces of A by an easy exercise. By definition, the
Hilbert series H(K[4];z) of the Stanley—Reisner ring k[A] = k[z] /1,4 equals the sum of
all monomials in k[z] that lie outside I4. Thus H(k[4];z) is the sum of all monomials
outside every one of the ideals {z;|i¢ D) for faces DeA. This sum is over the
monomials z° for be N” having support exactly D for some face De A:

11) (zi) q)(l - zi)
HEAn =30 ] =2 =3 =y 2)

DeA ieD

In the special case where 4 = 4(Q, n) is a subword complex, the Stanley—Reisner
ideal is the intersection Iy =(){z;|o;€P) over subwords P=Q such that P
represents 7. Now we are ready to state the main result of this section.

Theorem 4.1. If A is the subword complex A(Q, n) and { = length (n), then the Hilbert
series of the Stanley—Reisner ring k[A] is

s (D1 = 2)"
HT:] (1 - Zi) '

where (1 —1z)" = [1,,cp(1 = zi), and the sum is over subwords P< Q.

H(k[4];2) =

The proof of Theorem 4.1 is after Proposition 4.3. First, we set about stating and
proving the two results used in the proof of the theorem.

In general, if I is an arbitrary monomial ideal J =k|z], or a quotient k[z]/J, then
the Hilbert series of I' (which is the sum of all monomials inside or outside J,
respectively) has the form

H(T;z)

B )
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and we call #'(I'; z) the K-polynomial or Hilbert numerator of T'. It has the following
direct interpretation in terms of Z”-graded homological algebra. Since I' is Z"-
graded, it has a minimal Z"-graded free resolution

OcleBycBicmcbed  E= @ Ki(-deg!)r. (3
P=Q
where B, p is the jth Betti number of I' in 7"-graded degree deg z". Then the K-
polynomial of I'is #" (I';z) = 3, (—1YB, p-2".
Hochster’s formula, which we shall state in (4), says how to calculate explicitly the
Betti numbers of the Alexander dual ideal of 1,, which is defined by

¥ = <H z,»|DeA>.

i¢D

Note that the generators of 7} are obtained by multiplying the variables in each
prime component of I,. Thus, for instance, when 4 = 4(Q, ) is a subword complex,
we get

I¥ = (2" |P=Q and P represents 1),
where z” = ], _p z for any subword P= Q. Hochster’s formula [MPO1, p. 45] now

says that, in terms of reduced homology of 4 = 4(Q,n) over the field k, the Z"-
graded Betti numbers of I} over k[z] are

B;.p = dimg H;-(link(Q\P, 4); k). (4)

Lemma 4.2. If A is the subword complex A(Q,n) and ¢ = length (n), then

H(Ifz)= Y (1)
PcQ
o(P)=n

is the Hilbert numerator of the Alexander dual ideal.

Proof. Let Q\Pe A, so P< Q contains n. By Theorem 3.7, either 6(P)#r, in which
case link (Q\P, 4) is contractible, or 6(P) = =, in which case link (Q\P, 4) is a sphere
of dimension

(dim 4) —|Q\P| = (10| =/ = 1) = [Q\P| = |[P| =/ — .

(Recall that a sphere of dimension —1 is taken to mean the empty complex {0}
having nonzero reduced homology in dimension —1.) Therefore H;_link (Q\P, 4) is
zero unless 6(P) == and j = |P| —/, in which case the reduced homology has
dimension 1. Now apply (4) to the formula 2" (I';z) = Z_/ (—l)"ﬁjﬁp 2P O
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Lemma 4.2 helps us calculate the Hilbert series of k[4] because the K-polynomials of
the Stanley—Reisner ring k[4] and the Alexander dual ideal I} are intimately related,
as the next result demonstrates. Although it holds more generally for the ““squarefree
modules” of Yanagawa [Yan00], as shown in [Mil00, Theorem 4.36], we include an
elementary proof of Proposition 4.3 because of its simplicity. A Z-graded version
was proved by Terai for squarefree ideals using some calculations involving f-vectors
of simplicial complexes [Ter99, Lemma 2.3]. For notation, 2 (I';1—z) is the
polynomial obtained from ' (I';z) by substituting 1 — z; for each variable z;.

Proposition 4.3 (Alexander inversion formula). For any simplicial complex A we have
A (K[A]i2) = A (1F:1—2).

Proof. See (2) for the Hilbert series of k[4]. On the other hand, the Hilbert series of
I is the sum of all monomials z” divisible by [];,, z for some De 4:

z, iepd —2z;
S S P B

Ded i¢D
Now compare the last expressions of (2) and (5). O

Proof of Theorem 4.1. Lemma 4.2 gives the numerator of the Hilbert series of the
Alexander dual ideal I}, and Proposition 4.3 says how to recover the numerator of
the Hilbert series of the Stanley—Reisner ring from that. [

Theorem 4.1 can be restated in a somewhat different form, grouping subwords with
Demazure product 7 according to their lexicographically first reduced subwords for
7. Given a reduced subword D< Q, say that g,€ Q\D is absorbable if the word
T = Duo; in Q has the properties: (i) 6(T) = 6(D), and (ii) the unique reflection
o;€ D (afforded by Lemma 3.5.2) satisfying 6(7'\o;) = 6(D) has index j<i.

Theorem 4.4. If A is the subword complex A(Q,n) and abs (D)<= Q is the set of
absorbable reflections for each reduced subword D< Q, then K[A] has K-polynomial

A KAlz)= Y (1-2)"2P),
facetsQ\D

where (1 —z)” = [Isep (1 —z), and 22 (D) = 1o, cabs (o) Zi-

Proof. Given a subword P< Q, say that P simplifies to D< P, and write P~ D, if D
is the lexicographically first subword of P with Demazure product §(P). If P has
Demazure product = and P-» D, the subword Q\D is automatically a facet of 4.
If we denote by P; the initial string of reflections in P with index at most i, the
simplification D is obtained from P by omitting any reflection ¢;€ P such that
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0(P<i-1) = 0(P«;). Theorem 4.1 says that

HkAkz)= Y (1-2" > -1
facetsQ\D P-D

Now note that subwords P simplifying to D are (by definition of Demazure product)
obtained by adding to D (at will) some of its absorbable reflections in Q. Therefore

Z (z— 1P = H (14 (z— 1)) = 2@

P-»D gjcabs(D)

completing the proof. [

Remark 4.5. The Hilbert numerator as expressed in Theorem 4.4 looks more like
one would expect from a shellable simplicial complex, using a version of [Sta96,
Proposition 2.3] suitably enhanced for the fine grading. We believe the reason comes
from the facet adjacency graph I'(Q, ) of A(Q, ), which by definition has the facets
of 4(Q, ) for vertices, while its edges are the interior ridges (codimension 1 faces) of
A(Q, ). Two facets are adjacent if they share a ridge. Note that every interior ridge
lies in exactly two facets by Lemma 3.6.

The facet adjacency graph I'(Q, ) can be oriented, by having each ridge Q\P point
toward the facet Q\D whenever P simplifies to D. The resulting directed facet
adjacency graph is acyclic—so its transitive closure is a poset—Dbecause the relation
by ridges is a subrelation of lexicographic order. We believe that every linear
extension of this poset gives a shelling order for 4(Q, n). The shelling formulae we
get for the K-polynomial will all be the same, namely the one in Theorem 4.4.

5. Combinatorics of Grothendieck polynomials

The Grothendieck polynomial %,,(x) in variables xj,...,x, and its “double”
analogue %,(x,y) represent the classes of Schubert varieties in ordinary and
equivariant K-theory of the flag manifold [LS82b]. Their algebraic definition will be
recalled below. The goal of this section is to derive as special cases of Theorems 4.1
and 4.4 two formulae for Grothendieck polynomials. The first formula (Corollary
5.4) coincides with a special case of a formula discovered by Fomin and Kirillov
[FK94]. It is the K-theoretic analogue of the Billey—Jockusch—Stanley formula for
the Schubert polynomial &,,(x) [BJS93,FS94], interpreted here for the first time in
terms of simplicial topology. The second formula (Corollary 5.5) relates to other
combinatorial models for Grothendieck polynomials in work of Lenart et al.
[LRS03]. We begin with the example of subword complexes that pervades [KMO03].

Example 5.1. Set IT = S,,, and let

Onxn = SuSn—1++-8251 Sp18n---5382 Snt2Sntlenn oo Snt28n+1 S2m—1520-2 -+ Sp+15n-
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This is the square word from [KMO03, Example 1.8.3], so named because the #> simple
reflections in this list Q fill the n x n grid naturally by starting at the upper-right,
continuing to the left, and subsequently reading each row from right to left, in turn.
Observe that every occurrence of s; in O, sits on the ith antidiagonal of the
resulting square array.

Given we S, (not Sy,), the subword complex 4 = A(Q,xn, w) plays a crucial role in
the main theorems of [KMO3]; see Proposition 5.3, below. For the Stanley—Reisner
ring k[4], we index the variables z = zy, ..., z,» by their positions in the n x n grid, so
= {z[/}szl with z;; at the upper-left and zj, at the upper-right.

Definition 5.2. Let weS, be a permutation, and recall the Demazure operators 0;
from Example 3.2. The Grothendieck polynomial 9,,(x) is obtained recursively from

the top one %, (x) == [[, (1 —x;)" via the recurrence

{qws[ (X) = &gw (X)

whenever length (ws;) <length (w). The double Grothendieck polynomials are defined
by the same recurrence, but start from %, (x,y) = [[;,;<, (1 —x,).

We use slightly different notation in Definition 5.2 than in [KMO03, Definition
1.1.3]: the polynomial %, (x,y) here is obtained from the corresponding Laurent
polynomial in [KMO03] by setting each variable y;! to y; (the geometry in
[KMO3] required inverses). This alteration makes the notation more closely resemble
that in [FK94], where their polynomial L’](,V_])(y, x) corresponds to what we call
4,(1 —x,1—y) here.

Grothendieck polynomials connect to subword complexes by part of the ‘Grébner
geometry theorems’ in [KMO3]. In our context, they say the following.

Proposition 5.3 (Knutson and Miller [KMO03, Theorems A and B]). Suppose we S,
and let A = A(Qyxn, w) be the subword complex for the square word. Setting z; equal
to x;y; or to x; in the Hilbert numerator A (K[A];z) yields respectively the double
Grothendieck polynomial 4,,(x,y) or the Grothendieck polynomial 4,,(x).

For notation, regard subwords P< Q,«, as subsets of the n x n grid.

Corollary 5.4 (Fomin and Kirillov [FK94, Theorem 2.3, p. 190]). If we S, and Qpx»
is the square word as in Example 5.1, then the double Grothendieck polynomial
4,,(x,y) satisfies

Gul-x1-y)= > [ D"ty -,
PSQpn (ij)eP
o(P)=w
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where length (w) = /. The version for single Grothendieck polynomials reads

G,(1 —x) = Z (—1)/FI='x*, where — x H X;.

PS Quxn (ij)eP
o(P)=w

Proof. Apply Theorem 4.1 to the subword complex 4 = A(Qyxn, w). Substituting
x;y; for z; as stipulated in Proposition 5.3 yields the double version after calculating
1 — (1 —x;)(1 —y;) =x;+y; — x;y;, while the single version follows trivially. [

Corollary 5.4 can be rewritten in terms of absorbable reflections as in
Theorem 4.4.

Corollary 5.5. If we S, and A(Qpxn, w) is the square subword complex, then

G(X,Y) Z H (1- xzy/ H XiYj-

facets  (i,j)eD (ij)eabs (D)

X\

The version for single Grothendieck polynomials reads

Y (x) = Z (1 — x)Pxs (P),
facets

Onsn\D
where (1 — X)D = H(i.j)eD (1 = ;) and x*> ) = H(i.j)eabs (D) Xi-
Proof. Apply Proposition 5.3 to the result of Theorem 4.4 for 4 = A(Quxu, w). O

Readers familiar with reduced pipe dreams (also called rc-graphs; see [KMO3,
Section 1.4] for an introduction) can see a geometric interpretation of absorbable
reflections: given a reduced pipe dream D, an elbow tile is absorbable if the two pipes
passing through it intersect in a crossing tile to its northeast. Thus the pipe dream D
almost fails to be being a reduced pipe dream because of that elbow tile. Note that
there must be exactly one reduced pipe dream with no absorbable elbow tiles (in
[BB93] this is the ‘bottom’ rc-graph), because the constant term of the K-polynomial
of any Stanley—Reisner ring—or indeed any non zero quotient of the polynomial
ring—equals 1.

Here is a weird consequence of the Demazure product characterization of the
Hilbert numerator # (k[4];z) for 4 = A(Qpuxn, W)

Porism 5.6. For each squarefree monomial z¥ in the variables z = (z;);_,, there exists

ij=1»
a unique permutation we So, = U, Sy such that z¥ appears with nonzero coefficient in
the Hilbert numerator of the Alexander dual ideal I}( Oron) for some (and hence all) n

such that we S,. The coefficient of z¥ is +1.

Proof. The permutation w in question is 6(P), by Lemma 4.2. O
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6. Open problems

The considerations in this paper motivate some questions concerning the
combinatorics of reduced expressions in Coxeter groups.

Question 6.1. Given an element well, what is the smallest size of a word in X
containing every reduced expression for © as a subword?

Note that a smallest size word containing all reduced expressions for = will not in
general be unique. Indeed, even for the long word w = 321 € .S3, there are two such:
515285152 and 525185281 .

Question 6.1 asks for a measure of how far intervals in the weak order are from
being subword complexes. Another measure would be provided by a solution to the
following problem, which asks roughly how many faces must be added to order
complexes of intervals in the weak order to get subword complexes. To be precise, let
the repetition number repnum (Q,7) be the largest number of times that a single
reduced expression for © appears as a subword of Q.

Problem 6.2. Describe the function sending mr repnum (n), where repnum (n) =
min(repnum (Q) | Q contains all reduced expressions for ).

Restricting to symmetric groups, for instance,

Question 6.3. Is the function in Problem 6.2 bounded above on S, =], S,? If not,
how does it grow?

Given that subword complexes appeared naturally in the context of the geometry
of Schubert varieties, it is natural to ask whether there are good geometric
representatives for subword complexes.

Question 6.4. Can any spherical subword complex be realized as a convex polytope?

One could also take the opposite perspective, by starting with a simplicial
sphere.

Problem 6.5. Characterize those simplicial spheres realizable as subword complexes.
Of course, in all of these problems it may be useful to try restricting to words

in S,.
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